AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.4986
REVIEW

 3D-printed bioactive scaffolds: An emerging strategy for the regeneration of infectious bone defects

Jianye Yang1,2,3 Jiawei Wang4 Yaji Yang1,2,3 Xudong Su1,2,3 Zhenghao Xu1,2,3 Yingkun Hu1,2,3 Jiahui Lai5 Haotian Zhou1,2,3 Chuanqiang Dai6 Zhong Alan Li5* Leilei Qin1,2,3* Ning Hu1,2,3*
Show Less
1 Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
2 Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Chongqing Municipal Health Commission, Chongqing, China
3 Orthopedic Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, China
4 Department of Orthopedics, The Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing, China
5 Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
6 Department of Orthopedics, Ziyang Central Hospital, Ziyang, Sichuan, China
Submitted: 28 September 2024 | Accepted: 1 November 2024 | Published: 11 November 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

In orthopedics, infectious bone defects face a formidable challenge, considering the critical issues of infection control and bone regeneration during treatment. Although numerous biomaterials have been developed to address these therapeutic challenges, most fail to meet the high regeneration requirements of infectious bone defects with complex pathological environments. There is an urgent need for the rational design of multifunctional bioactive scaffolds that integrate antimicrobial treatments with bone regeneration capabilities. Three-dimensional (3D) printing, a powerful manufacturing technique, holds great promise in fabricating complex bone tissue engineering scaffolds with highly personalized customization. The 3D-printed bioactive scaffolds possess excellent biocompatibility, outstanding antimicrobial properties, appropriate mechanical strength, and bone regeneration ability, making them a highly attractive, emerging strategy for overcoming the challenges of infectious bone defect repair. This review first discusses the therapeutic challenges of infectious bone defects and the desirable features of ideal bone implants, followed by a systematic overview of recent advancements in 3D printing technologies and biomaterials used to fabricate 3D-printed bioactive scaffolds for infectious bone defects. Finally, we highlight the advantages, potential breakthroughs, and challenges of 3D-printed bioactive scaffolds in repairing infectious bone defects.

Graphical abstract
Keywords
3D printing
Infectious bone defects
Bone regeneration
Antimicrobial properties
Bioactive scaffolds
Funding
This research was funded by the National Natural Science Foundation of China (82372425; 82072443), the National Natural Science Foundation of Chongqing, China (CSTB2023NSCQ-MSX0166), the Postdoctoral Fellowship Program of CPSF (GZC20233351), and the Chongqing Postdoctoral Research Project Special Support (2023CQBSHTB3124).
Conflict of interest
The authors declare no conflict of interest.
References
  1. Ma L, Cheng Y, Feng X, et al. A Janus-ROS healing system promoting infectious bone regeneration via sono-epigenetic modulation. Adv Mater. 2024;36(2):e2307846. doi: 10.1002/adma.202307846
  2. Xing Y, Qiu L, Liu D, Dai S, Sheu CL. The role of smart polymeric biomaterials in bone regeneration: a review. Front Bioeng Biotechnol. 2023;11:1240861. doi: 10.3389/fbioe.2023.1240861
  3. Ahangar P, Li J, Nkindi LS, et al. A nanoporous 3D-printed scaffold for local antibiotic delivery. Micromachines. 2023;15(1):83. doi: 10.3390/mi15010083
  4. Lin S, Maekawa H, Moeinzadeh S, et al. An osteoinductive and biodegradable intramedullary implant accelerates bone healing and mitigates complications of bone transport in male rats. Nat Commun. 2023;14(1):4455. doi: 10.1038/s41467-023-40149-5
  5. He M, Wang H, Han Q, et al. Glucose-primed PEEK orthopedic implants for antibacterial therapy and safeguarding diabetic osseointegration. Biomaterials. 2023;303:122355. doi: 10.1016/j.biomaterials.2023.122355
  6. Zhang Y, Li Z, Guo B, et al. A zinc oxide nanowire-modified mineralized collagen scaffold promotes infectious bone regeneration. Small. 2024;20(19):e2309230. doi: 10.1002/smll.202309230
  7. Wang X, Zhang M, Zhu T, Wei Q, Liu G, Ding J. Flourishing antibacterial strategies for osteomyelitis therapy. Adv Sci (Weinh). 2023;10(11):e2206154. doi: 10.1002/advs.202206154
  8. Heng BC, Bai Y, Li X, et al. Electroactive biomaterials for facilitating bone defect repair under pathological conditions. Adv Sci (Weinh). 2023;10(2): e2204502. doi: 10.1002/advs.202204502
  9. Chae K, Jang WY, Park K, et al. Antibacterial infection and immune-evasive coating for orthopedic implants. Sci Adv. 2020;6(44):eabb0025. doi: 10.1126/sciadv.abb0025
  10. Gordon O, Lee DE, Liu B, et al. Dynamic PET-facilitated modeling and high-dose rifampin regimens for Staphylococcus aureus orthopedic implant-associated infections. Sci Transl Med. 2021;13(622):eabl6851. doi: 10.1126/scitranslmed.abl6851
  11. Aggarwal D, Kumar V, Sharma S. Drug-loaded biomaterials for orthopedic applications: a review. J Control Release. 2022;344:113-133. doi: 10.1016/j.jconrel.2022.02.029
  12. Tao F, Ma S, Tao H, et al. Chitosan-based drug delivery systems: from synthesis strategy to osteomyelitis treatment - a review. Carbohydr Polym. 2021;251:117063. doi: 10.1016/j.carbpol.2020.117063
  13. Lou P, Zhou G, Wei B, Deng X, Hou D. Bone grafting for femoral head necrosis in the past decade: a systematic review and network meta-analysis. Int J Surg. 2023;109(3): 412-418. doi: 10.1097/JS9.0000000000000231
  14. Jung M, Karampinos DC, Holwein C, et al. Quantitative 3-T magnetic resonance imaging after matrix-associated autologous chondrocyte implantation with autologous bone grafting of the knee: the importance of subchondral bone parameters. Am J Sports Med. 2021;49(2):476-486. doi: 10.1177/0363546520980134
  15. Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater Sci Eng C Mater Biol Appl. 2021;130:112466. doi: 10.1016/j.msec.2021.112466
  16. Sharifi M, Kheradmandi R, Salehi M, Alizadeh M, Ten Hagen TLM, Falahati M. Criteria, challenges, and opportunities for acellularized allogeneic/xenogeneic bone grafts in bone repairing. ACS Biomater Sci Eng. 2022;8(8):3199-3219. doi: 10.1021/acsbiomaterials.2c00194
  17. Stavropoulos A, Marcantonio CC, de Oliveira VXR, Marcantonio E, Jr., de Oliveira G. Fresh-frozen allogeneic bone blocks grafts for alveolar ridge augmentation: biological and clinical aspects. Periodontol 2000. 2023;93(1):139-152. doi: 10.1111/prd.12543
  18. Xue X, Hu Y, Wang S, Chen X, Jiang Y, Su J. Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering. Bioact Mater. 2022;12:327-339. doi: 10.1016/j.bioactmat.2021.10.029
  19. Sparks DS, Savi FM, Dlaska CE, et al. Convergence of scaffold-guided bone regeneration principles and microvascular tissue transfer surgery. Sci Adv. 2023;9(18):eadd6071. doi: 10.1126/sciadv.add6071
  20. Du L, Wu J, Han Y, Wu C. Immunomodulatory multicellular scaffolds for tendon-to-bone regeneration. Sci Adv. 2024;10(10):eadk6610. doi: 10.1126/sciadv.adk6610
  21. Lu G, Zhao G, Wang S, et al. Injectable nano-micro composites with anti-bacterial and osteogenic capabilities for minimally invasive treatment of osteomyelitis. Adv Sci (Weinh). 2024;11(12):e2306964. doi: 10.1002/advs.202306964
  22. Zhou T, Zhou H, Wang F, Zhang P, Shang J, Shi L. An injectable carboxymethyl chitosan hydrogel scaffold formed via coordination bond for antibacterial and osteogenesis in osteomyelitis. Carbohydr Polym. 2024;324:121466. doi: 10.1016/j.carbpol.2023.121466
  23. Zhang W, Lu H, Zhang W, et al. Inflammatory microenvironment-responsive hydrogels enclosed with quorum sensing inhibitor for treating post-traumatic osteomyelitis. Adv Sci (Weinh). 2024;11(20):e2307969. doi: 10.1002/advs.202307969
  24. Zhou B, Jiang X, Zhou X, et al. GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances. Biomater Res. 2023;27(1):86. doi: 10.1186/s40824-023-00422-6
  25. Zhou Z, Cui J, Wu S, Geng Z, Su J. Silk fibroin-based biomaterials for cartilage/osteochondral repair. Theranostics. 2022;12(11):5103-5124. doi: 10.7150/thno.74548
  26. Chen L, Yang J, Cai Z, et al. Electroactive biomaterials regulate the electrophysiological microenvironment to promote bone and cartilage tissue regeneration. Adv Funct Mater. 2024;34(23):2314079. doi: 10.1002/adfm.202314079
  27. Wan QQ, Qin WP, Ma YX, et al. Crosstalk between bone and nerves within bone. Adv Sci (Weinh). 2021;8(7):2003390. doi: 10.1002/advs.202003390
  28. Collon K, Gallo MC, Lieberman JR. Musculoskeletal tissue engineering: regional gene therapy for bone repair. Biomaterials. 2021;275:120901. doi: 10.1016/j.biomaterials.2021.120901
  29. Sun W, Ye B, Chen S, et al. Neuro-bone tissue engineering: emerging mechanisms, potential strategies, and current challenges. Bone Res. 2023;11(1):65. doi: 10.1038/s41413-023-00302-8
  30. Zhang J, Chen P, Hu F, Chen C, Song L. Porous structure design and properties of dental implants. Comp Methods Biomech Biomed Eng. 2024;27(6):717-726. doi: 10.1080/10255842.2023.2199901
  31. Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering. Nat Rev Mater. 2020;5(8):584-603. doi: 10.1038/s41578-020-0204-2
  32. Li Z, Du T, Ruan C, Niu X. Bioinspired mineralized collagen scaffolds for bone tissue engineering. Bioact Mater. 2021;6(5):1491-1511. doi: 10.1016/j.bioactmat.2020.11.004
  33. Du R, Zhao B, Luo K, et al. Shape memory polyester scaffold promotes bone defect repair through enhanced osteogenic ability and mechanical stability. ACS Appl Mater Interfaces. 2023;15(36):42930-42941. doi: 10.1021/acsami.3c06902
  34. Zhang M, Matinlinna JP, Tsoi JKH, et al. Recent developments in biomaterials for long-bone segmental defect reconstruction: a narrative overview. J Orthop Translat. 2020;22:26-33. doi: 10.1016/j.jot.2019.09.005
  35. Seo YW, Park JY, Lee DN, et al. Three-dimensionally printed biphasic calcium phosphate blocks with different pore diameters for regeneration in rabbit calvarial defects. Biomater Res. 2022;26(1):25. doi: 10.1186/s40824-022-00271-9
  36. Foroughi AH, Razavi MJ. Multi-objective shape optimization of bone scaffolds: enhancement of mechanical properties and permeability. Acta Biomater. 2022;146:317-340. doi: 10.1016/j.actbio.2022.04.051
  37. Yuan Y, Xu Y, Mao Y, et al. Three birds, one stone: an osteo-microenvironment stage-regulative scaffold for bone defect repair through modulating early osteo-immunomodulation, middle neovascularization, and later osteogenesis. Adv Sci (Weinh). 2024;11(6):e2306428. doi: 10.1002/advs.202306428
  38. Wang Y, Wang J, Gao R, et al. Biomimetic glycopeptide hydrogel coated PCL/nHA scaffold for enhanced cranial bone regeneration via macrophage M2 polarization-induced osteo-immunomodulation. Biomaterials. 2022;285:121538. doi: 10.1016/j.biomaterials.2022.121538
  39. Su N, Villicana C, Barati D, Freeman P, Luo Y, Yang F. Stem Cell membrane-coated microribbon scaffolds induce regenerative innate and adaptive immune responses in a critical-size cranial bone defect model. Adv Mater. 2023;35(10):e2208781. doi: 10.1002/adma.202208781
  40. Liu S, Jia X, Hao J, et al. Tissue engineering of JAK inhibitor-loaded hierarchically biomimetic nanostructural scaffold targeting cellular senescence for aged bone defect repair and bone remolding. Adv Healthc Mater. 2023;12(30): e2301798. doi: 10.1002/adhm.202301798
  41. Wang Y, Hu Y, Lan S, et al. A Recombinant parathyroid hormone-related peptide locally applied in osteoporotic bone defect. Adv Sci (Weinh). 2023;10(22):e2300516. doi: 10.1002/advs.202300516
  42. Li C, Sun F, Tian J, et al. Continuously released Zn(2+) in 3D-printed PLGA/beta-TCP/Zn scaffolds for bone defect repair by improving osteoinductive and anti-inflammatory properties. Bioact Mater. 2023;24:361-375. doi: 10.1016/j.bioactmat.2022.12.015
  43. Zhao J, Zhou YH, Zhao YQ, et al. Oral cavity-derived stem cells and preclinical models of jaw-bone defects for bone tissue engineering. Stem Cell Res Ther. 2023;14(1):39. doi: 10.1186/s13287-023-03265-z
  44. Wang Z, Wang Y, Yan J, et al. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev. 2021;174:504-534. doi: 10.1016/j.addr.2021.05.007
  45. Zieliński PS, Gudeti PKR, Rikmanspoel T, Włodarczyk- Biegun MK. 3D printing of bio-instructive materials: toward directing the cell. Bioact Mater. 2023;19:292-327. doi: 10.1016/j.bioactmat.2022.04.008
  46. Tong L, Pu X, Liu Q, et al. Nanostructured 3D-printed hybrid scaffold accelerates bone regeneration by photointegrating nanohydroxyapatite. Adv Sci (Weinh). 2023;10(13): e2300038. doi: 10.1002/advs.202300038
  47. Balazs DM, Ibanez M. Widening the use of 3D printing. Science. 2023;381(6665):1413-1414. doi: 10.1126/science.adk3070
  48. Fu Y, Li Z, Zhao S, Hou H, Chai Y. Reconfigurable aqueous 3D printing with adaptive dual locks. Sci Adv. 2024;10(17):eadk4080. doi: 10.1126/sciadv.adk4080
  49. Carvalho AM, Bansal R, Barrias CC, Sarmento B. The material world of 3d-bioprinted and microfluidic-chip models of human liver fibrosis. Adv Mater. 2024;36(2):e2307673. doi: 10.1002/adma.202307673
  50. Zhang X, Jiang W, Xie C, et al. Msx1(+) stem cells recruited by bioactive tissue engineering graft for bone regeneration. Nat Commun. 2022;13(1):5211. doi: 10.1038/s41467-022-32868-y
  51. Wei Y, Pan H, Yang J, Zeng C, Wan W, Chen S. Aligned cryogel fibers incorporated 3D printed scaffold effectively facilitates bone regeneration by enhancing cell recruitment and function. Sci Adv. 2024;10(6):eadk6722. doi: 10.1126/sciadv.adk6722
  52. Zhu C, He M, Sun D, et al. 3D-printed multifunctional polyetheretherketone bone scaffold for multimodal treatment of osteosarcoma and osteomyelitis. ACS Appl Mater Interfaces. 2021;13(40):47327-47340. doi: 10.1021/acsami.1c10898
  53. Shen J, Wei Z, Wu H, et al. The induced membrane technique for the management of infected segmental bone defects. Bone Joint J. 2024;106-B(6):613-622. doi: 10.1302/0301-620X.106B6.BJJ-2023-1443.R1
  54. He Y, Liu X, Lei J, et al. Bioactive VS(4)-based sonosensitizer for robust chemodynamic, sonodynamic and osteogenic therapy of infected bone defects. J Nanobiotechnol. 2024;22(1):31. doi: 10.1186/s12951-023-02283-6
  55. Zhang M, Lin R, Wang X, et al. 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration. Sci Adv. 2020;6(12):eaaz6725. doi: 10.1126/sciadv.aaz6725
  56. Huang H, Qiang L, Fan M, et al. 3D-printed tri-element-doped hydroxyapatite/polycaprolactone composite scaffolds with antibacterial potential for osteosarcoma therapy and bone regeneration. Bioact Mater. 2024;31:18-37. doi: 10.1016/j.bioactmat.2023.07.004
  57. Wang L, Yang Q, Huo M, et al. Engineering single-atomic iron-catalyst-integrated 3D-printed bioscaffolds for osteosarcoma destruction with antibacterial and bone defect regeneration bioactivity. Adv Mater. 2021;33(31): e2100150. doi: 10.1002/adma.202100150
  58. Qiao Z, Zhang W, Jiang H, Li X, An W, Yang H. 3D-printed composite scaffold with anti-infection and osteogenesis potential against infected bone defects. RSC Adv. 2022;12(18):11008-11020. doi: 10.1039/d2ra00214k
  59. Cui M, Pan H, Li L, et al. Exploration and preparation of patient-specific ciprofloxacin implants drug delivery system via 3D printing technologies. J Pharm Sci. 2021;110(11):3678-3689. doi: 10.1016/j.xphs.2021.08.004
  60. Mistry S, Roy R, Jha AK, et al. Treatment of long bone infection by a biodegradable bone cement releasing antibiotics in human. J Control Release. 2022;346: 180-192. doi: 10.1016/j.jconrel.2022.04.018
  61. Li B, Thebault P, Labat B, et al. Implants coating strategies for antibacterial treatment in fracture and defect models: a systematic review of animal studies. J Orthop Translat. 2024;45:24-35. doi: 10.1016/j.jot.2023.12.006
  62. Fu Z, Hai N, Zhong Y, Sun W. Printing GelMA bioinks: a strategy for buildingin vitromodel to study nanoparticle-based minocycline release and cellular protection under oxidative stress. Biofabrication. 2024;16(2):025040. doi: 10.1088/1758-5090/ad30c3
  63. Wassif RK, Elkayal M, Shamma RN, Elkheshen SA. Recent advances in the local antibiotics delivery systems for management of osteomyelitis. Drug Deliv. 2021;28(1):2392-2414. doi: 10.1080/10717544.2021.1998246
  64. Yu Q, Wang Q, Zhang L, et al. The applications of 3D printing in wound healing: the external delivery of stem cells and antibiosis. Adv Drug Deliv Rev. 2023;197:114823. doi: 10.1016/j.addr.2023.114823
  65. Fathi F, Alizadeh B, Tabarzad MV, Tabarzad M. Important structural features of antimicrobial peptides towards specific activity: trends in the development of efficient therapeutics. Bioorg Chem. 2024;149:107524. doi: 10.1016/j.bioorg.2024.107524
  66. Cresti L, Cappello G, Pini A. Antimicrobial peptides towards clinical application-a long history to be concluded. Int J Mol Sci. 2024;25(9):4870. doi: 10.3390/ijms25094870
  67. Ch S, Mishra P, Padaga SG, Ghosh B, Roy S, Biswas S. 3D-printed inherently antibacterial contact lens-like patches carrying antimicrobial peptide payload for treating bacterial keratitis. Macromol Biosci. 2024;24(4):e2300418. doi: 10.1002/mabi.202300418
  68. Cometta S, Jones RT, Juarez-Saldivar A, et al. Melimine-modified 3D-printed polycaprolactone scaffolds for the prevention of biofilm-related biomaterial infections. ACS Nano. 2022;16(10):16497-16512. doi: 10.1021/acsnano.2c05812
  69. Izadi A, Paknia F, Roostaee M, Mousavi SAA, Barani M. Advancements in nanoparticle-based therapies for multidrug-resistant candidiasis infections: a comprehensive review. Nanotechnology. 2024;35(33):332001. doi: 10.1088/1361-6528/ad4bed
  70. Matatkova O, Michailidu J, Miskovska A, Kolouchova I, Masak J, Cejkova A. Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods. Biotechnol Adv. 2022;58:107905. doi: 10.1016/j.biotechadv.2022.107905
  71. Basavegowda N, Baek KH. Multimetallic nanoparticles as alternative antimicrobial agents: challenges and perspectives. Molecules. 2021;26(4):912. doi: 10.3390/molecules26040912
  72. Yu L, Sun F, Wang Y, et al. Effects of MgO nanoparticle addition on the mechanical properties, degradation properties, antibacterial properties and in vitro and in vivo biological properties of 3D-printed Zn scaffolds. Bioact Mater. 2024;37:72-85. doi: 10.1016/j.bioactmat.2024.03.016
  73. Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, et al. Nanomedicine and advanced technologies for burns: preventing infection and facilitating wound healing. Adv Drug Deliv Rev. 2018;123:33-64. doi: 10.1016/j.addr.2017.08.001
  74. Parra-Ortiz E, Malmsten M. Photocatalytic nanoparticles - from membrane interactions to antimicrobial and antiviral effects. Adv Colloid Interface Sci. 2022;299:102526. doi: 10.1016/j.cis.2021.102526
  75. He Y, Zan J, He Z, Bai X, Shuai C, Pan H. A photochemically active Cu(2)O nanoparticle endows scaffolds with good antibacterial performance by efficiently generating reactive oxygen species. Nanomaterials (Basel). 2024;14(5):452. doi: 10.3390/nano14050452
  76. Gao Z, Song Z, Guo R, et al. Mn single-atom nanozyme functionalized 3D-printed bioceramic scaffolds for enhanced antibacterial activity and bone regeneration. Adv Healthc Mater. 2024;13(13):e2303182. doi: 10.1002/adhm.202303182
  77. Zhao Y, Kang H, Xia Y, Sun L, Li F, Dai H. 3D printed photothermal scaffold sandwiching bacteria inside and outside improves the infected microenvironment and repairs bone defects. Adv Healthcare Mater. 2024;13(6):e2302879. doi: 10.1002/adhm.202302879
  78. Iglesias-Mejuto A, Magarinos B, Ferreira-Goncalves T, et al. Vancomycin-loaded methylcellulose aerogel scaffolds for advanced bone tissue engineering. Carbohydr Polym. 2024;324:121536. doi: 10.1016/j.carbpol.2023.121536
  79. Qu X, Wang M, Wang M, et al. Multi-mode antibacterial strategies enabled by gene-transfection and immunomodulatory nanoparticles in 3D-printed scaffolds for synergistic exogenous and endogenous treatment of infections. Adv Mater. 2022;34(18):e2200096. doi: 10.1002/adma.202200096
  80. Yuan X, Zhu W, Yang Z, et al. Recent advances in 3D printing of smart scaffolds for bone tissue engineering and regeneration. Adv Mater. 2024;36(34):e2403641. doi: 10.1002/adma.202403641
  81. Ivanovski S, Breik O, Carluccio D, Alayan J, Staples R, Vaquette C. 3D printing for bone regeneration: challenges and opportunities for achieving predictability. Periodontol 2000. 2023;93(1):358-384. doi: 10.1111/prd.12525
  82. Dubey A, Vahabi H, Kumaravel V. Antimicrobial and Biodegradable 3D Printed Scaffolds for Orthopedic Infections. ACS Biomater Sci Eng. 2023;9(7):4020-4044. doi: 10.1021/acsbiomaterials.3c00115
  83. Wang C, Huang W, Zhou Y, et al. 3D printing of bone tissue engineering scaffolds. Bioact Mater. 2020;5(1):82-91. doi: 10.1016/j.bioactmat.2020.01.004
  84. Muhindo D, Elkanayati R, Srinivasan P, Repka MA, Ashour EA. Correction to: recent advances in the applications of additive manufacturing (3D printing) in drug delivery: a comprehensive review. AAPS PharmSciTech. 2023;24(3):75. doi: 10.1208/s12249-023-02542-7
  85. Yu H, Xu M, Duan Q, et al. 3D-printed porous tantalum artificial bone scaffolds: fabrication, properties, and applications. Biomed Mater. 2024;19(4):042002. doi: 10.1088/1748-605X/ad46d2
  86. Chaudhari VS, Kushram P, Bose S. Drug delivery strategies through 3D-printed calcium phosphate. Trends Biotechnol. 2024;42(11):1396-1409. doi: 10.1016/j.tibtech.2024.05.006
  87. Bose S, Sarkar N, Jo Y. Natural medicine delivery from 3D printed bone substitutes. J Control Release. 2024;365:848-875. doi: 10.1016/j.jconrel.2023.09.025
  88. Su Z, Guo C, Gui X, et al. 3D printing of customized bioceramics for promoting bone tissue regeneration by regulating sympathetic nerve behavior. J Mater Chem B. 2024;12(17):4217-4231. doi: 10.1039/d4tb00214h
  89. Sadeghianmaryan A, Ahmadian N, Wheatley S, et al. Advancements in 3D-printable polysaccharides, proteins, and synthetic polymers for wound dressing and skin scaffolding - a review. Int J Biol Macromol. 2024; 266(Pt 1):131207. doi: 10.1016/j.ijbiomac.2024.131207
  90. Mehta T, Aziz H, Sen K, et al. Numerical study of drop dynamics for inkjet based 3D printing of pharmaceutical tablets. Int J Pharm. 2024;656:124037. doi: 10.1016/j.ijpharm.2024.124037
  91. Gellrich C, Shupletsov L, Galek P, Bahrawy A, Grothe J, Kaskel S. A precursor-derived ultramicroporous carbon for printing iontronic logic gates and super-varactors. Adv Mater. 2024;36(29):e2401336. doi: 10.1002/adma.202401336
  92. Sinha P, Lahare P, Sahu M, et al. Concept and evolution in 3-D printing for excellence in healthcare. Curr Med Chem. 2025;32(5):831-879. doi: 10.2174/0109298673262300231129102520
  93. Jeong KJ, Song Y, Shin HR, et al. In vivo study on the biocompatibility of chitosan-hydroxyapatite film depending on degree of deacetylation. J Biomed Mater Res Part A. 2017;105(6):1637-1645. doi: 10.1002/jbm.a.35993
  94. Scoutaris N, Alexander MR, Gellert PR, Roberts CJ. Inkjet printing as a novel medicine formulation technique. J Control Release. 2011;156(2):179-85. doi: 10.1016/j.jconrel.2011.07.033
  95. Clark EA, Alexander MR, Irvine DJ, et al. 3D printing of tablets using inkjet with UV photoinitiation. Int J Pharm. 2017;529(1-2):523-530. doi: 10.1016/j.ijpharm.2017.06.085
  96. Zub K, Hoeppener S, Schubert US. Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications. Adv Mater. 2022;34(31):e2105015. doi: 10.1002/adma.202105015
  97. Evans SE, Harrington T, Rodriguez Rivero MC, Rognin E, Tuladhar T, Daly R. 2D and 3D inkjet printing of biopharmaceuticals - a review of trends and future perspectives in research and manufacturing. Int J Pharm. 2021;599:120443. doi: 10.1016/j.ijpharm.2021.120443
  98. Sztymela K, Bienia M, Rossignol F, et al. Fabrication of modern lithium ion batteries by 3D inkjet printing: opportunities and challenges. Heliyon. 2022;8(12):e12623. doi: 10.1016/j.heliyon.2022.e12623
  99. Park JH, Tucker SJ, Yoon JK, Kim Y, Hollister SJ. 3D printing modality effect: distinct printing outcomes dependent on selective laser sintering (SLS) and melt extrusion. J Biomed Mater Res Part A. 2024;112(7):1015-1024. doi: 10.1002/jbm.a.37682
  100. Balasankar A, Anbazhakan K, Arul V, et al. Recent advances in the production of pharmaceuticals using selective laser sintering. Biomimetics (Basel). 2023;8(4):330. doi: 10.3390/biomimetics8040330
  101. Park H, Park JJ, Bui PD, et al. Laser-based selective material processing for next-generation additive manufacturing. Adv Mater. 2024;36(34):e2307586. doi: 10.1002/adma.202307586
  102. Castro J, Nóbrega JM, Costa R. Computational framework to model the selective laser sintering process. Materials (Basel). 2024;17(8):1845. doi: 10.3390/ma17081845
  103. Fina F, Madla CM, Goyanes A, Zhang J, Gaisford S, Basit AW. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int J Pharm. 2018;541(1-2): 101-107. doi: 10.1016/j.ijpharm.2018.02.015
  104. Gueche YA, Sanchez-Ballester NM, Cailleaux S, Bataille B, Soulairol I. Selective Laser Sintering (SLS), a new chapter in the production of solid oral forms (SOFs) by 3D printing. Pharmaceutics. 2021;13(8):1212. doi: 10.3390/pharmaceutics13081212
  105. Awad A, Fina F, Goyanes A, Gaisford S, Basit AW. 3D printing: principles and pharmaceutical applications of selective laser sintering. Int. J. Pharm. 2020;586:119594. doi: 10.1016/j.ijpharm.2020.119594
  106. Yildiz MT, Babacan N. Comparison of tensile properties and porcelain bond strength in metal frameworks fabricated by selective laser melting using three different Co-Cr alloy powders. J Prosthet Dent. 2024;131(5):936-942. doi: 10.1016/j.prosdent.2023.11.006
  107. Zhou L, Miller J, Vezza J, et al. Additive manufacturing: a comprehensive review. Sensors (Basel). 2024;24(9):2668. doi: 10.3390/s24092668
  108. Wang H, Jiang P, Yang G, Yan Y. An investigation of the anisotropic mechanical properties of additive-manufactured 316L SS with SLM. Materials (Basel). 2024;17(9):2017. doi: 10.3390/ma17092017
  109. Wei S, Ma P, Fang Y, et al. Crack formation and control in an AlCoCrFeNi high entropy alloy fabricated by selective laser melting. 3D Print Addit Manuf. 2024;11(2):e628-e637. doi: 10.1089/3dp.2022.0142
  110. Mukalay TA, Trimble JA, Mpofu K, Muvunzi R. Selective laser melting: evaluation of the effectiveness and reliability of multi-scale multiphysics simulation environments. Heliyon. 2024;10(4):e25706. doi: 10.1016/j.heliyon.2024.e25706
  111. Rahmani R, Lopes SI, Prashanth KG. Selective laser melting and spark plasma sintering: a perspective on functional biomaterials. J Funct Biomater. 2023;14(10):521. doi: 10.3390/jfb14100521
  112. Gao B, Zhao H, Peng L, Sun Z. A review of research progress in selective laser melting (SLM). Micromachines. 2022;14(1):57. doi: 10.3390/mi14010057
  113. Khoo ZX, Liu Y, An J, Chua CK, Shen YF, Kuo CN. A review of selective laser melted NiTi shape memory alloy. Materials (Basel). 2018;11(4):519. doi: 10.3390/ma11040519
  114. Corker A, Ng HC, Poole RJ, García-Tuñón E. 3D printing with 2D colloids: designing rheology protocols to predict ‘printability’ of soft-materials. Soft Matter. 2019;15(6):1444-1456. doi: 10.1039/c8sm01936c
  115. Tay RY, Song Y, Yao DR, Gao W. Direct-ink-writing 3D-printed bioelectronics. Mater Today (Kidlington). 2023;71:135-151. doi: 10.1016/j.mattod.2023.09.006
  116. Saadi M, Maguire A, Pottackal NT, et al. Direct ink writing: A 3D printing technology for diverse materials. Adv Mater. 2022;34(28):e2108855. doi: 10.1002/adma.202108855
  117. Thibaut C, Denneulin A, Rolland du Roscoat S, Beneventi D, Orgéas L, Chaussy D. A fibrous cellulose paste formulation to manufacture structural parts using 3D printing by extrusion. Carbohydr Polym. 2019;212:119-128. doi: 10.1016/j.carbpol.2019.01.076
  118. Zeng L, Ling S, Du D, He H, Li X, Zhang C. Direct ink writing 3D printing for high-performance electrochemical energy storage devices: a minireview. Adv Sci (Weinh). 2023;10(32):e2303716. doi: 10.1002/advs.202303716
  119. Hou Y, Baig MM, Lu J, et al. Direct ink writing 3D printing of low-dimensional nanomaterials for micro-supercapacitors. Nanoscale. 2024;16(26):12380-12396. doi: 10.1039/d4nr01590h
  120. Bariya M, Shahpar Z, Park H, et al. Roll-to-Roll gravure printed electrochemical sensors for wearable and medical devices. ACS Nano. 2018;12(7):6978-6987. doi: 10.1021/acsnano.8b02505
  121. Håkansson KMO, Henriksson IC, de la Peña Vázquez C, et al. Solidification of 3D printed nanofibril hydrogels into functional 3D cellulose structures. Adv Mater Technol. 2016;1(7):1600096. doi: 10.1002/admt.201600096
  122. Li VC, Dunn CK, Zhang Z, Deng Y, Qi HJ. Direct Ink Write (DIW) 3D printed cellulose nanocrystal aerogel structures. Sci Rep. 2017;7(1):8018. doi: 10.1038/s41598-017-07771-y
  123. Li Y, Ren X, Zhu L, Li C. Biomass 3D printing: principles, materials, post-processing and applications. Polymers. 2023;15(12);2692. doi: 10.3390/polym15122692
  124. Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. Photo-curing 3D printing technique and its challenges. Bioact Mater. 2020;5(1):110-115. doi: 10.1016/j.bioactmat.2019.12.003
  125. Zou Y, Han Q, Weng X, et al. The precision and reliability evaluation of 3-dimensional printed damaged bone and prosthesis models by stereo lithography appearance. Medicine. 2018;97(6):e9797. doi: 10.1097/md.0000000000009797
  126. Goyanes A, Det-Amornrat U, Wang J, Basit AW, Gaisford S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release. 2016;234:41-48. doi: 10.1016/j.jconrel.2016.05.034
  127. Kafle A, Luis E, Silwal R, Pan HM, Shrestha PL, Bastola AK. 3D/4D printing of polymers: fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA). Polymers. 2021;13(18):3101. doi: 10.3390/polym13183101
  128. Kristiawan RB, Imaduddin F, Ariawan D, Ubaidillah, Arifin ZJOE. A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Eng. 2021;11(1):639-649. doi: 10.1515/eng-2021-0063
  129. Liu Z, Wang Y, Wu B, Cui C, Guo Y, Yan C. A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. Int J Adv Manuf Technol. 2019;102(9):2877-2889. doi: 10.1007/s00170-019-03332-x
  130. Dang W, Yi K, Ju E, et al. 3D printed bioceramic scaffolds as a universal therapeutic platform for synergistic therapy of osteosarcoma. ACS Appl Mater Interfaces. 2021;13(16):18488-18499. doi: 10.1021/acsami.1c00553
  131. Zhuang H, Lin R, Liu Y, et al. Three-dimensional-printed bioceramic scaffolds with osteogenic activity for simultaneous photo/magnetothermal therapy of bone tumors. ACS Biomater Sci Eng. 2019;5(12):6725-6734. doi: 10.1021/acsbiomaterials.9b01095
  132. Das M, Sharabani-Yosef O, Eliaz N, Mandler D. Hydrogel-integrated 3D-printed poly(lactic acid) scaffolds for bone tissue engineering. J Mater Res. 2021;36(19):3833-3842. doi: 10.1557/s43578-021-00201-w
  133. Alzoubi L, Aljabali AAA, Tambuwala MM. Empowering precision medicine: the impact of 3D printing on personalized therapeutic. AAPS PharmSciTech. 2023;24(8):228. doi: 10.1208/s12249-023-02682-w
  134. Amiri E, Sanjarnia P, Sadri B, Jafarkhani S, Khakbiz M. Recent advances and future directions of 3D to 6D printing in brain cancer treatment and neural tissue engineering. Biomed Mater. 2023;18(5)052005. doi: 10.1088/1748-605X/ace9a4
  135. Karakaya E, Gleichauf L, Schöbel L, et al. Engineering peptide-modified alginate-based bioinks with cell-adhesive properties for biofabrication. RSC Adv. 2024;14(20):13769-13786. doi: 10.1039/d3ra08394b
  136. Fritschen A, Lindner N, Scholpp S, et al. High-scale 3D-bioprinting platform for the automated production of vascularized Organs-on-a-Chip. Adv Healthc Mater. 2024;13(17):e2304028. doi: 10.1002/adhm.202304028
  137. Suwannakot P, Nemec S, Peres NG, et al. Electrostatic assembly of multiarm peg-based hydrogels as extracellular matrix mimics: cell response in the presence and absence of RGD cell adhesive ligands. ACS Biomater Sci Eng. 2023;9(3):1362-1376. doi: 10.1021/acsbiomaterials.2c01252
  138. Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials. Chem Rev. 2020;120(19):10793-10833. doi: 10.1021/acs.chemrev.0c00008
  139. Weygant J, Koch F, Adam K, et al. A Drop-on-Demand bioprinting approach to spatially arrange multiple cell types and monitor their cell-cell interactions towards vascularization based on endothelial cells and mesenchymal stem cells. Cells. 2023;12(4):646. doi: 10.3390/cells12040646
  140. Yang Z, Tian H, Wang C, et al. Piezoelectric Drop-on-demand inkjet printing with ultra-high droplet velocity. Research (Wash D C). 2023;6:0248. doi: 10.34133/research.0248
  141. Liu J, Shahriar M, Xu H, Xu C. Cell-laden bioink circulation-assisted inkjet-based bioprinting to mitigate cell sedimentation and aggregation. Biofabrication. 2022;14(4)045020. doi: 10.1088/1758-5090/ac8fb7
  142. Lee JM, Huang X, Goh GL, Tran T, Yeong WY. Understanding droplet jetting on varying substrate for biological applications. Int J Bioprint. 2023;9(5):758. doi: 10.18063/ijb.758
  143. Zhang J, Wehrle E, Rubert M, Muller R. 3D bioprinting of human tissues: biofabrication, bioinks, and bioreactors. Int J Mol Sci. 2021;22(8):3971. doi: 10.3390/ijms22083971
  144. Hamza A, Navale A, Song Q, et al. 3D printed microfluidic valve on PCB for flow control applications using liquid metal. Biomed Microdevices. 2024;26(1):14. doi: 10.1007/s10544-024-00697-z
  145. Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. 2016;102:20-42. doi: 10.1016/j.biomaterials.2016.06.012
  146. Bammesberger S, Ernst A, Losleben N, Tanguy L, Zengerle R, Koltay P. Quantitative characterization of non-contact microdispensing technologies for the sub-microliter range. Drug Discov Today. 2013;18(9-10):435-446. doi: 10.1016/j.drudis.2012.12.001
  147. Jang D, Kim D, Moon J. Influence of fluid physical properties on ink-jet printability. Langmuir. 2009;25(5): 2629-2635. doi: 10.1021/la900059m
  148. Ng WL, Lee JM, Yeong WY, Win Naing M. Microvalve-based bioprinting - process, bio-inks and applications. Biomater Sci. 2017;5(4):632-647. doi: 10.1039/c6bm00861e
  149. Lee W, Debasitis JC, Lee VK, et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials. 2009;30(8):1587-1595. doi: 10.1016/j.biomaterials.2008.12.009
  150. Bessemans L, Jully V, de Raikem C, et al. Automated gravimetric calibration to optimize the accuracy and precision of TECAN Freedom EVO liquid handler. J Lab Automation. 2016;21(5):693-705. doi: 10.1177/2211068216632349
  151. Dudman J, Ferreira AM, Gentile P, Wang X, Dalgarno K. Microvalve bioprinting of MSC-chondrocyte co-cultures. Cells. 2021;10(12):3329. doi: 10.3390/cells10123329
  152. Faulkner-Jones A, Greenhough S, King JA, Gardner J, Courtney A, Shu W. Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates. Biofabrication. 2013;5(1):015013. doi: 10.1088/1758-5082/5/1/015013
  153. Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater. 2019;84:16-33. doi: 10.1016/j.actbio.2018.11.039
  154. Naghieh S, Chen X. Printability-A key issue in extrusion-based bioprinting. J Pharm Anal. 2021;11(5):564-579. doi: 10.1016/j.jpha.2021.02.001
  155. Ali ASM, Wu D, Bannach-Brown A, et al. 3D bioprinting of liver models: a systematic scoping review of methods, bioinks, and reporting quality. Mater Today Bio. 2024;26:100991. doi: 10.1016/j.mtbio.2024.100991
  156. Chen XB, Fazel Anvari-Yazdi A, Duan X, et al. Biomaterials / bioinks and extrusion bioprinting. Bioact Mater. 2023;28:511-536. doi: 10.1016/j.bioactmat.2023.06.006
  157. Ino K, Wachi M, Utagawa Y, et al. Scanning electrochemical microscopy for determining oxygen consumption rates of cells in hydrogel fibers fabricated using an extrusion 3D bioprinter. Anal Chim Acta. 2024;1304:342539. doi: 10.1016/j.aca.2024.342539
  158. Xu X, Li H, Chen J, et al. A universal strategy to construct high-performance homo- and heterogeneous microgel assembly bioinks. Small Methods. 2024:e2400223. doi: 10.1002/smtd.202400223
  159. Lai G, Meagher L. Versatile xanthan gum-based support bath material compatible with multiple crosslinking mechanisms: rheological properties, printability, and cytocompatibility study. Biofabrication. 2024;16(3):035005. doi: 10.1088/1758-5090/ad39a8
  160. Mueller E, Poulin I, Bodnaryk WJ, Hoare T. Click chemistry hydrogels for extrusion bioprinting: progress, challenges, and opportunities. Biomacromolecules. 2022;23(3):619-640. doi: 10.1021/acs.biomac.1c01105
  161. Pepelanova I, Kruppa K, Scheper T, Lavrentieva A. Gelatin-methacryloyl (GelMA) hydrogels with defined degree of functionalization as a versatile toolkit for 3D cell culture and extrusion bioprinting. Bioengineering (Basel). 2018;5(3):55. doi: 10.3390/bioengineering5030055
  162. Gao Q, Xie C, Wang P, et al. 3D printed multi-scale scaffolds with ultrafine fibers for providing excellent biocompatibility. Mater Sci Eng C Mater Biol Appl. 2020;107:110269. doi: 10.1016/j.msec.2019.110269
  163. Wang LL, Highley CB, Yeh YC, Galarraga JH, Uman S, Burdick JA. Three-dimensional extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks. J Biomed Mater Res Part A. 2018;106(4):865-875. doi: 10.1002/jbm.a.36323
  164. Jessop ZM, Al-Sabah A, Gao N, et al. Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting. Biofabrication. 2019;11(4):045006. doi: 10.1088/1758-5090/ab0631
  165. Colosi C, Shin SR, Manoharan V, et al. Microfluidic bioprinting of heterogeneous 3d tissue constructs using low-viscosity bioink. Adv Mater. 2016;28(4):677-684. doi: 10.1002/adma.201503310
  166. Attalla R, Puersten E, Jain N, Selvaganapathy PR. 3D bioprinting of heterogeneous bi- and tri-layered hollow channels within gel scaffolds using scalable multi-axial microfluidic extrusion nozzle. Biofabrication. 2018;11(1):015012. doi: 10.1088/1758-5090/aaf7c7
  167. Kang D, Ahn G, Kim D, et al. Pre-set extrusion bioprinting for multiscale heterogeneous tissue structure fabrication. Biofabrication. 2018;10(3):035008. doi: 10.1088/1758-5090/aac70b
  168. Compaan AM, Song K, Huang Y. Gellan fluid gel as a versatile support bath material for fluid extrusion bioprinting. ACS Appl Mater Interfaces. 2019;11(6):5714-5726. doi: 10.1021/acsami.8b13792
  169. Kérourédan O, Washio A, Handschin C, et al. Bioactive gelatin-sheets as novel biopapers to support prevascularization organized by laser-assisted bioprinting for bone tissue engineering. Biomed Mater. 2024;19(2):025038. doi: 10.1088/1748-605X/ad270a
  170. Jaffredo M, Duchamp O, Touya N, et al. Proof of concept of intracochlear drug administration by laser-assisted bioprinting in mice. Hear Res. 2023;438:108880. doi: 10.1016/j.heares.2023.108880
  171. Sörgel CA, Cai A, Schmid R, Horch RE. Perspectives on the current state of bioprinted skin substitutes for wound healing. Biomedicines. 2023;11(10):2678. doi: 10.3390/biomedicines11102678
  172. Boix-Lemonche G, Nagymihaly RM, Niemi EM, et al. Intracorneal implantation of 3D bioprinted scaffolds containing mesenchymal stromal cells using femtosecond-laser-assisted intrastromal keratoplasty. Macromol Biosci. 2023;23(7):e2200422. doi: 10.1002/mabi.202200422
  173. Kawecki F, Clafshenkel WP, Auger FA, Bourget JM, Fradette J, Devillard R. Self-assembled human osseous cell sheets as living biopapers for the laser-assisted bioprinting of human endothelial cells. Biofabrication. 2018;10(3):035006. doi: 10.1088/1758-5090/aabd5b
  174. Sorkio A, Koch L, Koivusalo L, et al. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials. 2018;171:57-71. doi: 10.1016/j.biomaterials.2018.04.034
  175. Michael S, Sorg H, Peck CT, et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PloS one. 2013;8(3):e57741. doi: 10.1371/journal.pone.0057741
  176. Keriquel V, Oliveira H, Rémy M, et al. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci Rep. 2017;7(1):1778. doi: 10.1038/s41598-017-01914-x
  177. Bourget JM, Kérourédan O, Medina M, et al. Patterning of endothelial cells and mesenchymal stem cells by laser-assisted bioprinting to study cell migration. Biomed Res Int. 2016;2016:3569843. doi: 10.1155/2016/3569843
  178. Ali M, Pages E, Ducom A, Fontaine A, Guillemot F. Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication. 2014;6(4):045001. doi: 10.1088/1758-5082/6/4/045001
  179. Ashammakhi N, Hasan A, Kaarela O, et al. Advancing Frontiers in Bone Bioprinting. Adv Healthc Mater. 2019;8(7):e1801048. doi: 10.1002/adhm.201801048
  180. Caceres-Alban J, Sanchez M, Casado FL. Bioprinting: a strategy to build informative models of exposure and disease. IEEE Rev Biomed Eng. 2023;16:594-610. doi: 10.1109/RBME.2022.3146293
  181. Veeravalli RS, Vejandla B, Savani S, Nelluri A, Peddi NC. Three-dimensional bioprinting in medicine: a comprehensive overview of current progress and challenges faced. Cureus. 2023;15(7):e41624. doi: 10.7759/cureus.41624
  182. Pushparaj K, Balasubramanian B, Pappuswamy M, et al. Out of box thinking to tangible science: a benchmark history of 3D Bio-Printing in Regenerative Medicine and Tissues Engineering. Life (Basel). 2023;13(4):954. doi: 10.3390/life13040954
  183. Kravchenko SV, Sakhnov SN, Myasnikova VV, Trofimenko AI, Buzko VY. Bioprinting technologies in ophthalmology. Vestnik oftalmologii. 2023;139(5):105-112. Tekhnologii biopechati v oftal’mologii. doi: 10.17116/oftalma2023139051105
  184. Liang Y, Liang Y, Zhang H, Guo B. Antibacterial biomaterials for skin wound dressing. Asian J Pharm Sci. 2022;17(3):353-384. doi: 10.1016/j.ajps.2022.01.001
  185. Serrano-Aroca A, Cano-Vicent A, Sabater ISR, et al. Scaffolds in the microbial resistant era: Fabrication, materials, properties and tissue engineering applications. Mater Today Bio. 2022;16:100412. doi: 10.1016/j.mtbio.2022.100412
  186. Visscher LE, Dang HP, Knackstedt MA, Hutmacher DW, Tran PA. 3D printed polycaprolactone scaffolds with dual macro-microporosity for applications in local delivery of antibiotics. Mater Sci Eng C Mater Biol Appl. 2018;87:78-89. doi: 10.1016/j.msec.2018.02.008
  187. El-Habashy SE, El-Kamel AH, Essawy MM, Abdelfattah EA, Eltaher HM. 3D printed bioinspired scaffolds integrating doxycycline nanoparticles: Customizable implants for in vivo osteoregeneration. Int J Pharm. 2021;607:121002. doi: 10.1016/j.ijpharm.2021.121002
  188. Akkineni AR, Spangenberg J, Geissler M, et al. Controlled and local delivery of antibiotics by 3D core/shell printed hydrogel scaffolds to treat soft tissue infections. Pharmaceutics. 2021;13(12);2151. doi: 10.3390/pharmaceutics13122151
  189. Kim SH, Hong H, Ajiteru O, et al. 3D bioprinted silk fibroin hydrogels for tissue engineering. Nat Protoc. 2021;16(12):5484-5532. doi: 10.1038/s41596-021-00622-1
  190. Chen J, Liu X, Tian Y, et al. 3D-printed anisotropic polymer materials for functional applications. Adv Mater. 2022;34(5):e2102877. doi: 10.1002/adma.202102877
  191. Bai J, Wang H, Gao W, et al. Melt electrohydrodynamic 3D printed poly (epsilon-caprolactone)/polyethylene glycol/roxithromycin scaffold as a potential anti-infective implant in bone repair. Int J Pharmaceutics. 2020; 576:118941. doi: 10.1016/j.ijpharm.2019.118941
  192. Farto-Vaamonde X, Diaz-Gomez L, Parga A, Otero A, Concheiro A, Alvarez-Lorenzo C. Perimeter and carvacrol-loading regulate angiogenesis and biofilm 3D printed PLA scaffolds. J Control Release. 2022;352:776-792. doi: 10.1016/j.jconrel.2022.10.060
  193. Shao J, Ma J, Lin L, et al. Three-dimensional Printing of drug-loaded scaffolds for antibacterial and analgesic applications. Tissue Eng Part C Methods. 19;25(4):222-231. doi: 10.1089/ten.TEC.2018.0293
  194. Hosseinabadi HG, Nieto D, Yousefinejad A, Fattel H, Ionov L, Miri AK. Ink material Selection and optical design considerations in DLP 3D printing. Appl Mater Today. 2023;30:101721. doi: 10.1016/j.apmt.2022.101721
  195. Bom S, Ribeiro R, Ribeiro HM, Santos C, Marto J. On the progress of hydrogel-based 3D printing: correlating rheological properties with printing behaviour. Int J Pharm. 2022;615:121506. doi: 10.1016/j.ijpharm.2022.121506
  196. Yao Y, Shapiro MG. Using ultrasound to 3D-print materials. Science. 2023;382(6675):1126. doi: 10.1126/science.adl5887
  197. Li S, Yang H, Qu X, et al. Multiscale architecture design of 3D printed biodegradable Zn-based porous scaffolds for immunomodulatory osteogenesis. Nat Commun. 2024;15(1):3131. doi: 10.1038/s41467-024-47189-5
  198. Wang X, Liu A, Zhang Z, et al. Additively manufactured Zn- 2Mg alloy porous scaffolds with customizable biodegradable performance and enhanced osteogenic ability. Adv Sci (Weinh). 2024;11(5):e2307329. doi: 10.1002/advs.202307329
  199. Liang W, Zhou C, Zhang H, et al. Recent advances in 3D printing of biodegradable metals for orthopaedic applications. J Biol Eng. 2023;17(1):56. doi: 10.1186/s13036-023-00371-7
  200. Ying J, Yu H, Cheng L, et al. Research progress and clinical translation of three-dimensional printed porous tantalum in orthopaedics. Biomater Transl. 2023;4(3):166-179. doi: 10.12336/biomatertransl.2023.03.005
  201. Liu T, Liu W, Zeng L, et al. Biofunctionalization of 3D printed porous tantalum using a vancomycin-carboxymethyl chitosan composite coating to improve osteogenesis and antibiofilm properties. ACS Appl Mater Interfaces. 2022;14(37):41764-41778. doi: 10.1021/acsami.2c11715
  202. Zhang S, Shi X, Miao Z, et al. 3D‐Printed polyurethane tissue‐engineering scaffold with hierarchical microcellular foam structure and antibacterial properties. Adv Eng Mater. 2022;24(3): 2101134. doi: 10.1002/adem.202101134
  203. Zhang X, He J, Qiao L, et al. 3D printed PCLA scaffold with nano-hydroxyapatite coating doped green tea EGCG promotes bone growth and inhibits multidrug-resistant bacteria colonization. Cell Prolif. 2022;55(10):e13289. doi: 10.1111/cpr.13289
  204. Jenny JY. Specificities of total hip and knee arthroplasty revision for infection. Orthop Traumatol Surg Res. 2020;106(1S):S27-S34. doi: 10.1016/j.otsr.2019.05.020
  205. Gillieron P, Boillat-Blanco N, Nicod Lalonde M, et al. [Diagnosis and management of chronic osteomyelitis of long bones in adults]. Rev Med Suisse. 2021;17(763):2194-2200. Diagnostic et prise en charge de l’osteomyelite chronique des os longs chez l’adulte.
  206. Liu Y, He L, Cheng L, et al. Enhancing bone grafting outcomes: a comprehensive review of antibacterial artificial composite bone scaffolds. Med Sci Monit. 2023;29: e939972. doi: 10.12659/MSM.939972
  207. Parry JA, Chavarria J, Giddins S, et al. Efficacy of cefazolin versus vancomycin antibiotic cement spacers. J Orthop Trauma. 2023;37(3):e118-e121. doi: 10.1097/BOT.0000000000002496
  208. Hu X, Chen J, Yang S, et al. 3D printed multifunctional biomimetic bone scaffold combined with tp-mg nanoparticles for the infectious bone defects repair. Small. 2024;20(40):e2403681. doi: 10.1002/smll.202403681
  209. Zhou Z, Yao Q, Li L, et al. Antimicrobial activity of 3D-Printed Poly(epsilon-Caprolactone) (PCL) composite scaffolds presenting vancomycin-loaded polylactic acid-glycolic acid (PLGA) microspheres. Med Sci Monit. 2018;24:6934-6945. doi: 10.12659/MSM.911770
  210. Li J, Li K, Du Y, et al. Dual-nozzle 3D printed nano-hydroxyapatite scaffold loaded with vancomycin sustained-release microspheres for enhancing bone regeneration. Int J Nanomedicine. 2023;18:307-322. doi: 10.2147/IJN.S394366
  211. Luo C, Wang C, Wu X, et al. Influence of porous tantalum scaffold pore size on osteogenesis and osteointegration: a comprehensive study based on 3D-printing technology. Mater Sci Eng C Mater Biol Appl. 2021;129:112382. doi: 10.1016/j.msec.2021.112382
  212. Deng C, Zhou Q, Zhang M, et al. Bioceramic scaffolds with antioxidative functions for ROS scavenging and osteochondral regeneration. Adv Sci (Weinh). 2022;9(12):e2105727. doi: 10.1002/advs.202105727
  213. Polley C, Distler T, Scheufler C, et al. 3D printing of piezoelectric and bioactive barium titanate-bioactive glass scaffolds for bone tissue engineering. Mater Today Bio. 2023;21:100719. doi: 10.1016/j.mtbio.2023.100719
  214. Wang Z, Cui H, Liu M, et al. Tough, transparent, 3D-printable, and self-healing poly(ethylene glycol)-Gel (PEGgel). Adv Mater. 2022;34(11):e2107791. doi: 10.1002/adma.202107791
  215. Long J, Yao Z, Zhang W, et al. Regulation of osteoimmune microenvironment and osteogenesis by 3D-printed PLAG/ black phosphorus scaffolds for bone regeneration. Adv Sci (Weinh). 2023;10(28):e2302539. doi: 10.1002/advs.202302539
  216. Brachet A, Bełżek A, Furtak D, et al. Application of 3D printing in bone grafts. Cells. 2023;12(6):859. doi: 10.3390/cells12060859
  217. Wu Y, Deng Z, Wang X, Chen A, Li Y. Synergistic antibacterial photocatalytic and photothermal properties over bowl-shaped TiO(2) nanostructures on Ti-19Zr-10Nb- 1Fe alloy. Regen Biomater. 2022;9:rbac025. doi: 10.1093/rb/rbac025
  218. Liu H, Gu R, Li W, et al. Engineering 3D-printed strontium-titanium scaffold-integrated highly bioactive serum exosomes for critical bone defects by osteogenesis and angiogenesis. ACS Appl Mater Interfaces. 2023;15(23):27486-27501. doi: 10.1021/acsami.3c00898
  219. Wu HY, Lin YH, Lee AK, Kuo TY, Tsai CH, Shie MY. Combined effects of polydopamine-assisted copper immobilization on 3D-printed porous Ti6Al4V scaffold for angiogenic and osteogenic bone regeneration. Cells. 2022;11(18):2824. doi: 10.3390/cells11182824
  220. Zhang Y, Xu J, Ruan YC, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med. 2016;22(10):1160-1169. doi: 10.1038/nm.4162
  221. Dong J, Li Y, Lin P, et al. Solvent-cast 3D printing of magnesium scaffolds. Acta Biomater. 2020;114:497-514. doi: 10.1016/j.actbio.2020.08.002
  222. Hua L, Lei T, Qian H, Zhang Y, Hu Y, Lei P. 3D-printed porous tantalum: recent application in various drug delivery systems to repair hard tissue defects. Expert Opin Drug Deliv. 2021;18(5):625-634. doi: 10.1080/17425247.2021.1860015
  223. Wang H, Su K, Su L, Liang P, Ji P, Wang C. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis. Mater Sci Eng C Mater Biol Appl. 2019;104:109908. doi: 10.1016/j.msec.2019.109908
  224. Di Fiore A, Savio G, Stellini E, Vigolo P, Monaco C, Meneghello R. Influence of ceramic firing on marginal gap accuracy and metal-ceramic bond strength of 3D-printed Co-Cr frameworks. J Prosthetic Dent. 2020;124(1): 75-80. doi: 10.1016/j.prosdent.2019.08.001
  225. Ryu JI, Yang BE, Yi SM, et al. Bone regeneration of a 3D-printed alloplastic and particulate Xenogenic graft with rhBMP-2. Int J Mol Sci. 2021;22(22):12518. doi: 10.3390/ijms222212518
  226. Sheikh Z, Zhang YL, Grover L, Merle GE, Tamimi F, Barralet J. In vitro degradation and in vivo resorption of dicalcium phosphate cement based grafts. Acta Biomater. 2015;26:338-346. doi: 10.1016/j.actbio.2015.08.031
  227. Chen D, Chen G, Zhang X, et al. Fabrication and in vitro evaluation of 3D printed porous silicate substituted calcium phosphate scaffolds for bone tissue engineering. Biotechnol Bioeng. 2022;119(11):3297-3310. doi: 10.1002/bit.28202
  228. Mansour A, Abu-Nada L, Al-Waeli H, et al. Bone extracts immunomodulate and enhance the regenerative performance of dicalcium phosphates bioceramics. Acta Biomater. 2019;89:343-358. doi: 10.1016/j.actbio.2019.03.012
  229. Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds for bone-tissue regeneration. Materials (Basel, Switzerland). 2019;12(4):568. doi: 10.3390/ma12040568
  230. Saberi A, Behnamghader A, Aghabarari B, et al. 3D direct printing of composite bone scaffolds containing polylactic acid and spray dried mesoporous bioactive glass-ceramic microparticles. Int J Biol Macromol. 2022;207:9-22. doi: 10.1016/j.ijbiomac.2022.02.067
  231. Van der Stok J, Van Lieshout EM, El-Massoudi Y, Van Kralingen GH, Patka P. Bone substitutes in the Netherlands - a systematic literature review. Acta Biomater. 2011;7(2):739-750. doi: 10.1016/j.actbio.2010.07.035
  232. Ding H, Zhao CJ, Cui X, et al. A novel injectable borate bioactive glass cement as an antibiotic delivery vehicle for treating osteomyelitis. PLoS One. 2014;9(1):e85472. doi: 10.1371/journal.pone.0085472
  233. Cui X, Zhang YD, Wang H, et al. An injectable borate bioactive glass cement for bone repair: Preparation, bioactivity and setting mechanism. J Non-Crystalline Solids. 2016;432:150-157. doi: 10.1016/j.jnoncrysol.2015.06.001
  234. Meng C, Liu X, Li R, et al. 3D Poly (L-lactic acid) fibrous sponge with interconnected porous structure for bone tissue scaffold. Int J Biol Macromol. 2024;268(Pt 1): 131688. doi: 10.1016/j.ijbiomac.2024.131688
  235. Alven S, Buyana B, Feketshane Z, Aderibigbe BA. Electrospun nanofibers/nanofibrous scaffolds loaded with silver nanoparticles as effective antibacterial wound dressing materials. Pharmaceutics. 2021;13(7);964. doi: 10.3390/pharmaceutics13070964
  236. Jirofti N, Hashemi M, Moradi A, Kalalinia F. Fabrication and characterization of 3D printing biocompatible crocin-loaded chitosan/collagen/hydroxyapatite-based scaffolds for bone tissue engineering applications. Int J Biol Macromol. 2023;252:126279. doi: 10.1016/j.ijbiomac.2023.126279
  237. Chu Y, Huang L, Hao W, et al. Long-term stability, high strength, and 3D printable alginate hydrogel for cartilage tissue engineering application. Biomed Mater. Sep 28 2021;16(6):064102. doi: 10.1088/1748-605X/ac2595
  238. Li P, Fu L, Liao Z, et al. Chitosan hydrogel/3D-printed poly(ε-caprolactone) hybrid scaffold containing synovial mesenchymal stem cells for cartilage regeneration based on tetrahedral framework nucleic acid recruitment. Biomaterials. 2021;278:121131. doi: 10.1016/j.biomaterials.2021.121131
  239. Suo H, Zhang J, Xu M, Wang L. Low-temperature 3D printing of collagen and chitosan composite for tissue engineering. Mater Sci Eng C Mater Biol Appl. 2021;123:111963. doi: 10.1016/j.msec.2021.111963
  240. Li C, Zhang W, Nie Y, et al. Time-sequential and multi-functional 3D Printed MgO(2) /PLGA scaffold developed as a novel biodegradable and bioactive bone substitute for challenging postsurgical osteosarcoma treatment. Adv Mater. 2024;36(34):e2308875. doi: 10.1002/adma.202308875
  241. Qiu M, Li C, Cai Z, et al. 3D biomimetic calcified cartilaginous callus that induces type H vessels Formation and Osteoclastogenesis. Adv Sci (Weinh). 2023;10(16): e2207089. doi: 10.1002/advs.202207089
  242. Zhu J, Marchant RE. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices. 2011;8(5):607-626. doi: 10.1586/erd.11.27
  243. Liu DS, Jiang P, Wang YX, et al. Engineering tridimensional hydrogel tissue and organ phantoms with tunable springiness. Adv Funct Mater. 2023;33(17):1. doi: 10.1002/adfm.202214885
  244. Bi S, Pang J, Huang L, Sun M, Cheng X, Chen X. The toughness chitosan-PVA double network hydrogel based on alkali solution system and hydrogen bonding for tissue engineering applications. Int J Biol Macromol. 2020;146:99-109. doi: 10.1016/j.ijbiomac.2019.12.186
  245. Tabriz AG, Hermida MA, Leslie NR, Shu W. Three-dimensional bioprinting of complex cell laden alginate hydrogel structures. Biofabrication. 2015;7(4):045012. doi: 10.1088/1758-5090/7/4/045012
  246. Guvendiren M, Molde J, Soares RM, Kohn J. Designing biomaterials for 3D printing. ACS Biomater Sci Eng. 2016;2(10):1679-1693. doi: 10.1021/acsbiomaterials.6b00121
  247. Chen L, Deng J, Yu A, et al. Drug-peptide supramolecular hydrogel boosting transcorneal permeability and pharmacological activity via ligand-receptor interaction. Bioact Mater. 2022;10:420-429. doi: 10.1016/j.bioactmat.2021.09.006
  248. Chen P, Zheng L, Wang Y, et al. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/ mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics. 2019;9(9):2439-2459. doi: 10.7150/thno.31017
  249. Sun T, Feng Z, He W, et al. Novel 3D-printing bilayer GelMA-based hydrogel containing BP,β-TCP and exosomes for cartilage-bone integrated repair. Biofabrication. 2023;16(1):015008. doi: 10.1088/1758-5090/ad04fe
  250. Banche-Niclot F, Montalbano G, Fiorilli S, Vitale-Brovarone C. PEG-coated large mesoporous silicas as smart platform for protein delivery and their use in a collagen-based formulation for 3D printing. Int J Mol Sci. 2021;22(4):1718. doi: 10.3390/ijms22041718
  251. Li Z, Liu L, Chen Y. Direct 3D printing of thermosensitive AOP127-oxidized dextran hydrogel with dual dynamic crosslinking and high toughness. Carbohydr Polym. 2022;291:119616. doi: 10.1016/j.carbpol.2022.119616
  252. Song X, Liu X, Ma Y, Zhu Q, Bi M. Synthesis of Ce/Gd@ HA/PLGA scaffolds contributing to bone repair and MRI enhancement. Front Bioeng Biotechnol. 2022;10:834226. doi: 10.3389/fbioe.2022.834226
  253. Chao YL, Wang TM, Chang HH, Lin LD. Effects of low-dose rhBMP-2 on peri-implant ridge augmentation in a canine model. J Clin Periodontol. 2021;48(5):734-744. doi: 10.1111/jcpe.13440
  254. Turnbull G, Clarke J, Picard F, et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater. 2018;3(3):278-314. doi: 10.1016/j.bioactmat.2017.10.001
  255. Song JE, Lee DH, Khang G, Yoon SJ. Accelerating bone regeneration using poly(lactic-co-glycolic acid)/ hydroxyapatite scaffolds containing duck feet-derived collagen. Int J Biol Macromol. 2023;229:486-495. doi: 10.1016/j.ijbiomac.2022.12.296
  256. Yahay Z, Moein Farsani N, Mirhadi M, Tavangarian F. Fabrication of highly ordered willemite/PCL bone scaffolds by 3D printing: Nanostructure effects on compressive strength and in vitro behavior. J Mech Behav Biomed Mater. 2023;144:105996. doi: 10.1016/j.jmbbm.2023.105996
  257. Pan C, Sun X, Xu G, Su Y, Liu D. The effects of β-TCP on mechanical properties, corrosion behavior and biocompatibility of β-TCP/Zn-Mg composites. Mater Sci Eng C Mater Biol Appl. 2020;108:110397. doi: 10.1016/j.msec.2019.110397
  258. Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29(20):2941-2953. doi: 10.1016/j.biomaterials.2008.04.023
  259. Zaszczyńska A, Moczulska-Heljak M, Gradys A, Sajkiewicz P. Advances in 3D Printing for Tissue Engineering. Materials (Basel). 2021;14(12):3149. doi: 10.3390/ma14123149
  260. Xu J, Ji J, Jiao J, et al. 3D printing for bone-cartilage interface regeneration. Front Bioeng Biotechnol. 2022;10:828921. doi: 10.3389/fbioe.2022.828921
  261. Critchley S, Sheehy EJ, Cunniffe G, et al. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects. Acta Biomater. 2020;113:130-143. doi: 10.1016/j.actbio.2020.05.040
  262. Li Q, Lei X, Wang X, Cai Z, Lyu P, Zhang G. Hydroxyapatite/ Collagen three-dimensional printed scaffolds and their osteogenic effects on human bone marrow-derived mesenchymal stem cells. Tissue Eng Part A. 2019;25(17-18):1261-1271. doi: 10.1089/ten.TEA.2018.0201
  263. Nyberg E, Rindone A, Dorafshar A, Grayson WL. Comparison of 3D-printed Poly-ε-Caprolactone scaffolds functionalized with tricalcium phosphate, hydroxyapatite, Bio-Oss, or decellularized bone matrix. Tissue Eng Part A. 2017;23(11-12):503-514. doi: 10.1089/ten.TEA.2016.0418
  264. Yang Y, Yang S, Wang Y, et al. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan. Acta Biomater. 2016;46:112-128. doi: 10.1016/j.actbio.2016.09.035
  265. Wu Y, Ji Y, Lyu Z. 3D printing technology and its combination with nanotechnology in bone tissue engineering. Biomed Eng Lett. 2024;14(3):451-464. doi: 10.1007/s13534-024-00350-x
  266. Do AV, Khorsand B, Geary SM, Salem AK. 3D printing of scaffolds for tissue regeneration applications. Adv Healthc Mater. 2015;4(12):1742-1762. doi: 10.1002/adhm.201500168
  267. Schneider Werner Vianna T, Sartoretto SC, Neves Novellino Alves AT, et al. Nanostructured carbonated hydroxyapatite associated to rhBMP-2 improves bone repair in rat Calvaria. J Funct Biomater. 2020;11(4):87. doi: 10.3390/jfb11040087
  268. Mucalo M. Hydroxyapatite (HAp) for Biomedical Applications. Elsevier; 2015. doi: 10.1016/C2013-0-16440-9
  269. Fang X, Lei L, Jiang T, Chen Y, Kang Y. Injectable thermosensitive alginate/β-tricalcium phosphate/aspirin hydrogels for bone augmentation. J Biomed Mater Res B Appl Biomater. 2018;106(5):1739-1751. doi: 10.1002/jbm.b.33982
  270. Wang M, Li W, Luo Z, et al. A multifunctional micropore-forming bioink with enhanced anti-bacterial and anti-inflammatory properties. Biofabrication. 2022;14(2): 1088/1758-5090/ac5936. doi: 10.1088/1758-5090/ac5936
  271. Debnar M, Kopp L, Misicko R. Management of bone defects using the Masquelet technique of induced membrane. Rozhl Chir. 2021;100(8):390-397. doi: 10.33699/PIS.2021.100.8.390-397
  272. Amouzadeh Omrani F, Sarzaeem MM, Noorbakhsh M, et al. The outcomes of distraction osteogenesis over an intramedullary nail for the treatment of bone defects in infectious nonunions. Arch Bone Jt Surg. 2024;12(3): 204-210. doi: 10.22038/ABJS.2023.73572.3407
  273. Qin Q, Lee S, Patel N, et al. Neurovascular coupling in bone regeneration. Exp Mol Med. 2022;54(11):1844-1849. doi: 10.1038/s12276-022-00899-6
  274. Tuckermann J, Adams RH. The endothelium-bone axis in development, homeostasis and bone and joint disease. Nat Rev Rheumatol. 2021;17(10):608-620. doi: 10.1038/s41584-021-00682-3
  275. Vermeulen S, Tahmasebi Birgani Z, Habibovic P. Biomaterial-induced pathway modulation for bone regeneration. Biomaterials. 2022;283:121431. doi: 10.1016/j.biomaterials.2022.121431
  276. Mizraji G, Davidzohn A, Gursoy M, Gursoy U, Shapira L, Wilensky A. Membrane barriers for guided bone regeneration: an overview of available biomaterials. Periodontol 2000. 2023;93(1):56-76. doi: 10.1111/prd.12502
  277. Yang L, Gao Q, Ge L, et al. Topography induced stiffness alteration of stem cells influences osteogenic differentiation. Biomater Sci. 2020;8(9):2638-2652. doi: 10.1039/d0bm00264j
  278. Isoshima K, Ueno T, Arai Y, et al. The change of surface charge by lithium ion coating enhances protein adsorption on titanium. J Mech Behav Biomed Mater. 2019;100:103393. doi: 10.1016/j.jmbbm.2019.103393
  279. Hao L, Li T, Wang L, et al. Mechanistic insights into the adsorption and bioactivity of fibronectin on surfaces with varying chemistries by a combination of experimental strategies and molecular simulations. Bioact Mater. 2021;6(10):3125-3135. doi: 10.1016/j.bioactmat.2021.02.021
  280. Gelain F, Bottai D, Vescovi A, Zhang S. Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PloS One. 2006;1(1):e119. doi: 10.1371/journal.pone.0000119
  281. O’Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials. 2005;26(4):433-441. doi: 10.1016/j.biomaterials.2004.02.052
  282. Murphy CM, Haugh MG, O’Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010;31(3):461-466. doi: 10.1016/j.biomaterials.2009.09.063
  283. McDermott AM, Herberg S, Mason DE, et al. Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regeneration. Sci Transl Med. 2019;11(495):e aav7756. doi: 10.1126/scitranslmed.aav7756
  284. Vanderburgh JP, Fernando SJ, Merkel AR, Sterling JA, Guelcher SA. Fabrication of trabecular bone-templated tissue-engineered constructs by 3D inkjet printing. Adv Healthc Mater. 2017;6(22): doi: 10.1002/adhm.201700369
  285. Jurak M, Wiacek AE, Ladniak A, Przykaza K, Szafran K. What affects the biocompatibility of polymers? Adv Colloid Interface Sci. 2021;294:102451. doi: 10.1016/j.cis.2021.102451
  286. Vezenkova A, Locs J. Sudoku of porous, injectable calcium phosphate cements - path to osteoinductivity. Bioact Mater. 2022;17:109-124. doi: 10.1016/j.bioactmat.2022.01.001
  287. Chauhan A, Bhatt AD. A review on design of scaffold for osteoinduction: toward the unification of independent design variables. Biomech Model Mechanobiol. 2023;22(1):1-21. doi: 10.1007/s10237-022-01635-9
  288. Kumar Shetty S, Sundar Santhanakrishnan S, Padurao S, Mirazkar Dasharatharao P. Prioritizing biomaterial driven clinical bioactivity over designing intricacy during bioprinting of trabecular microarchitecture: a clinician’s perspective. ACS Omega. 2024;9(11):12426-12435. doi: 10.1021/acsomega.3c08112
  289. Golubovsky JL, Ejikeme T, Winkelman R, Steinmetz MP. Osteobiologics. Oper Neurosurg (Hagerstown). 2021;21(Suppl 1):S2-S9. doi: 10.1093/ons/opaa383
  290. Jiang S, Wang M, He J. A review of biomimetic scaffolds for bone regeneration: toward a cell-free strategy. Bioeng Transl Med. 2021;6(2):e10206. doi: 10.1002/btm2.10206
  291. Wu Q, Wang X, Jiang F, Zhu Z, Wen J, Jiang X. Study of Sr- Ca-Si-based scaffolds for bone regeneration in osteoporotic models. Int J Oral Sci. 2020;12(1):25. doi: 10.1038/s41368-020-00094-1
  292. van Houdt CIA, Koolen MKE, Lopez-Perez PM, et al. Regenerating critical size rat segmental bone defects with a self-healing hybrid nanocomposite hydrogel: effect of bone condition and BMP-2 incorporation. Macromol Biosci. 2021;21(8):e2100088. doi: 10.1002/mabi.202100088
  293. Gurel Pekozer G, Abay Akar N, Cumbul A, Beyzadeoglu T, Torun Kose G. Investigation of vasculogenesis inducing biphasic scaffolds for bone tissue engineering. ACS Biomater Sci Eng. 2021;7(4):1526-1538. doi: 10.1021/acsbiomaterials.0c01071
  294. George J, Kuboki Y, Miyata T. Differentiation of mesenchymal stem cells into osteoblasts on honeycomb collagen scaffolds. Biotechnol Bioeng. 2006;95(3):404-411. doi: 10.1002/bit.20939
  295. Dong L, Wang SJ, Zhao XR, Zhu YF, Yu JK. 3D- printed poly(epsilon-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering. Sci Rep. 2017;7(1):13412. doi: 10.1038/s41598-017-13838-7
  296. Liu ZB, Li Q, Liu WX, et al. Comparison of clinical effects of the modified masquelet technique and kirschner wire external fixation-assisted autogenous bone transplantation in the treatment of segmental metacarpophalangeal bone defects. Int J Gen Med. 2022;15:1619-1635. doi: 10.2147/IJGM.S343617
  297. Schweiberer L, Stutzle H, Mandelkow HK. Bone transplantation. Arch Orthop Trauma Surg. 1990;109(1): 1-8. doi: 10.1007/BF00441902
  298. Misch CM. Autogenous bone is still the gold standard of graft materials in 2022. J Oral Implantol. 2022;48(3): 169-170. doi: 10.1563/aaid-joi-D-22-Editorial.4803
  299. Zhang B, Nasereddin J, McDonagh T, et al. Effects of porosity on drug release kinetics of swellable and erodible porous pharmaceutical solid dosage forms fabricated by hot melt droplet deposition 3D printing. Int J Pharma. 2021;604:120626. doi: 10.1016/j.ijpharm.2021.120626
  300. Gupta D, Vashisth P, Bellare J. Multiscale porosity in a 3D printed gellan-gelatin composite for bone tissue engineering. Biomed Mater. 2021;16(3):034103. doi: 10.1088/1748-605X/abf1a7
  301. Karamat-Ullah N, Demidov Y, Schramm M, et al. 3D printing of antibacterial, biocompatible, and biomimetic hybrid aerogel-based scaffolds with hierarchical porosities via integrating antibacterial peptide-modified silk fibroin with silica nanostructure. ACS Biomater Sci Eng. 2021;7(9):4545-4556. doi: 10.1021/acsbiomaterials.1c00483
  302. Putra NE, Leeflang MA, Minneboo M, et al. Extrusion-based 3D printed biodegradable porous iron. Acta Biomater. 2021;121:741-756. doi: 10.1016/j.actbio.2020.11.022
  303. Sharma P, Pandey PM. Corrosion rate modelling of biodegradable porous iron scaffold considering the effect of porosity and pore morphology. Mater Sci Eng C Mater Biol Appl. 2019;103:109776. doi: 10.1016/j.msec.2019.109776
  304. Xiu P, Jia Z, Lv J, et al. Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and interlocked bone/implant interface. ACS Appl Mater Interfaces. 2016;8(28):17964-75. doi: 10.1021/acsami.6b05893
  305. Zhang T, Wei Q, Zhou H, et al. Sustainable release of vancomycin from micro-arc oxidised 3D-printed porous Ti6Al4V for treating methicillin-resistant Staphylococcus aureus bone infection and enhancing osteogenesis in a rabbit tibia osteomyelitis model. Biomater Sci. 2020;8(11):3106-3115. doi: 10.1039/c9bm01968e
  306. Yang Y, Cheng Y, Deng F, et al. A bifunctional bone scaffold combines osteogenesis and antibacterial activity via in situ grown hydroxyapatite and silver nanoparticles. Bio-Design Manuf. 2021;4(3):452-468. doi: 10.1007/s42242-021-00130-x
  307. Qiu X, Li S, Li X, et al. Experimental study of beta-TCP scaffold loaded with VAN/PLGA microspheres in the treatment of infectious bone defects. Colloids Surf B Biointerfaces. 2022;213:112424. doi: 10.1016/j.colsurfb.2022.112424
  308. Zhang L, Lu C, Lv Y, Wang X, Guo S, Zhang H. Three-dimensional printing-assisted masquelet technique in the treatment of calcaneal defects. Orthop Surg. 2021;13(3):876-883. doi: 10.1111/os.12873
  309. Wang X, Wang S, Xu J, Sun D, Shen J, Xie Z. Antibiotic cement plate composite structure internal fixation after debridement of bone infection. Sci Rep. 2021;11(1):16921. doi: 10.1038/s41598-021-96522-1
  310. Zhang Y, Zhai D, Xu M, et al. 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity. Biofabrication. 2017;9(2):025037. doi: 10.1088/1758-5090/aa6ed6
  311. Xu K, Li K, He Y, et al. Functional titanium substrates synergetic photothermal therapy for enhanced antibacterial and osteogenic performance via immunity regulation. Adv Healthc Mater. 2023;12(19):e2300494. doi: 10.1002/adhm.202300494
  312. Zhou W, Yan J, Li Y, et al. Based on the synergistic effect of Mg(2+) and antibacterial peptides to improve the corrosion resistance, antibacterial ability and osteogenic activity of magnesium-based degradable metals. Biomater Sci. 2021;9(3):807-825. doi: 10.1039/d0bm01584a
  313. Sabharwal S, Wilson H. Orthogeriatrics in the management of frail older patients with a fragility fracture. Osteoporos Int. 2015;26(10):2387-2399. doi: 10.1007/s00198-015-3166-2
  314. Moghaddaszadeh A, Seddiqi H, Najmoddin N, Abbasi Ravasjani S, Klein-Nulend J. Biomimetic 3D-printed PCL scaffold containing a high concentration carbonated-nanohydroxyapatite with immobilized-collagen for bone tissue engineering: enhanced bioactivity and physicomechanical characteristics. Biomed Mater. 2021;16(6):065029. doi: 10.1088/1748-605X/ac3147
  315. Yu J, Xu Y, Li S, Seifert GV, Becker ML. Three-dimensional printing of nano hydroxyapatite/poly(ester urea) composite scaffolds with enhanced bioactivity. Biomacromolecules. 2017;18(12):4171-4183. doi: 10.1021/acs.biomac.7b01222
  316. Liu H, Lin J, Roy K. Effect of 3D scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells. Biomaterials. 2006;27(36): 5978-5989. doi: 10.1016/j.biomaterials.2006.05.053
  317. Lee JW, Wen HB, Battula S, Akella R, Collins M, Romanos GE. Outcome after placement of tantalum porous engineered dental implants in fresh extraction sockets: a canine study. Int J Oral Maxillofac Implants. 2015;30(1):134-142. doi: 10.11607/jomi.3692
  318. Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res. 2019;23:4. doi: 10.1186/s40824-018-0149-3
  319. Martinez-Zelaya VR, Zarranz L, Herrera EZ, et al. In vitro and in vivo evaluations of nanocrystalline Zn-doped carbonated hydroxyapatite/alginate microspheres: zinc and calcium bioavailability and bone regeneration. Int J Nanomedicine. 2019;14:3471-3490. doi: 10.2147/ijn.S197157
  320. Li Z, Kawashita M. Current progress in inorganic artificial biomaterials. J Artif Organs. 2011;14(3):163-170. doi: 10.1007/s10047-011-0585-5
  321. Chou DT, Wells D, Hong D, Lee B, Kuhn H, Kumta PN. Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing. Acta Biomater. 2013;9(10): 8593-8603. doi: 10.1016/j.actbio.2013.04.016
  322. Liu YJ, Yang ZY, Tan LL, Li H, Zhang YZ. An animal experimental study of porous magnesium scaffold degradation and osteogenesis. Braz J Med Biol Res. 2014;47(8):715-720. doi: 10.1590/1414-431x20144009
  323. Alves APN, Arango-Ospina M, Oliveira R, et al. 3D-printed β-TCP/S53P4 bioactive glass scaffolds coated with tea tree oil: Coating optimization, in vitro bioactivity and antibacterial properties. J Biomed Mater Res B Appl Biomater. 2023;111(4):881-894. doi: 10.1002/jbm.b.35198
  324. Wang W, Liu P, Zhang B, et al. Fused deposition modeling printed PLA/Nano β-TCP composite bone tissue engineering scaffolds for promoting osteogenic induction function. Int J Nanomedicine. 2023;18:5815-5830. doi: 10.2147/ijn.S416098
  325. Wang J, Liu M, Yang C, et al. Biomaterials for bone defect repair: types, mechanisms and effects. Int J Artif Organs. 2024;47(2):75-84. doi: 10.1177/03913988231218884
  326. Gupta D, Singh AK, Bellare J. Natural bone inspired core-shell triple-layered gel/PCL/gel 3D printed scaffolds for bone tissue engineering. Biomed Mater. 3 2023;18(6):065027. doi: 10.1088/1748-605X/ad06c2
  327. Guo W, Xu H, Liu D, et al. 3D-Printed lattice-inspired composites for bone reconstruction. J Mater Chem B. 2023;11(31):7353-7363. doi: 10.1039/d3tb01053h
  328. Qin H, Wei Y, Han J, et al. 3D printed bioceramic scaffolds: Adjusting pore dimension is beneficial for mandibular bone defects repair. J Tissue Eng Regen Med. 2022;16(4):409-421. doi: 10.1002/term.3287
  329. Demirtas TT, Irmak G, Gumusderelioglu M. A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication. 2017;9(3):035003. doi: 10.1088/1758-5090/aa7b1d
  330. Pant S, Thomas S, Loganathan S, Valapa RB. 3D bioprinted poly(lactic acid)/mesoporous bioactive glass based biomimetic scaffold with rapid apatite crystallization and in-vitro Cytocompatability for bone tissue engineering. Int J Biol Macromol. 2022;217:979-997. doi: 10.1016/j.ijbiomac.2022.07.202
  331. Zhao S, Xie K, Guo Y, et al. Fabrication and biological activity of 3D-printed polycaprolactone/magnesium porous scaffolds for critical size bone defect repair. ACS Biomater Sci Eng. 2020;6(9):5120-5131. doi: 10.1021/acsbiomaterials.9b01911
  332. Tian L, Zhang Z, Tian B, Zhang X, Wang N. Study on antibacterial properties and cytocompatibility of EPL coated 3D printed PCL/HA composite scaffolds. RSC Adv. 2020;10(8):4805-4816. doi: 10.1039/c9ra10275b
  333. Lin H, Li Z, Xie Z, et al. An anti-infection and biodegradable TFRD-loaded porous scaffold promotes bone regeneration in segmental bone defects -experimental studies. Int J Surg. 2024;110(6):3269-3284. doi: 10.1097/JS9.0000000000001291
  334. Ji C, Zhang C, Xu Z, et al. Mussel-inspired HA@TA-CS/SA biomimetic 3D printed scaffolds with antibacterial activity for bone repair. Front Bioeng Biotechnol. 2023;11:1193605. doi: 10.3389/fbioe.2023.1193605
  335. Urish KL, Cassat JE. Staphylococcus aureus Osteomyelitis: bone, bugs, and surgery. Infect Immun. 2020;88(7):00932-19. doi: 10.1128/iai.00932-19
  336. Chen ZY, Gao S, Zhang YW, Zhou RB, Zhou F. Antibacterial biomaterials in bone tissue engineering. J Mater Chem B. 2021;9(11):2594-2612. doi: 10.1039/d0tb02983a
  337. Shuaishuai W, Tongtong Z, Dapeng W, et al. Implantable biomedical materials for treatment of bone infection. Front Bioeng Biotechnol. 2023;11:1081446. doi: 10.3389/fbioe.2023.1081446
  338. Cheng T, Qu H, Zhang G, Zhang X. Osteogenic and antibacterial properties of vancomycin-laden mesoporous bioglass/PLGA composite scaffolds for bone regeneration in infected bone defects. Artif Cells Nanomed Biotechnol. 2018;46(8):1935-1947. doi: 10.1080/21691401.2017.1396997
  339. Gao X, Xu Z, Li S, et al. Chitosan-vancomycin hydrogel incorporated bone repair scaffold based on staggered orthogonal structure: a viable dually controlled drug delivery system. RSC Adv. 2023;13(6):3759-3765. doi: 10.1039/d2ra07828g
  340. Camarero-Espinosa S, Calore A, Wilbers A, Harings J, Moroni L. Additive manufacturing of an elastic poly(ester) urethane for cartilage tissue engineering. Acta Biomater. 2020;102:192-204. doi: 10.1016/j.actbio.2019.11.041
  341. Jaidev LR, Chatterjee K. Surface functionalization of 3D printed polymer scaffolds to augment stem cell response. Mater Design. 2019;161:44-54. doi: 10.1016/j.matdes.2018.11.018
  342. Traub WH, Leonhard B. Heat stability of the antimicrobial activity of sixty-two antibacterial agents. J Antimicrob Chemother. 1995;35(1):149-154. doi: 10.1093/jac/35.1.149
  343. Kutlu B, Schröttner P, Leuteritz A, Boldt R, Jacobs E, Heinrich G. Preparation of melt-spun antimicrobially modified LDH/ polyolefin nanocomposite fibers. Mater Sci Eng C Mater Biol Appl. 2014;41:8-16. doi: 10.1016/j.msec.2014.04.021
  344. Camara-Torres M, Duarte S, Sinha R, et al. 3D additive manufactured composite scaffolds with antibiotic-loaded lamellar fillers for bone infection prevention and tissue regeneration. Bioact Mater. 2021;6(4):1073-1082. doi: 10.1016/j.bioactmat.2020.09.031
  345. Azevedo HS, Pashkuleva I. Biomimetic supramolecular designs for the controlled release of growth factors in bone regeneration. Adv Drug Deliv Rev. 2015;94:63-76. doi: 10.1016/j.addr.2015.08.003
  346. Lienemann PS, Lutolf MP, Ehrbar M. Biomimetic hydrogels for controlled biomolecule delivery to augment bone regeneration. Adv Drug Deliv Rev. 2012;64(12):1078-1089. doi: 10.1016/j.addr.2012.03.010
  347. Ball JR, Shelby T, Hernandez F, Mayfield CK, Lieberman JR. Delivery of growth factors to enhance bone repair. Bioengineering (Basel). 2023;10(11):1252. doi: 10.3390/bioengineering10111252
  348. Quinlan E, Thompson EM, Matsiko A, O’Brien FJ, Lopez- Noriega A. Long-term controlled delivery of rhBMP-2 from collagen-hydroxyapatite scaffolds for superior bone tissue regeneration. J Control Release. 2015;207:112-119. doi: 10.1016/j.jconrel.2015.03.028
  349. Liu P, Bao T, Sun L, et al. In situ mineralized PLGA/ zwitterionic hydrogel composite scaffold enables high-efficiency rhBMP-2 release for critical-sized bone healing. Biomater Sci. 2022;10(3):781-793. doi: 10.1039/d1bm01521d
  350. Liu C, Peng Z, Xu H, et al. 3D printed platelet-rich plasma-loaded scaffold with sustained cytokine release for bone defect repair. Tissue Eng Part A. 2022;28(15-16):700-711. doi: 10.1089/ten.TEA.2021.0211
  351. Cao B, Lin J, Tan J, et al. 3D-printed vascularized biofunctional scaffold for bone regeneration. Int J Bioprint. 2023;9(3):702. doi: 10.18063/ijb.702
  352. Seyednejad H, Gawlitta D, Kuiper RV, et al. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε- caprolactone). Biomaterials. 2012;33(17):4309-4318. doi: 10.1016/j.biomaterials.2012.03.002
  353. Wu GH, Hsu SH. Review: polymeric-based 3D printing for tissue engineering. J Med Biol Eng. 2015;35(3):285-292. doi: 10.1007/s40846-015-0038-3
  354. Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci U S A. 2016;113(12):3179-3184. doi: 10.1073/pnas.1521342113
  355. Duan B, Kapetanovic E, Hockaday LA, Butcher JT. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater. 2014;10(5):1836-1846. doi: 10.1016/j.actbio.2013.12.005
  356. de Morree A, Rando TA. Regulation of adult stem cell quiescence and its functions in the maintenance of tissue integrity. Nat Rev Mol Cell Biol. 2023;24(5):334-354. doi: 10.1038/s41580-022-00568-6
  357. Xing F, Li L, Sun J, et al. Surface mineralized biphasic calcium phosphate ceramics loaded with urine-derived stem cells are effective in bone regeneration. J Orthop Surg Res. 2019;14(1):419. doi: 10.1186/s13018-019-1500-7
  358. Xing F, Yin HM, Zhe M, et al. Nanotopographical 3D-printed Poly(ε-caprolactone) scaffolds enhance proliferation and osteogenic differentiation of urine-derived stem cells for bone regeneration. Pharmaceutics. 2022;14(7);1437. doi: 10.3390/pharmaceutics14071437
  359. Carvalho CMF, Leonel L, Cañada RR, et al. Comparison between placental and skeletal muscle ECM: in vivo implantation. Connect Tissue Res. 2021;62(6):629-642. doi: 10.1080/03008207.2020.1834540
  360. Kronstadt SM, Patel DB, Born LJ, et al. Mesenchymal stem cell culture within perfusion bioreactors incorporating 3D-printed scaffolds enables improved extracellular vesicle yield with preserved bioactivity. Adv Healthc Mater. 2023;12(20):e2300584. doi: 10.1002/adhm.202300584
  361. Jiang W, Zhan Y, Zhang Y, et al. Synergistic large segmental bone repair by 3D printed bionic scaffolds and engineered ADSC nanovesicles: towards an optimized regenerative microenvironment. Biomaterials. 2024;308:122566. doi: 10.1016/j.biomaterials.2024.122566
  362. Roskies M, Jordan JO, Fang D, et al. Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells. J Biomater Appl. 2016;31(1):132-139. doi: 10.1177/0885328216638636
  363. Wang N, Fuh JYH, Dheen ST, Senthil Kumar A. Functions and applications of metallic and metallic oxide nanoparticles in orthopedic implants and scaffolds. J Biomed Mater Res B Appl Biomater. 2021;109(2):160-179. doi: 10.1002/jbm.b.34688
  364. Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface. Appl Environ Microbiol. 2011;77(5):1541-1547. doi: 10.1128/aem.02766-10
  365. Xiang Y, Li J, Liu X, et al. Construction of poly(lactic-co-glycolic acid)/ZnO nanorods/Ag nanoparticles hybrid coating on Ti implants for enhanced antibacterial activity and biocompatibility. Mater Sci Eng C Mater Biol Appl. 2017;79:629-637. doi: 10.1016/j.msec.2017.05.115
  366. Storm WL, Johnson JA, Worley BV, Slomberg DL, Schoenfisch MH. Dual action antimicrobial surfaces via combined nitric oxide and silver release. J Biomed Mater Res Part A. 2015;103(6):1974-1984. doi: 10.1002/jbm.a.35331
  367. Gao A, Hang R, Huang X, et al. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials. 2014;35(13): 4223-4235. doi: 10.1016/j.biomaterials.2014.01.058
  368. Zhang R, Lee P, Lui VC, et al. Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomedicine. 2015;11(8):1949-1959. doi: 10.1016/j.nano.2015.07.016
  369. Kim H-I, Raja N, Kim J, et al. A 3D calcium-deficient hydroxyapatite-based scaffold with gold nanoparticles effective against Micrococcus luteus as an artificial bone substitute. Mater Design. 2022;219:110793. doi: 10.1016/j.matdes.2022.110793
  370. Ohtsu N, Kakuchi Y, Ohtsuki T. Antibacterial effect of zinc oxide/hydroxyapatite coatings prepared by chemical solution deposition. Appl Surf Sci. 2018;445: 596-600. doi: 10.1016/j.apsusc.2017.09.101
  371. Li Y-L, He J, Ye H-X, et al. Atomic layer deposition of zinc oxide onto 3D porous iron scaffolds for bone repair: in vitro degradation, antibacterial activity and cytocompatibility evaluation. Rare Metals. 2022;41(2):546-558. doi: 10.1007/s12598-021-01852-8
  372. Nadi A, Khodaei M, Javdani M, et al. Fabrication of functional and nano-biocomposite scaffolds using strontium-doped bredigite nanoparticles/polycaprolactone/poly lactic acid via 3D printing for bone regeneration. Int J Biol Macromol. 2022;219:1319-1336. doi: 10.1016/j.ijbiomac.2022.08.136
  373. Sanchez-Salcedo S, Garcia A, Gonzalez-Jimenez A, Vallet- Regi M. Antibacterial effect of 3D printed mesoporous bioactive glass scaffolds doped with metallic silver nanoparticles. Acta Biomater. 2023;155:654-666. doi: 10.1016/j.actbio.2022.10.045
  374. Wang M, Yang Y, Chi G, et al. A 3D printed Ga containing scaffold with both anti-infection and bone homeostasis-regulating properties for the treatment of infected bone defects. J Mater Chem B. 2021;9(23):4735-4745. doi: 10.1039/d1tb00387a
  375. Dediu V, Ghitman J, Gradisteanu Pircalabioru G, Chan KH, Iliescu FS, Iliescu C. Trends in photothermal nanostructures for antimicrobial applications. Int J Mol Sci. 2023;24(11):9375. doi: 10.3390/ijms24119375
  376. Du T, Xiao Z, Zhang G, et al. An injectable multifunctional hydrogel for eradication of bacterial biofilms and wound healing. Acta Biomater. 2023;161:112-133. doi: 10.1016/j.actbio.2023.03.008
  377. Fu H, Xue K, Zhang Y, et al. Thermoresponsive hydrogel-enabled thermostatic photothermal therapy for enhanced healing of bacteria-infected wounds. Adv Sci (Weinh). 2023;10(11):e2206865. doi: 10.1002/advs.202206865
  378. Liu W, Zuo R, Zhu T, Zhu M, Zhao S, Zhu Y. Forsterite-hydroxyapatite composite scaffolds with photothermal antibacterial activity for bone repair. J Adv Ceramics. 2021;10(5):1095-1106. doi: 10.1007/s40145-021-0494-x
  379. Zhu Z, Lin Y, Li L, et al. 3D printing drug-free scaffold with triple-effect combination induced by copper-doped layered double hydroxides for the treatment of bone defects. ACS Appl Mater Interfaces. 2023;15(50): 58196-58211. doi: 10.1021/acsami.3c13336
  380. Tan Y, Sun H, Lan Y, et al. Study on 3D printed MXene-berberine-integrated scaffold for photo-activated antibacterial activity and bone regeneration. J Mater Chem B. 2024;12(8):2158-2179. doi: 10.1039/d3tb02306k
  381. Nie R, Sun Y, Lv H, et al. 3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models. Nanoscale. 2022;14(22):8112-8129. doi: 10.1039/d2nr02176e
  382. Zeng Y, Ouyang Q, Yu Y, et al. Defective homojunction porphyrin-based metal-organic frameworks for highly efficient sonodynamic therapy. Small Methods. 2023;7(1):e2201248. doi: 10.1002/smtd.202201248
  383. Nene LC, Nyokong T. Enhancement of the in vitro anticancer photo-sonodynamic combination therapy activity of cationic thiazole-phthalocyanines using gold and silver nanoparticles. J Photochem Photobiol A: Chem. 2023;435:114339. doi: 10.1016/j.jphotochem.2022.114339
  384. Wang R, Liu Q, Gao A, et al. Recent developments of sonodynamic therapy in antibacterial application. Nanoscale. 2022;14(36):12999-13017. doi: 10.1039/d2nr01847k
  385. Han J, Ma Q, An Y, et al. Correction: the current status of stimuli-responsive nanotechnologies on orthopedic titanium implant surfaces. J Nanobiotechnology. 2023; 21(1):390. doi: 10.1186/s12951-023-02102-y
  386. Lei Q, Chen Y, Gao S, et al. Enhanced magnetothermal effect of high porous bioglass for both bone repair and antitumor therapy. Mater Design. 2023;227:111754. doi: 10.1016/j.matdes.2023.111754
  387. Zhuang H, Qin C, Zhang M, et al. 3D-printed bioceramic scaffolds with Fe(3)S(4)microflowers for magnetothermal and chemodynamic therapy of bone tumor and regeneration of bone defects. Biofabrication. 2021;13(4):045010. doi: 10.1088/1758-5090/ac19c7
  388. Xia G, Song B, Fang J. Electrical stimulation enabled via electrospun piezoelectric polymeric nanofibers for tissue regeneration. Research (Wash D C). 2022;2022:9896274. doi: 10.34133/2022/9896274
  389. Lee J, Dutta SD, Acharya R, et al. Stimuli-responsive 3D printable conductive hydrogel: a step toward regulating macrophage polarization and wound healing. Adv Healthc Mater. 2024;13(4):e2302394. doi: 10.1002/adhm.202302394
  390. Asadi MR, Torkaman G. Bacterial inhibition by electrical stimulation. Adv Wound Care (New Rochelle). 2014;3(2):91-97. doi: 10.1089/wound.2012.0410
  391. Carvalho EO, Fernandes MM, Padrao J, et al. Tailoring bacteria response by piezoelectric stimulation. ACS Appl Mater Interfaces. 2019;11(30):27297-27305. doi: 10.1021/acsami.9b05013
  392. Lai S, Wang Y, Wan Y, Ma H, Fang L, Su J. Magnetoelectric polymer membrane-based electrical microenvironment with magnetically controlled antibacterial activity. ACS Appl Mater Interfaces. 2022;14(17):20139-20150. doi: 10.1021/acsami.2c04359
  393. Jo GH, Lim WS, Kim HW, Park HJ. Post-processing and printability evaluation of red ginseng snacks for three-dimensional (3D) printing. Food Bioscience. 2021; 42:101094. doi: 10.1016/j.fbio.2021.101094
  394. Tetik H, Zhao K, Shah N, Lin D. 3D freeze-printed cellulose-based aerogels: obtaining truly 3D shapes, and functionalization with cross-linking and conductive additives. J Manuf Processes. 2021;68:445-453. doi: 10.1016/j.jmapro.2021.05.051
  395. Zhao Z, Wu H, Liu X, et al. Synthesis and characterization of tung oil-based UV curable for three-dimensional printing resins. RSC Adv. 2022;12(34):22119-22130. doi: 10.1039/d2ra03182e
  396. Chen K, Kuang X, Li V, Kang G, Qi HJ. Fabrication of tough epoxy with shape memory effects by UV-assisted direct-ink write printing. Soft Matter. 2018;14(10):1879-1886. doi: 10.1039/c7sm02362f
  397. Yang Z, Wu G, Wang S, Xu M, Feng X. Dynamic postpolymerization of 3D-printed photopolymer nanocomposites: effect of cellulose nanocrystal and postcure temperature. Journal of Polymer Science Part B: Polymer Physics. 2018/06/15 2018;56(12):935-946. doi: 10.1002/polb.24610
  398. Sun Z, Lu Y, Zhao Q, Wu J. A new stereolithographic 3D printing strategy for hydrogels with a large mechanical tunability and self-weldability. Additive Manuf. 2022;50: 102563. doi: 10.1016/j.addma.2021.102563
  399. Zou S, Gong H, Gao J. Additively manufactured multilevel voronoi-lattice scaffolds with bonelike mechanical properties. ACS Biomater Sci Eng. 2022;8(7):3022-3037. doi: 10.1021/acsbiomaterials.1c01482
  400. Wittig NK, Birkedal H. Bone hierarchical structure: spatial variation across length scales. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2022;78(Pt 3 Pt 1):305-311. doi: 10.1107/S2052520622001524
  401. Chang B, Liu X. Osteon: structure, turnover, and regeneration. Tissue Eng Part B Rev. 2022;28(2):261-278. doi: 10.1089/ten.TEB.2020.0322
  402. Li L, Wang P, Liang H, et al. Design of a Haversian system-like gradient porous scaffold based on triply periodic minimal surfaces for promoting bone regeneration. J Adv Res. 2023;54:89-104. doi: 10.1016/j.jare.2023.01.004
  403. Peng Y, Wu S, Li Y, Crane JL. Type H blood vessels in bone modeling and remodeling. Theranostics. 2020;10(1):426-436. doi: 10.7150/thno.34126
  404. Zhang H, Zhang M, Zhai D, et al. Polyhedron-like biomaterials for innervated and vascularized bone regeneration. Adv Mater. 2023;35(42):e2302716. doi: 10.1002/adma.202302716
  405. Zhang Q, Ma L, Ji X, et al. High‐strength hydroxyapatite scaffolds with minimal surface macrostructures for load‐bearing bone regeneration. Adv Funct Mater. 2022;32(33):2204182. doi: 10.1002/adfm.202204182
  406. Yang Y, Xu T, Bei HP, et al. Gaussian curvature-driven direction of cell fate toward osteogenesis with triply periodic minimal surface scaffolds. Proc Natl Acad Sci U S A. 2022;119(41):e2206684119. doi: 10.1073/pnas.2206684119
  407. Horst A, McDonald F. Uncertain but not unregulated: medical product regulation in the light of three-dimensional printed medical products. 3D Print Addit Manuf. 2020;7(5):248-257. doi: 10.1089/3dp.2020.0076
  408. Murr LE. Global trends in the development of complex, personalized, biomedical, surgical implant devices using 3D printing/additive manufacturing: a review. Medical Dev Sens. 2020;3(6):e10126. doi: 10.1002/mds3.10126
  409. Jia Z, Zhou W, Yan J, et al. Constructing multilayer silk protein/nanosilver biofunctionalized hierarchically structured 3D printed Ti6Al4 V scaffold for repair of infective bone defects. ACS Biomater Sci Eng. 2019;5(1):244-261. doi: 10.1021/acsbiomaterials.8b00857
  410. Huang F, Liu X, Fu X, et al. 3D-printed bioactive scaffold loaded with GW9508 promotes critical-size bone defect repair by regulating intracellular metabolism. Bioengineering (Basel). 2023;10(5):535. doi: 10.3390/bioengineering10050535
  411. Wu Y, Shi X, Zi S, et al. The clinical application of customized 3D-printed porous tantalum scaffolds combined with Masquelet’s induced membrane technique to reconstruct infective segmental femoral defect. J Orthop Surg Res. 2022;17(1):479. doi: 10.1186/s13018-022-03371-3
  412. Zheng K, Yu XC, Xu M, et al. Using 3D printing technology to manufacture personalized bone cement placeholder mold for bone defect repair and reconstruction with infection: a case report. Orthop Surg. 2023;15(10):2724-2729. doi: 10.1111/os.13779
  413. Liu YB, Pan H, Chen L, et al. Total hip revision with custom-made spacer and prosthesis: a case report. World J Clin Cases. 2021;9(25):7605-7613. doi: 10.12998/wjcc.v9.i25.7605
  414. Laubach M, Suresh S, Herath B, et al. Clinical translation of a patient-specific scaffold-guided bone regeneration concept in four cases with large long bone defects. J Orthop Translat. 2022;34:73-84. doi: 10.1016/j.jot.2022.04.004
  415. Castrisos G, Gonzalez Matheus I, Sparks D, et al. Regenerative matching axial vascularisation of absorbable 3D-printed scaffold for large bone defects: a first in human series. J Plast Reconstr Aesthet Surg. 2022;75(7): 2108-2118. doi: 10.1016/j.bjps.2022.02.057
  416. Zhong L, Chen J, Ma Z, et al. 3D printing of metal-organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration. Nanoscale. 2020;12(48):24437-24449. doi: 10.1039/d0nr06297a
  417. Wang G, Luo W, Zhou Y, et al. Custom-made antibiotic cement-coated nail for the treatment of infected bone defect. Biomed Res Int. 2021;2021:6693906. doi: 10.1155/2021/6693906
  418. Rastin H, Ramezanpour M, Hassan K, et al. 3D bioprinting of a cell-laden antibacterial polysaccharide hydrogel composite. Carbohydr Polym. 2021;264:117989. doi: 10.1016/j.carbpol.2021.117989
  419. Ciliveri S, Bandyopadhyay A. Additively manufactured SiO(2) and Cu-added Ti implants for synergistic enhancement of bone formation and antibacterial efficacy. ACS Appl Mater Interfaces. 2024;16(3):3106-3115. doi: 10.1021/acsami.3c14994
  420. Shi Z, Yang F, Hu Y, et al. An oxidized dextran-composite self-healing coated magnesium scaffold reduces apoptosis to induce bone regeneration. Carbohydr Polym. 2024;327:121666. doi: 10.1016/j.carbpol.2023.121666
  421. Liu Q, Dong X, Qi H, et al. 3D printable strong and tough composite organo-hydrogels inspired by natural hierarchical composite design principles. Nat Commun. 2024;15(1):3237. doi: 10.1038/s41467-024-47597-7
  422. Freeman FE, Pitacco P, van Dommelen LHA, et al. 3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration. Sci Adv. 2020;6(33):eabb5093. doi: 10.1126/sciadv.abb5093
  423. Cui Y, Liu H, Tian Y, et al. Dual-functional composite scaffolds for inhibiting infection and promoting bone regeneration. Mater Today Bio. 2022;16:100409. doi: 10.1016/j.mtbio.2022.100409
  424. Meng M, Wang J, Sun T, et al. Clinical applications and prospects of 3D printing guide templates in orthopaedics. J Orthop Translat. 2022;34:22-41. doi: 10.1016/j.jot.2022.03.001
  425. Sukanya VS, Panigrahy N, Rath SN. Recent approaches in clinical applications of 3D printing in neonates and pediatrics. Eur J Pediatr. 2021;180(2):323-332. doi: 10.1007/s00431-020-03819-w
  426. Aguado-Maestro I, Simon-Perez C, Garcia-Alonso M, Ailagas-De Las Heras JJ, Paredes-Herrero E. Clinical applications of “In-Hospital” 3D printing in hip surgery: a systematic narrative review. J Clin Med. 2024;13(2):599. doi: 10.3390/jcm13020599
  427. Kumar Gupta D, Ali MH, Ali A, et al. 3D printing technology in healthcare: applications, regulatory understanding, IP repository and clinical trial status. J Drug Target. 2022;30(2):131-150. doi: 10.1080/1061186X.2021.1935973
  428. Keller M, Guebeli A, Thieringer F, Honigmann P. Overview of in-hospital 3D printing and practical applications in hand surgery. Biomed Res Int. 2021;2021:4650245. doi: 10.1155/2021/4650245
  429. Wang Z, Xiang L, Lin F, Tang Y, Cui W. 3D bioprinting of emulating homeostasis regulation for regenerative medicine applications. J Control Release. 2023;353:147-165. doi: 10.1016/j.jconrel.2022.11.035
  430. Bliley JM, Shiwarski DJ, Feinberg AW. 3D-bioprinted human tissue and the path toward clinical translation. Sci Transl Med. 2022;14(666):eabo7047. doi: 10.1126/scitranslmed.abo7047
  431. Roppolo I, Caprioli M, Pirri CF, Magdassi S. 3D printing of self-healing materials. Adv Mater. 2024;36(9): e2305537. doi: 10.1002/adma.202305537
  432. Palmquist A, Jolic M, Hryha E, Shah FA. Complex geometry and integrated macro-porosity: Clinical applications of electron beam melting to fabricate bespoke bone-anchored implants. Acta Biomater. 2023;156:125-145. doi: 10.1016/j.actbio.2022.06.002
  433. Qu H, Gao C, Liu K, et al. Gradient matters via filament diameter-adjustable 3D printing. Nat Commun. 2024;15(1):2930. doi: 10.1038/s41467-024-47360-y
  434. Mir A, Lee E, Shih W, et al. 3D bioprinting for vascularization. Bioengineering (Basel). 2023;10(5):606. doi: 10.3390/bioengineering10050606
  435. Ghosh U, Ning S, Wang Y, Kong YL. Addressing unmet clinical needs with 3d printing technologies. Adv Healthc Mater. 2018;7(17):e1800417. doi: 10.1002/adhm.201800417
  436. Zhou Z, Liu J, Xiong T, Liu Y, Tuan RS, Li ZA. Engineering innervated musculoskeletal tissues for regenerative orthopedics and disease modeling. Small. 2024;20(23):e2310614. doi: 10.1002/smll.202310614
  437. Ouyang L, Armstrong JPK, Lin Y, et al. Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. Sci Adv. 2020;6(38): eabc5529. doi: 10.1126/sciadv.abc5529
  438. Li R, Zhang L, Jiang X, et al. 3D-printed microneedle arrays for drug delivery. J Control Release. 2022;350:933-948. doi: 10.1016/j.jconrel.2022.08.022
  439. Patel SK, Khoder M, Peak M, Alhnan MA. Controlling drug release with additive manufacturing-based solutions. Adv Drug Deliv Rev. 2021;174:369-386. doi: 10.1016/j.addr.2021.04.020
  440. Roca M, Villegas L, Kortabitarte ML, Althaus RL, Molina MP. Effect of heat treatments on stability of beta-lactams in milk. J Dairy Sci. 2011;94(3):1155-1164. doi: 10.3168/jds.2010-3599
  441. Tian L, Khalil S, Bayen S. Effect of thermal treatments on the degradation of antibiotic residues in food. Crit Rev Food Sci Nutr. 2017;57(17):3760-3770. doi: 10.1080/10408398.2016.1164119
  442. Tappa K, Jammalamadaka U, Weisman JA, et al. 3D printing custom bioactive and absorbable surgical screws, pins, and bone plates for localized drug delivery. J Funct Biomater. Apr 1 2019;10(2):17. doi: 10.3390/jfb10020017
  443. Ballard DH, Tappa K, Boyer CJ, et al. Antibiotics in 3D-printed implants, instruments and materials: benefits, challenges and future directions. J 3D Print Med. 2019;3(2):83-93. doi: 10.2217/3dp-2019-0007
  444. Costing drug development. Nat Rev Drug Discov. 2003;2(4):247. doi: 10.1038/nrd1070
  445. DiMasi JA, Grabowski HG. Economics of new oncology drug development. J Clin Oncol. 2007;25(2):209-216. doi: 10.1200/JCO.2006.09.0803
  446. Park SM, Vonortas NS. Translational research: from basic research to regional biomedical entrepreneurship. Small Bus Econ (Dordr). 2023;60(4):1761-1783. doi: 10.1007/s11187-022-00676-9
  447. Kasturi M, Mathur V, Gadre M, Srinivasan V, Vasanthan KS. Three dimensional bioprinting for hepatic tissue engineering: from in vitro models to clinical applications. Tissue Eng Regen Med. 2024;21(1):21-52. doi: 10.1007/s13770-023-00576-3
  448. Lei C, Song JH, Li S, et al. Advances in materials-based therapeutic strategies against osteoporosis. Biomaterials. 2023;296:122066. doi: 10.1016/j.biomaterials.2023.122066
  449. Ren Y, Zhang C, Liu Y, et al. Advances in 3D printing of highly bioadaptive bone tissue engineering scaffolds. ACS Biomater Sci Eng. 2024;10(1):255-270. doi: 10.1021/acsbiomaterials.3c01129
  450. Ansari MAA, Golebiowska AA, Dash M, et al. Engineering biomaterials to 3D-print scaffolds for bone regeneration: practical and theoretical consideration. Biomater Sci. 2022;10(11):2789-2816. doi: 10.1039/d2bm00035k
  451. Datta P, Cabrera LY, Ozbolat IT. Ethical challenges with 3D bioprinted tissues and organs. Trends Biotechnol. 2023;41(1):6-9. doi: 10.1016/j.tibtech.2022.08.012
  452. Liu X, Hao M, Chen Z, et al. 3D bioprinted neural tissue constructs for spinal cord injury repair. Biomaterials. May 2021;272:120771. doi: 10.1016/j.biomaterials.2021.120771
  453. Ricci G, Gibelli F, Sirignano A. Three-dimensional bioprinting of human organs and tissues: bioethical and medico-legal implications examined through a scoping review. Bioengineering (Basel). 2023;10(9):1052. doi: 10.3390/bioengineering10091052
  454. Sanz-Sanchez I, Sanz-Martin I, Ortiz-Vigon A, Molina A, Sanz M. Complications in bone-grafting procedures: Classification and management. Periodontol 2000. 2022;88(1):86-102. doi: 10.1111/prd.12413
  455. Li J, Li M, Wang W, Li B, Liu L. Evolution and development of Ilizarov technique in the treatment of infected long bone nonunion with or without bone defects. Orthop Surg. 2022;14(5):824-830. doi: 10.1111/os.13218
  456. Mathieu L, Mourtialon R, Durand M, de Rousiers A, de l’Escalopier N, Collombet JM. Masquelet technique in military practice: specificities and future directions for combat-related bone defect reconstruction. Mil Med Res. 2022;9(1):48. doi: 10.1186/s40779-022-00411-1
  457. Abdullah T, Qurban RO, Bolarinwa SO, Mirza AA, Pasovic M, Memic A. 3D printing of metal/metal oxide incorporated thermoplastic nanocomposites with antimicrobial properties. Front Bioeng Biotechnol. 2020;8:568186. doi: 10.3389/fbioe.2020.568186
  458. Longoni A, Li J, Lindberg GCJ, et al. Strategies for inclusion of growth factors into 3D printed bone grafts. Essays Biochem. 2021;65(3):569-585. doi: 10.1042/EBC20200130
  459. Meng M, Wang J, Huang H, Liu X, Zhang J, Li Z. 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. J Orthop Translat. 2023;42:94-112. doi: 10.1016/j.jot.2023.08.004
  460. Velasquez-Garcia LF, Kornbluth Y. Biomedical applications of metal 3D printing. Annu Rev Biomed Eng. 2021;23:307-338. doi: 10.1146/annurev-bioeng-082020-032402
  461. Liu Z, Liu Q, Guo H, Liang J, Zhang Y. Overview of physical and pharmacological therapy in enhancing bone regeneration formation during distraction osteogenesis. Front Cell Dev Biol. 2022;10:837430. doi: 10.3389/fcell.2022.837430
  462. Sun Y, Wan B, Wang R, et al. Mechanical stimulation on mesenchymal stem cells and surrounding microenvironments in bone regeneration: regulations and applications. Front Cell Dev Biol. 2022;10:808303. doi: 10.3389/fcell.2022.808303
  463. Ma Q, Miri Z, Haugen HJ, Moghanian A, Loca D. Significance of mechanical loading in bone fracture healing, bone regeneration, and vascularization. J Tissue Eng. 2023;14:20417314231172573. doi: 10.1177/20417314231172573
  464. Wan X, Xiao Z, Tian Y, et al. Recent advances in 4D printing of advanced materials and structures for functional applications. Adv Mater. 2024;36(34):e2312263. doi: 10.1002/adma.202312263
  465. Han X, Saiding Q, Cai X, et al. Intelligent vascularized 3D/4D/5D/6D-printed tissue scaffolds. Nanomicro Lett. 2023;15(1):239. doi: 10.1007/s40820-023-01187-2
  466. Yarali E, Mirzaali MJ, Ghalayaniesfahani A, Accardo A, Diaz-Payno PJ, Zadpoor AA. 4D printing for biomedical applications. Adv Mater. 2024;36(31):e2402301. doi: 10.1002/adma.202402301
  467. Lai J, Liu Y, Lu G, et al. 4D bioprinting of programmed dynamic tissues. Bioact Mater. 2024;37:348-377. doi: 10.1016/j.bioactmat.2024.03.033
  468. Chen X, Han S, Wu W, et al. Harnessing 4D printing bioscaffolds for advanced orthopedics. Small. 2022;18(36):e2106824. doi: 10.1002/smll.202106824
  469. Qu M, Wang C, Zhou X, et al. Multi-dimensional printing for bone tissue engineering. Adv Healthc Mater. 2021;10(11):e2001986.doi: 10.1002/adhm.202001986
  470. Ghazal AF, Zhang M, Mujumdar AS, Ghamry M. Progress in 4D/5D/6D printing of foods: applications and R&D opportunities. Crit Rev Food Sci Nutr. 2023;63(25):7399-7422. doi: 10.1080/10408398.2022.2045896
  471. Sheikh A, Abourehab MAS, Kesharwani P. The clinical significance of 4D printing. Drug Discov Today. 2023;28(1):103391. doi: 10.1016/j.drudis.2022.103391
  472. Lai J, Wang M. Developments of additive manufacturing and 5D printing in tissue engineering. J Mater Res. 2023;38(21):4692-4725. doi: 10.1557/s43578-023-01193-5
  473. Khorsandi D, Rezayat D, Sezen S, et al. Application of 3D, 4D, 5D, and 6D bioprinting in cancer research: what does the future look like? J Mater Chem B. 2024;12:4584–4612. doi: 10.1039/d4tb00310a
  474. Vasiliadis AV, Koukoulias N, Katakalos K. From three-dimensional (3D)- to 6D-printing technology in orthopedics: science fiction or scientific reality? J Funct Biomater. 2022;13(3):101. doi: 10.3390/jfb13030101
  475. Srivastava S, Pandey VK, Singh R, Dar AH. Recent insights on advancements and substantial transformations in food printing technology from 3 to 7D. Food Sci Biotechnol. 2023;32(13):1783-1804. doi: 10.1007/s10068-023-01352-8
  476. Wang Y, Yung P, Lu G, et al. Musculoskeletal organs-on-chips: an emerging platform for studying the nanotechnology-biology interface. Adv Mater. 2024:e2401334. doi: 10.1002/adma.202401334

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing