3D-printed bioactive scaffolds: An emerging strategy for the regeneration of infectious bone defects
In orthopedics, infectious bone defects face a formidable challenge, considering the critical issues of infection control and bone regeneration during treatment. Although numerous biomaterials have been developed to address these therapeutic challenges, most fail to meet the high regeneration requirements of infectious bone defects with complex pathological environments. There is an urgent need for the rational design of multifunctional bioactive scaffolds that integrate antimicrobial treatments with bone regeneration capabilities. Three-dimensional (3D) printing, a powerful manufacturing technique, holds great promise in fabricating complex bone tissue engineering scaffolds with highly personalized customization. The 3D-printed bioactive scaffolds possess excellent biocompatibility, outstanding antimicrobial properties, appropriate mechanical strength, and bone regeneration ability, making them a highly attractive, emerging strategy for overcoming the challenges of infectious bone defect repair. This review first discusses the therapeutic challenges of infectious bone defects and the desirable features of ideal bone implants, followed by a systematic overview of recent advancements in 3D printing technologies and biomaterials used to fabricate 3D-printed bioactive scaffolds for infectious bone defects. Finally, we highlight the advantages, potential breakthroughs, and challenges of 3D-printed bioactive scaffolds in repairing infectious bone defects.
- Ma L, Cheng Y, Feng X, et al. A Janus-ROS healing system promoting infectious bone regeneration via sono-epigenetic modulation. Adv Mater. 2024;36(2):e2307846. doi: 10.1002/adma.202307846
- Xing Y, Qiu L, Liu D, Dai S, Sheu CL. The role of smart polymeric biomaterials in bone regeneration: a review. Front Bioeng Biotechnol. 2023;11:1240861. doi: 10.3389/fbioe.2023.1240861
- Ahangar P, Li J, Nkindi LS, et al. A nanoporous 3D-printed scaffold for local antibiotic delivery. Micromachines. 2023;15(1):83. doi: 10.3390/mi15010083
- Lin S, Maekawa H, Moeinzadeh S, et al. An osteoinductive and biodegradable intramedullary implant accelerates bone healing and mitigates complications of bone transport in male rats. Nat Commun. 2023;14(1):4455. doi: 10.1038/s41467-023-40149-5
- He M, Wang H, Han Q, et al. Glucose-primed PEEK orthopedic implants for antibacterial therapy and safeguarding diabetic osseointegration. Biomaterials. 2023;303:122355. doi: 10.1016/j.biomaterials.2023.122355
- Zhang Y, Li Z, Guo B, et al. A zinc oxide nanowire-modified mineralized collagen scaffold promotes infectious bone regeneration. Small. 2024;20(19):e2309230. doi: 10.1002/smll.202309230
- Wang X, Zhang M, Zhu T, Wei Q, Liu G, Ding J. Flourishing antibacterial strategies for osteomyelitis therapy. Adv Sci (Weinh). 2023;10(11):e2206154. doi: 10.1002/advs.202206154
- Heng BC, Bai Y, Li X, et al. Electroactive biomaterials for facilitating bone defect repair under pathological conditions. Adv Sci (Weinh). 2023;10(2): e2204502. doi: 10.1002/advs.202204502
- Chae K, Jang WY, Park K, et al. Antibacterial infection and immune-evasive coating for orthopedic implants. Sci Adv. 2020;6(44):eabb0025. doi: 10.1126/sciadv.abb0025
- Gordon O, Lee DE, Liu B, et al. Dynamic PET-facilitated modeling and high-dose rifampin regimens for Staphylococcus aureus orthopedic implant-associated infections. Sci Transl Med. 2021;13(622):eabl6851. doi: 10.1126/scitranslmed.abl6851
- Aggarwal D, Kumar V, Sharma S. Drug-loaded biomaterials for orthopedic applications: a review. J Control Release. 2022;344:113-133. doi: 10.1016/j.jconrel.2022.02.029
- Tao F, Ma S, Tao H, et al. Chitosan-based drug delivery systems: from synthesis strategy to osteomyelitis treatment - a review. Carbohydr Polym. 2021;251:117063. doi: 10.1016/j.carbpol.2020.117063
- Lou P, Zhou G, Wei B, Deng X, Hou D. Bone grafting for femoral head necrosis in the past decade: a systematic review and network meta-analysis. Int J Surg. 2023;109(3): 412-418. doi: 10.1097/JS9.0000000000000231
- Jung M, Karampinos DC, Holwein C, et al. Quantitative 3-T magnetic resonance imaging after matrix-associated autologous chondrocyte implantation with autologous bone grafting of the knee: the importance of subchondral bone parameters. Am J Sports Med. 2021;49(2):476-486. doi: 10.1177/0363546520980134
- Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater Sci Eng C Mater Biol Appl. 2021;130:112466. doi: 10.1016/j.msec.2021.112466
- Sharifi M, Kheradmandi R, Salehi M, Alizadeh M, Ten Hagen TLM, Falahati M. Criteria, challenges, and opportunities for acellularized allogeneic/xenogeneic bone grafts in bone repairing. ACS Biomater Sci Eng. 2022;8(8):3199-3219. doi: 10.1021/acsbiomaterials.2c00194
- Stavropoulos A, Marcantonio CC, de Oliveira VXR, Marcantonio E, Jr., de Oliveira G. Fresh-frozen allogeneic bone blocks grafts for alveolar ridge augmentation: biological and clinical aspects. Periodontol 2000. 2023;93(1):139-152. doi: 10.1111/prd.12543
- Xue X, Hu Y, Wang S, Chen X, Jiang Y, Su J. Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering. Bioact Mater. 2022;12:327-339. doi: 10.1016/j.bioactmat.2021.10.029
- Sparks DS, Savi FM, Dlaska CE, et al. Convergence of scaffold-guided bone regeneration principles and microvascular tissue transfer surgery. Sci Adv. 2023;9(18):eadd6071. doi: 10.1126/sciadv.add6071
- Du L, Wu J, Han Y, Wu C. Immunomodulatory multicellular scaffolds for tendon-to-bone regeneration. Sci Adv. 2024;10(10):eadk6610. doi: 10.1126/sciadv.adk6610
- Lu G, Zhao G, Wang S, et al. Injectable nano-micro composites with anti-bacterial and osteogenic capabilities for minimally invasive treatment of osteomyelitis. Adv Sci (Weinh). 2024;11(12):e2306964. doi: 10.1002/advs.202306964
- Zhou T, Zhou H, Wang F, Zhang P, Shang J, Shi L. An injectable carboxymethyl chitosan hydrogel scaffold formed via coordination bond for antibacterial and osteogenesis in osteomyelitis. Carbohydr Polym. 2024;324:121466. doi: 10.1016/j.carbpol.2023.121466
- Zhang W, Lu H, Zhang W, et al. Inflammatory microenvironment-responsive hydrogels enclosed with quorum sensing inhibitor for treating post-traumatic osteomyelitis. Adv Sci (Weinh). 2024;11(20):e2307969. doi: 10.1002/advs.202307969
- Zhou B, Jiang X, Zhou X, et al. GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances. Biomater Res. 2023;27(1):86. doi: 10.1186/s40824-023-00422-6
- Zhou Z, Cui J, Wu S, Geng Z, Su J. Silk fibroin-based biomaterials for cartilage/osteochondral repair. Theranostics. 2022;12(11):5103-5124. doi: 10.7150/thno.74548
- Chen L, Yang J, Cai Z, et al. Electroactive biomaterials regulate the electrophysiological microenvironment to promote bone and cartilage tissue regeneration. Adv Funct Mater. 2024;34(23):2314079. doi: 10.1002/adfm.202314079
- Wan QQ, Qin WP, Ma YX, et al. Crosstalk between bone and nerves within bone. Adv Sci (Weinh). 2021;8(7):2003390. doi: 10.1002/advs.202003390
- Collon K, Gallo MC, Lieberman JR. Musculoskeletal tissue engineering: regional gene therapy for bone repair. Biomaterials. 2021;275:120901. doi: 10.1016/j.biomaterials.2021.120901
- Sun W, Ye B, Chen S, et al. Neuro-bone tissue engineering: emerging mechanisms, potential strategies, and current challenges. Bone Res. 2023;11(1):65. doi: 10.1038/s41413-023-00302-8
- Zhang J, Chen P, Hu F, Chen C, Song L. Porous structure design and properties of dental implants. Comp Methods Biomech Biomed Eng. 2024;27(6):717-726. doi: 10.1080/10255842.2023.2199901
- Koons GL, Diba M, Mikos AG. Materials design for bone-tissue engineering. Nat Rev Mater. 2020;5(8):584-603. doi: 10.1038/s41578-020-0204-2
- Li Z, Du T, Ruan C, Niu X. Bioinspired mineralized collagen scaffolds for bone tissue engineering. Bioact Mater. 2021;6(5):1491-1511. doi: 10.1016/j.bioactmat.2020.11.004
- Du R, Zhao B, Luo K, et al. Shape memory polyester scaffold promotes bone defect repair through enhanced osteogenic ability and mechanical stability. ACS Appl Mater Interfaces. 2023;15(36):42930-42941. doi: 10.1021/acsami.3c06902
- Zhang M, Matinlinna JP, Tsoi JKH, et al. Recent developments in biomaterials for long-bone segmental defect reconstruction: a narrative overview. J Orthop Translat. 2020;22:26-33. doi: 10.1016/j.jot.2019.09.005
- Seo YW, Park JY, Lee DN, et al. Three-dimensionally printed biphasic calcium phosphate blocks with different pore diameters for regeneration in rabbit calvarial defects. Biomater Res. 2022;26(1):25. doi: 10.1186/s40824-022-00271-9
- Foroughi AH, Razavi MJ. Multi-objective shape optimization of bone scaffolds: enhancement of mechanical properties and permeability. Acta Biomater. 2022;146:317-340. doi: 10.1016/j.actbio.2022.04.051
- Yuan Y, Xu Y, Mao Y, et al. Three birds, one stone: an osteo-microenvironment stage-regulative scaffold for bone defect repair through modulating early osteo-immunomodulation, middle neovascularization, and later osteogenesis. Adv Sci (Weinh). 2024;11(6):e2306428. doi: 10.1002/advs.202306428
- Wang Y, Wang J, Gao R, et al. Biomimetic glycopeptide hydrogel coated PCL/nHA scaffold for enhanced cranial bone regeneration via macrophage M2 polarization-induced osteo-immunomodulation. Biomaterials. 2022;285:121538. doi: 10.1016/j.biomaterials.2022.121538
- Su N, Villicana C, Barati D, Freeman P, Luo Y, Yang F. Stem Cell membrane-coated microribbon scaffolds induce regenerative innate and adaptive immune responses in a critical-size cranial bone defect model. Adv Mater. 2023;35(10):e2208781. doi: 10.1002/adma.202208781
- Liu S, Jia X, Hao J, et al. Tissue engineering of JAK inhibitor-loaded hierarchically biomimetic nanostructural scaffold targeting cellular senescence for aged bone defect repair and bone remolding. Adv Healthc Mater. 2023;12(30): e2301798. doi: 10.1002/adhm.202301798
- Wang Y, Hu Y, Lan S, et al. A Recombinant parathyroid hormone-related peptide locally applied in osteoporotic bone defect. Adv Sci (Weinh). 2023;10(22):e2300516. doi: 10.1002/advs.202300516
- Li C, Sun F, Tian J, et al. Continuously released Zn(2+) in 3D-printed PLGA/beta-TCP/Zn scaffolds for bone defect repair by improving osteoinductive and anti-inflammatory properties. Bioact Mater. 2023;24:361-375. doi: 10.1016/j.bioactmat.2022.12.015
- Zhao J, Zhou YH, Zhao YQ, et al. Oral cavity-derived stem cells and preclinical models of jaw-bone defects for bone tissue engineering. Stem Cell Res Ther. 2023;14(1):39. doi: 10.1186/s13287-023-03265-z
- Wang Z, Wang Y, Yan J, et al. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev. 2021;174:504-534. doi: 10.1016/j.addr.2021.05.007
- Zieliński PS, Gudeti PKR, Rikmanspoel T, Włodarczyk- Biegun MK. 3D printing of bio-instructive materials: toward directing the cell. Bioact Mater. 2023;19:292-327. doi: 10.1016/j.bioactmat.2022.04.008
- Tong L, Pu X, Liu Q, et al. Nanostructured 3D-printed hybrid scaffold accelerates bone regeneration by photointegrating nanohydroxyapatite. Adv Sci (Weinh). 2023;10(13): e2300038. doi: 10.1002/advs.202300038
- Balazs DM, Ibanez M. Widening the use of 3D printing. Science. 2023;381(6665):1413-1414. doi: 10.1126/science.adk3070
- Fu Y, Li Z, Zhao S, Hou H, Chai Y. Reconfigurable aqueous 3D printing with adaptive dual locks. Sci Adv. 2024;10(17):eadk4080. doi: 10.1126/sciadv.adk4080
- Carvalho AM, Bansal R, Barrias CC, Sarmento B. The material world of 3d-bioprinted and microfluidic-chip models of human liver fibrosis. Adv Mater. 2024;36(2):e2307673. doi: 10.1002/adma.202307673
- Zhang X, Jiang W, Xie C, et al. Msx1(+) stem cells recruited by bioactive tissue engineering graft for bone regeneration. Nat Commun. 2022;13(1):5211. doi: 10.1038/s41467-022-32868-y
- Wei Y, Pan H, Yang J, Zeng C, Wan W, Chen S. Aligned cryogel fibers incorporated 3D printed scaffold effectively facilitates bone regeneration by enhancing cell recruitment and function. Sci Adv. 2024;10(6):eadk6722. doi: 10.1126/sciadv.adk6722
- Zhu C, He M, Sun D, et al. 3D-printed multifunctional polyetheretherketone bone scaffold for multimodal treatment of osteosarcoma and osteomyelitis. ACS Appl Mater Interfaces. 2021;13(40):47327-47340. doi: 10.1021/acsami.1c10898
- Shen J, Wei Z, Wu H, et al. The induced membrane technique for the management of infected segmental bone defects. Bone Joint J. 2024;106-B(6):613-622. doi: 10.1302/0301-620X.106B6.BJJ-2023-1443.R1
- He Y, Liu X, Lei J, et al. Bioactive VS(4)-based sonosensitizer for robust chemodynamic, sonodynamic and osteogenic therapy of infected bone defects. J Nanobiotechnol. 2024;22(1):31. doi: 10.1186/s12951-023-02283-6
- Zhang M, Lin R, Wang X, et al. 3D printing of Haversian bone-mimicking scaffolds for multicellular delivery in bone regeneration. Sci Adv. 2020;6(12):eaaz6725. doi: 10.1126/sciadv.aaz6725
- Huang H, Qiang L, Fan M, et al. 3D-printed tri-element-doped hydroxyapatite/polycaprolactone composite scaffolds with antibacterial potential for osteosarcoma therapy and bone regeneration. Bioact Mater. 2024;31:18-37. doi: 10.1016/j.bioactmat.2023.07.004
- Wang L, Yang Q, Huo M, et al. Engineering single-atomic iron-catalyst-integrated 3D-printed bioscaffolds for osteosarcoma destruction with antibacterial and bone defect regeneration bioactivity. Adv Mater. 2021;33(31): e2100150. doi: 10.1002/adma.202100150
- Qiao Z, Zhang W, Jiang H, Li X, An W, Yang H. 3D-printed composite scaffold with anti-infection and osteogenesis potential against infected bone defects. RSC Adv. 2022;12(18):11008-11020. doi: 10.1039/d2ra00214k
- Cui M, Pan H, Li L, et al. Exploration and preparation of patient-specific ciprofloxacin implants drug delivery system via 3D printing technologies. J Pharm Sci. 2021;110(11):3678-3689. doi: 10.1016/j.xphs.2021.08.004
- Mistry S, Roy R, Jha AK, et al. Treatment of long bone infection by a biodegradable bone cement releasing antibiotics in human. J Control Release. 2022;346: 180-192. doi: 10.1016/j.jconrel.2022.04.018
- Li B, Thebault P, Labat B, et al. Implants coating strategies for antibacterial treatment in fracture and defect models: a systematic review of animal studies. J Orthop Translat. 2024;45:24-35. doi: 10.1016/j.jot.2023.12.006
- Fu Z, Hai N, Zhong Y, Sun W. Printing GelMA bioinks: a strategy for buildingin vitromodel to study nanoparticle-based minocycline release and cellular protection under oxidative stress. Biofabrication. 2024;16(2):025040. doi: 10.1088/1758-5090/ad30c3
- Wassif RK, Elkayal M, Shamma RN, Elkheshen SA. Recent advances in the local antibiotics delivery systems for management of osteomyelitis. Drug Deliv. 2021;28(1):2392-2414. doi: 10.1080/10717544.2021.1998246
- Yu Q, Wang Q, Zhang L, et al. The applications of 3D printing in wound healing: the external delivery of stem cells and antibiosis. Adv Drug Deliv Rev. 2023;197:114823. doi: 10.1016/j.addr.2023.114823
- Fathi F, Alizadeh B, Tabarzad MV, Tabarzad M. Important structural features of antimicrobial peptides towards specific activity: trends in the development of efficient therapeutics. Bioorg Chem. 2024;149:107524. doi: 10.1016/j.bioorg.2024.107524
- Cresti L, Cappello G, Pini A. Antimicrobial peptides towards clinical application-a long history to be concluded. Int J Mol Sci. 2024;25(9):4870. doi: 10.3390/ijms25094870
- Ch S, Mishra P, Padaga SG, Ghosh B, Roy S, Biswas S. 3D-printed inherently antibacterial contact lens-like patches carrying antimicrobial peptide payload for treating bacterial keratitis. Macromol Biosci. 2024;24(4):e2300418. doi: 10.1002/mabi.202300418
- Cometta S, Jones RT, Juarez-Saldivar A, et al. Melimine-modified 3D-printed polycaprolactone scaffolds for the prevention of biofilm-related biomaterial infections. ACS Nano. 2022;16(10):16497-16512. doi: 10.1021/acsnano.2c05812
- Izadi A, Paknia F, Roostaee M, Mousavi SAA, Barani M. Advancements in nanoparticle-based therapies for multidrug-resistant candidiasis infections: a comprehensive review. Nanotechnology. 2024;35(33):332001. doi: 10.1088/1361-6528/ad4bed
- Matatkova O, Michailidu J, Miskovska A, Kolouchova I, Masak J, Cejkova A. Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods. Biotechnol Adv. 2022;58:107905. doi: 10.1016/j.biotechadv.2022.107905
- Basavegowda N, Baek KH. Multimetallic nanoparticles as alternative antimicrobial agents: challenges and perspectives. Molecules. 2021;26(4):912. doi: 10.3390/molecules26040912
- Yu L, Sun F, Wang Y, et al. Effects of MgO nanoparticle addition on the mechanical properties, degradation properties, antibacterial properties and in vitro and in vivo biological properties of 3D-printed Zn scaffolds. Bioact Mater. 2024;37:72-85. doi: 10.1016/j.bioactmat.2024.03.016
- Mofazzal Jahromi MA, Sahandi Zangabad P, Moosavi Basri SM, et al. Nanomedicine and advanced technologies for burns: preventing infection and facilitating wound healing. Adv Drug Deliv Rev. 2018;123:33-64. doi: 10.1016/j.addr.2017.08.001
- Parra-Ortiz E, Malmsten M. Photocatalytic nanoparticles - from membrane interactions to antimicrobial and antiviral effects. Adv Colloid Interface Sci. 2022;299:102526. doi: 10.1016/j.cis.2021.102526
- He Y, Zan J, He Z, Bai X, Shuai C, Pan H. A photochemically active Cu(2)O nanoparticle endows scaffolds with good antibacterial performance by efficiently generating reactive oxygen species. Nanomaterials (Basel). 2024;14(5):452. doi: 10.3390/nano14050452
- Gao Z, Song Z, Guo R, et al. Mn single-atom nanozyme functionalized 3D-printed bioceramic scaffolds for enhanced antibacterial activity and bone regeneration. Adv Healthc Mater. 2024;13(13):e2303182. doi: 10.1002/adhm.202303182
- Zhao Y, Kang H, Xia Y, Sun L, Li F, Dai H. 3D printed photothermal scaffold sandwiching bacteria inside and outside improves the infected microenvironment and repairs bone defects. Adv Healthcare Mater. 2024;13(6):e2302879. doi: 10.1002/adhm.202302879
- Iglesias-Mejuto A, Magarinos B, Ferreira-Goncalves T, et al. Vancomycin-loaded methylcellulose aerogel scaffolds for advanced bone tissue engineering. Carbohydr Polym. 2024;324:121536. doi: 10.1016/j.carbpol.2023.121536
- Qu X, Wang M, Wang M, et al. Multi-mode antibacterial strategies enabled by gene-transfection and immunomodulatory nanoparticles in 3D-printed scaffolds for synergistic exogenous and endogenous treatment of infections. Adv Mater. 2022;34(18):e2200096. doi: 10.1002/adma.202200096
- Yuan X, Zhu W, Yang Z, et al. Recent advances in 3D printing of smart scaffolds for bone tissue engineering and regeneration. Adv Mater. 2024;36(34):e2403641. doi: 10.1002/adma.202403641
- Ivanovski S, Breik O, Carluccio D, Alayan J, Staples R, Vaquette C. 3D printing for bone regeneration: challenges and opportunities for achieving predictability. Periodontol 2000. 2023;93(1):358-384. doi: 10.1111/prd.12525
- Dubey A, Vahabi H, Kumaravel V. Antimicrobial and Biodegradable 3D Printed Scaffolds for Orthopedic Infections. ACS Biomater Sci Eng. 2023;9(7):4020-4044. doi: 10.1021/acsbiomaterials.3c00115
- Wang C, Huang W, Zhou Y, et al. 3D printing of bone tissue engineering scaffolds. Bioact Mater. 2020;5(1):82-91. doi: 10.1016/j.bioactmat.2020.01.004
- Muhindo D, Elkanayati R, Srinivasan P, Repka MA, Ashour EA. Correction to: recent advances in the applications of additive manufacturing (3D printing) in drug delivery: a comprehensive review. AAPS PharmSciTech. 2023;24(3):75. doi: 10.1208/s12249-023-02542-7
- Yu H, Xu M, Duan Q, et al. 3D-printed porous tantalum artificial bone scaffolds: fabrication, properties, and applications. Biomed Mater. 2024;19(4):042002. doi: 10.1088/1748-605X/ad46d2
- Chaudhari VS, Kushram P, Bose S. Drug delivery strategies through 3D-printed calcium phosphate. Trends Biotechnol. 2024;42(11):1396-1409. doi: 10.1016/j.tibtech.2024.05.006
- Bose S, Sarkar N, Jo Y. Natural medicine delivery from 3D printed bone substitutes. J Control Release. 2024;365:848-875. doi: 10.1016/j.jconrel.2023.09.025
- Su Z, Guo C, Gui X, et al. 3D printing of customized bioceramics for promoting bone tissue regeneration by regulating sympathetic nerve behavior. J Mater Chem B. 2024;12(17):4217-4231. doi: 10.1039/d4tb00214h
- Sadeghianmaryan A, Ahmadian N, Wheatley S, et al. Advancements in 3D-printable polysaccharides, proteins, and synthetic polymers for wound dressing and skin scaffolding - a review. Int J Biol Macromol. 2024; 266(Pt 1):131207. doi: 10.1016/j.ijbiomac.2024.131207
- Mehta T, Aziz H, Sen K, et al. Numerical study of drop dynamics for inkjet based 3D printing of pharmaceutical tablets. Int J Pharm. 2024;656:124037. doi: 10.1016/j.ijpharm.2024.124037
- Gellrich C, Shupletsov L, Galek P, Bahrawy A, Grothe J, Kaskel S. A precursor-derived ultramicroporous carbon for printing iontronic logic gates and super-varactors. Adv Mater. 2024;36(29):e2401336. doi: 10.1002/adma.202401336
- Sinha P, Lahare P, Sahu M, et al. Concept and evolution in 3-D printing for excellence in healthcare. Curr Med Chem. 2025;32(5):831-879. doi: 10.2174/0109298673262300231129102520
- Jeong KJ, Song Y, Shin HR, et al. In vivo study on the biocompatibility of chitosan-hydroxyapatite film depending on degree of deacetylation. J Biomed Mater Res Part A. 2017;105(6):1637-1645. doi: 10.1002/jbm.a.35993
- Scoutaris N, Alexander MR, Gellert PR, Roberts CJ. Inkjet printing as a novel medicine formulation technique. J Control Release. 2011;156(2):179-85. doi: 10.1016/j.jconrel.2011.07.033
- Clark EA, Alexander MR, Irvine DJ, et al. 3D printing of tablets using inkjet with UV photoinitiation. Int J Pharm. 2017;529(1-2):523-530. doi: 10.1016/j.ijpharm.2017.06.085
- Zub K, Hoeppener S, Schubert US. Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications. Adv Mater. 2022;34(31):e2105015. doi: 10.1002/adma.202105015
- Evans SE, Harrington T, Rodriguez Rivero MC, Rognin E, Tuladhar T, Daly R. 2D and 3D inkjet printing of biopharmaceuticals - a review of trends and future perspectives in research and manufacturing. Int J Pharm. 2021;599:120443. doi: 10.1016/j.ijpharm.2021.120443
- Sztymela K, Bienia M, Rossignol F, et al. Fabrication of modern lithium ion batteries by 3D inkjet printing: opportunities and challenges. Heliyon. 2022;8(12):e12623. doi: 10.1016/j.heliyon.2022.e12623
- Park JH, Tucker SJ, Yoon JK, Kim Y, Hollister SJ. 3D printing modality effect: distinct printing outcomes dependent on selective laser sintering (SLS) and melt extrusion. J Biomed Mater Res Part A. 2024;112(7):1015-1024. doi: 10.1002/jbm.a.37682
- Balasankar A, Anbazhakan K, Arul V, et al. Recent advances in the production of pharmaceuticals using selective laser sintering. Biomimetics (Basel). 2023;8(4):330. doi: 10.3390/biomimetics8040330
- Park H, Park JJ, Bui PD, et al. Laser-based selective material processing for next-generation additive manufacturing. Adv Mater. 2024;36(34):e2307586. doi: 10.1002/adma.202307586
- Castro J, Nóbrega JM, Costa R. Computational framework to model the selective laser sintering process. Materials (Basel). 2024;17(8):1845. doi: 10.3390/ma17081845
- Fina F, Madla CM, Goyanes A, Zhang J, Gaisford S, Basit AW. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int J Pharm. 2018;541(1-2): 101-107. doi: 10.1016/j.ijpharm.2018.02.015
- Gueche YA, Sanchez-Ballester NM, Cailleaux S, Bataille B, Soulairol I. Selective Laser Sintering (SLS), a new chapter in the production of solid oral forms (SOFs) by 3D printing. Pharmaceutics. 2021;13(8):1212. doi: 10.3390/pharmaceutics13081212
- Awad A, Fina F, Goyanes A, Gaisford S, Basit AW. 3D printing: principles and pharmaceutical applications of selective laser sintering. Int. J. Pharm. 2020;586:119594. doi: 10.1016/j.ijpharm.2020.119594
- Yildiz MT, Babacan N. Comparison of tensile properties and porcelain bond strength in metal frameworks fabricated by selective laser melting using three different Co-Cr alloy powders. J Prosthet Dent. 2024;131(5):936-942. doi: 10.1016/j.prosdent.2023.11.006
- Zhou L, Miller J, Vezza J, et al. Additive manufacturing: a comprehensive review. Sensors (Basel). 2024;24(9):2668. doi: 10.3390/s24092668
- Wang H, Jiang P, Yang G, Yan Y. An investigation of the anisotropic mechanical properties of additive-manufactured 316L SS with SLM. Materials (Basel). 2024;17(9):2017. doi: 10.3390/ma17092017
- Wei S, Ma P, Fang Y, et al. Crack formation and control in an AlCoCrFeNi high entropy alloy fabricated by selective laser melting. 3D Print Addit Manuf. 2024;11(2):e628-e637. doi: 10.1089/3dp.2022.0142
- Mukalay TA, Trimble JA, Mpofu K, Muvunzi R. Selective laser melting: evaluation of the effectiveness and reliability of multi-scale multiphysics simulation environments. Heliyon. 2024;10(4):e25706. doi: 10.1016/j.heliyon.2024.e25706
- Rahmani R, Lopes SI, Prashanth KG. Selective laser melting and spark plasma sintering: a perspective on functional biomaterials. J Funct Biomater. 2023;14(10):521. doi: 10.3390/jfb14100521
- Gao B, Zhao H, Peng L, Sun Z. A review of research progress in selective laser melting (SLM). Micromachines. 2022;14(1):57. doi: 10.3390/mi14010057
- Khoo ZX, Liu Y, An J, Chua CK, Shen YF, Kuo CN. A review of selective laser melted NiTi shape memory alloy. Materials (Basel). 2018;11(4):519. doi: 10.3390/ma11040519
- Corker A, Ng HC, Poole RJ, García-Tuñón E. 3D printing with 2D colloids: designing rheology protocols to predict ‘printability’ of soft-materials. Soft Matter. 2019;15(6):1444-1456. doi: 10.1039/c8sm01936c
- Tay RY, Song Y, Yao DR, Gao W. Direct-ink-writing 3D-printed bioelectronics. Mater Today (Kidlington). 2023;71:135-151. doi: 10.1016/j.mattod.2023.09.006
- Saadi M, Maguire A, Pottackal NT, et al. Direct ink writing: A 3D printing technology for diverse materials. Adv Mater. 2022;34(28):e2108855. doi: 10.1002/adma.202108855
- Thibaut C, Denneulin A, Rolland du Roscoat S, Beneventi D, Orgéas L, Chaussy D. A fibrous cellulose paste formulation to manufacture structural parts using 3D printing by extrusion. Carbohydr Polym. 2019;212:119-128. doi: 10.1016/j.carbpol.2019.01.076
- Zeng L, Ling S, Du D, He H, Li X, Zhang C. Direct ink writing 3D printing for high-performance electrochemical energy storage devices: a minireview. Adv Sci (Weinh). 2023;10(32):e2303716. doi: 10.1002/advs.202303716
- Hou Y, Baig MM, Lu J, et al. Direct ink writing 3D printing of low-dimensional nanomaterials for micro-supercapacitors. Nanoscale. 2024;16(26):12380-12396. doi: 10.1039/d4nr01590h
- Bariya M, Shahpar Z, Park H, et al. Roll-to-Roll gravure printed electrochemical sensors for wearable and medical devices. ACS Nano. 2018;12(7):6978-6987. doi: 10.1021/acsnano.8b02505
- Håkansson KMO, Henriksson IC, de la Peña Vázquez C, et al. Solidification of 3D printed nanofibril hydrogels into functional 3D cellulose structures. Adv Mater Technol. 2016;1(7):1600096. doi: 10.1002/admt.201600096
- Li VC, Dunn CK, Zhang Z, Deng Y, Qi HJ. Direct Ink Write (DIW) 3D printed cellulose nanocrystal aerogel structures. Sci Rep. 2017;7(1):8018. doi: 10.1038/s41598-017-07771-y
- Li Y, Ren X, Zhu L, Li C. Biomass 3D printing: principles, materials, post-processing and applications. Polymers. 2023;15(12);2692. doi: 10.3390/polym15122692
- Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. Photo-curing 3D printing technique and its challenges. Bioact Mater. 2020;5(1):110-115. doi: 10.1016/j.bioactmat.2019.12.003
- Zou Y, Han Q, Weng X, et al. The precision and reliability evaluation of 3-dimensional printed damaged bone and prosthesis models by stereo lithography appearance. Medicine. 2018;97(6):e9797. doi: 10.1097/md.0000000000009797
- Goyanes A, Det-Amornrat U, Wang J, Basit AW, Gaisford S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release. 2016;234:41-48. doi: 10.1016/j.jconrel.2016.05.034
- Kafle A, Luis E, Silwal R, Pan HM, Shrestha PL, Bastola AK. 3D/4D printing of polymers: fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA). Polymers. 2021;13(18):3101. doi: 10.3390/polym13183101
- Kristiawan RB, Imaduddin F, Ariawan D, Ubaidillah, Arifin ZJOE. A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Eng. 2021;11(1):639-649. doi: 10.1515/eng-2021-0063
- Liu Z, Wang Y, Wu B, Cui C, Guo Y, Yan C. A critical review of fused deposition modeling 3D printing technology in manufacturing polylactic acid parts. Int J Adv Manuf Technol. 2019;102(9):2877-2889. doi: 10.1007/s00170-019-03332-x
- Dang W, Yi K, Ju E, et al. 3D printed bioceramic scaffolds as a universal therapeutic platform for synergistic therapy of osteosarcoma. ACS Appl Mater Interfaces. 2021;13(16):18488-18499. doi: 10.1021/acsami.1c00553
- Zhuang H, Lin R, Liu Y, et al. Three-dimensional-printed bioceramic scaffolds with osteogenic activity for simultaneous photo/magnetothermal therapy of bone tumors. ACS Biomater Sci Eng. 2019;5(12):6725-6734. doi: 10.1021/acsbiomaterials.9b01095
- Das M, Sharabani-Yosef O, Eliaz N, Mandler D. Hydrogel-integrated 3D-printed poly(lactic acid) scaffolds for bone tissue engineering. J Mater Res. 2021;36(19):3833-3842. doi: 10.1557/s43578-021-00201-w
- Alzoubi L, Aljabali AAA, Tambuwala MM. Empowering precision medicine: the impact of 3D printing on personalized therapeutic. AAPS PharmSciTech. 2023;24(8):228. doi: 10.1208/s12249-023-02682-w
- Amiri E, Sanjarnia P, Sadri B, Jafarkhani S, Khakbiz M. Recent advances and future directions of 3D to 6D printing in brain cancer treatment and neural tissue engineering. Biomed Mater. 2023;18(5)052005. doi: 10.1088/1748-605X/ace9a4
- Karakaya E, Gleichauf L, Schöbel L, et al. Engineering peptide-modified alginate-based bioinks with cell-adhesive properties for biofabrication. RSC Adv. 2024;14(20):13769-13786. doi: 10.1039/d3ra08394b
- Fritschen A, Lindner N, Scholpp S, et al. High-scale 3D-bioprinting platform for the automated production of vascularized Organs-on-a-Chip. Adv Healthc Mater. 2024;13(17):e2304028. doi: 10.1002/adhm.202304028
- Suwannakot P, Nemec S, Peres NG, et al. Electrostatic assembly of multiarm peg-based hydrogels as extracellular matrix mimics: cell response in the presence and absence of RGD cell adhesive ligands. ACS Biomater Sci Eng. 2023;9(3):1362-1376. doi: 10.1021/acsbiomaterials.2c01252
- Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials. Chem Rev. 2020;120(19):10793-10833. doi: 10.1021/acs.chemrev.0c00008
- Weygant J, Koch F, Adam K, et al. A Drop-on-Demand bioprinting approach to spatially arrange multiple cell types and monitor their cell-cell interactions towards vascularization based on endothelial cells and mesenchymal stem cells. Cells. 2023;12(4):646. doi: 10.3390/cells12040646
- Yang Z, Tian H, Wang C, et al. Piezoelectric Drop-on-demand inkjet printing with ultra-high droplet velocity. Research (Wash D C). 2023;6:0248. doi: 10.34133/research.0248
- Liu J, Shahriar M, Xu H, Xu C. Cell-laden bioink circulation-assisted inkjet-based bioprinting to mitigate cell sedimentation and aggregation. Biofabrication. 2022;14(4)045020. doi: 10.1088/1758-5090/ac8fb7
- Lee JM, Huang X, Goh GL, Tran T, Yeong WY. Understanding droplet jetting on varying substrate for biological applications. Int J Bioprint. 2023;9(5):758. doi: 10.18063/ijb.758
- Zhang J, Wehrle E, Rubert M, Muller R. 3D bioprinting of human tissues: biofabrication, bioinks, and bioreactors. Int J Mol Sci. 2021;22(8):3971. doi: 10.3390/ijms22083971
- Hamza A, Navale A, Song Q, et al. 3D printed microfluidic valve on PCB for flow control applications using liquid metal. Biomed Microdevices. 2024;26(1):14. doi: 10.1007/s10544-024-00697-z
- Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. 2016;102:20-42. doi: 10.1016/j.biomaterials.2016.06.012
- Bammesberger S, Ernst A, Losleben N, Tanguy L, Zengerle R, Koltay P. Quantitative characterization of non-contact microdispensing technologies for the sub-microliter range. Drug Discov Today. 2013;18(9-10):435-446. doi: 10.1016/j.drudis.2012.12.001
- Jang D, Kim D, Moon J. Influence of fluid physical properties on ink-jet printability. Langmuir. 2009;25(5): 2629-2635. doi: 10.1021/la900059m
- Ng WL, Lee JM, Yeong WY, Win Naing M. Microvalve-based bioprinting - process, bio-inks and applications. Biomater Sci. 2017;5(4):632-647. doi: 10.1039/c6bm00861e
- Lee W, Debasitis JC, Lee VK, et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials. 2009;30(8):1587-1595. doi: 10.1016/j.biomaterials.2008.12.009
- Bessemans L, Jully V, de Raikem C, et al. Automated gravimetric calibration to optimize the accuracy and precision of TECAN Freedom EVO liquid handler. J Lab Automation. 2016;21(5):693-705. doi: 10.1177/2211068216632349
- Dudman J, Ferreira AM, Gentile P, Wang X, Dalgarno K. Microvalve bioprinting of MSC-chondrocyte co-cultures. Cells. 2021;10(12):3329. doi: 10.3390/cells10123329
- Faulkner-Jones A, Greenhough S, King JA, Gardner J, Courtney A, Shu W. Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates. Biofabrication. 2013;5(1):015013. doi: 10.1088/1758-5082/5/1/015013
- Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater. 2019;84:16-33. doi: 10.1016/j.actbio.2018.11.039
- Naghieh S, Chen X. Printability-A key issue in extrusion-based bioprinting. J Pharm Anal. 2021;11(5):564-579. doi: 10.1016/j.jpha.2021.02.001
- Ali ASM, Wu D, Bannach-Brown A, et al. 3D bioprinting of liver models: a systematic scoping review of methods, bioinks, and reporting quality. Mater Today Bio. 2024;26:100991. doi: 10.1016/j.mtbio.2024.100991
- Chen XB, Fazel Anvari-Yazdi A, Duan X, et al. Biomaterials / bioinks and extrusion bioprinting. Bioact Mater. 2023;28:511-536. doi: 10.1016/j.bioactmat.2023.06.006
- Ino K, Wachi M, Utagawa Y, et al. Scanning electrochemical microscopy for determining oxygen consumption rates of cells in hydrogel fibers fabricated using an extrusion 3D bioprinter. Anal Chim Acta. 2024;1304:342539. doi: 10.1016/j.aca.2024.342539
- Xu X, Li H, Chen J, et al. A universal strategy to construct high-performance homo- and heterogeneous microgel assembly bioinks. Small Methods. 2024:e2400223. doi: 10.1002/smtd.202400223
- Lai G, Meagher L. Versatile xanthan gum-based support bath material compatible with multiple crosslinking mechanisms: rheological properties, printability, and cytocompatibility study. Biofabrication. 2024;16(3):035005. doi: 10.1088/1758-5090/ad39a8
- Mueller E, Poulin I, Bodnaryk WJ, Hoare T. Click chemistry hydrogels for extrusion bioprinting: progress, challenges, and opportunities. Biomacromolecules. 2022;23(3):619-640. doi: 10.1021/acs.biomac.1c01105
- Pepelanova I, Kruppa K, Scheper T, Lavrentieva A. Gelatin-methacryloyl (GelMA) hydrogels with defined degree of functionalization as a versatile toolkit for 3D cell culture and extrusion bioprinting. Bioengineering (Basel). 2018;5(3):55. doi: 10.3390/bioengineering5030055
- Gao Q, Xie C, Wang P, et al. 3D printed multi-scale scaffolds with ultrafine fibers for providing excellent biocompatibility. Mater Sci Eng C Mater Biol Appl. 2020;107:110269. doi: 10.1016/j.msec.2019.110269
- Wang LL, Highley CB, Yeh YC, Galarraga JH, Uman S, Burdick JA. Three-dimensional extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks. J Biomed Mater Res Part A. 2018;106(4):865-875. doi: 10.1002/jbm.a.36323
- Jessop ZM, Al-Sabah A, Gao N, et al. Printability of pulp derived crystal, fibril and blend nanocellulose-alginate bioinks for extrusion 3D bioprinting. Biofabrication. 2019;11(4):045006. doi: 10.1088/1758-5090/ab0631
- Colosi C, Shin SR, Manoharan V, et al. Microfluidic bioprinting of heterogeneous 3d tissue constructs using low-viscosity bioink. Adv Mater. 2016;28(4):677-684. doi: 10.1002/adma.201503310
- Attalla R, Puersten E, Jain N, Selvaganapathy PR. 3D bioprinting of heterogeneous bi- and tri-layered hollow channels within gel scaffolds using scalable multi-axial microfluidic extrusion nozzle. Biofabrication. 2018;11(1):015012. doi: 10.1088/1758-5090/aaf7c7
- Kang D, Ahn G, Kim D, et al. Pre-set extrusion bioprinting for multiscale heterogeneous tissue structure fabrication. Biofabrication. 2018;10(3):035008. doi: 10.1088/1758-5090/aac70b
- Compaan AM, Song K, Huang Y. Gellan fluid gel as a versatile support bath material for fluid extrusion bioprinting. ACS Appl Mater Interfaces. 2019;11(6):5714-5726. doi: 10.1021/acsami.8b13792
- Kérourédan O, Washio A, Handschin C, et al. Bioactive gelatin-sheets as novel biopapers to support prevascularization organized by laser-assisted bioprinting for bone tissue engineering. Biomed Mater. 2024;19(2):025038. doi: 10.1088/1748-605X/ad270a
- Jaffredo M, Duchamp O, Touya N, et al. Proof of concept of intracochlear drug administration by laser-assisted bioprinting in mice. Hear Res. 2023;438:108880. doi: 10.1016/j.heares.2023.108880
- Sörgel CA, Cai A, Schmid R, Horch RE. Perspectives on the current state of bioprinted skin substitutes for wound healing. Biomedicines. 2023;11(10):2678. doi: 10.3390/biomedicines11102678
- Boix-Lemonche G, Nagymihaly RM, Niemi EM, et al. Intracorneal implantation of 3D bioprinted scaffolds containing mesenchymal stromal cells using femtosecond-laser-assisted intrastromal keratoplasty. Macromol Biosci. 2023;23(7):e2200422. doi: 10.1002/mabi.202200422
- Kawecki F, Clafshenkel WP, Auger FA, Bourget JM, Fradette J, Devillard R. Self-assembled human osseous cell sheets as living biopapers for the laser-assisted bioprinting of human endothelial cells. Biofabrication. 2018;10(3):035006. doi: 10.1088/1758-5090/aabd5b
- Sorkio A, Koch L, Koivusalo L, et al. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials. 2018;171:57-71. doi: 10.1016/j.biomaterials.2018.04.034
- Michael S, Sorg H, Peck CT, et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PloS one. 2013;8(3):e57741. doi: 10.1371/journal.pone.0057741
- Keriquel V, Oliveira H, Rémy M, et al. In situ printing of mesenchymal stromal cells, by laser-assisted bioprinting, for in vivo bone regeneration applications. Sci Rep. 2017;7(1):1778. doi: 10.1038/s41598-017-01914-x
- Bourget JM, Kérourédan O, Medina M, et al. Patterning of endothelial cells and mesenchymal stem cells by laser-assisted bioprinting to study cell migration. Biomed Res Int. 2016;2016:3569843. doi: 10.1155/2016/3569843
- Ali M, Pages E, Ducom A, Fontaine A, Guillemot F. Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication. 2014;6(4):045001. doi: 10.1088/1758-5082/6/4/045001
- Ashammakhi N, Hasan A, Kaarela O, et al. Advancing Frontiers in Bone Bioprinting. Adv Healthc Mater. 2019;8(7):e1801048. doi: 10.1002/adhm.201801048
- Caceres-Alban J, Sanchez M, Casado FL. Bioprinting: a strategy to build informative models of exposure and disease. IEEE Rev Biomed Eng. 2023;16:594-610. doi: 10.1109/RBME.2022.3146293
- Veeravalli RS, Vejandla B, Savani S, Nelluri A, Peddi NC. Three-dimensional bioprinting in medicine: a comprehensive overview of current progress and challenges faced. Cureus. 2023;15(7):e41624. doi: 10.7759/cureus.41624
- Pushparaj K, Balasubramanian B, Pappuswamy M, et al. Out of box thinking to tangible science: a benchmark history of 3D Bio-Printing in Regenerative Medicine and Tissues Engineering. Life (Basel). 2023;13(4):954. doi: 10.3390/life13040954
- Kravchenko SV, Sakhnov SN, Myasnikova VV, Trofimenko AI, Buzko VY. Bioprinting technologies in ophthalmology. Vestnik oftalmologii. 2023;139(5):105-112. Tekhnologii biopechati v oftal’mologii. doi: 10.17116/oftalma2023139051105
- Liang Y, Liang Y, Zhang H, Guo B. Antibacterial biomaterials for skin wound dressing. Asian J Pharm Sci. 2022;17(3):353-384. doi: 10.1016/j.ajps.2022.01.001
- Serrano-Aroca A, Cano-Vicent A, Sabater ISR, et al. Scaffolds in the microbial resistant era: Fabrication, materials, properties and tissue engineering applications. Mater Today Bio. 2022;16:100412. doi: 10.1016/j.mtbio.2022.100412
- Visscher LE, Dang HP, Knackstedt MA, Hutmacher DW, Tran PA. 3D printed polycaprolactone scaffolds with dual macro-microporosity for applications in local delivery of antibiotics. Mater Sci Eng C Mater Biol Appl. 2018;87:78-89. doi: 10.1016/j.msec.2018.02.008
- El-Habashy SE, El-Kamel AH, Essawy MM, Abdelfattah EA, Eltaher HM. 3D printed bioinspired scaffolds integrating doxycycline nanoparticles: Customizable implants for in vivo osteoregeneration. Int J Pharm. 2021;607:121002. doi: 10.1016/j.ijpharm.2021.121002
- Akkineni AR, Spangenberg J, Geissler M, et al. Controlled and local delivery of antibiotics by 3D core/shell printed hydrogel scaffolds to treat soft tissue infections. Pharmaceutics. 2021;13(12);2151. doi: 10.3390/pharmaceutics13122151
- Kim SH, Hong H, Ajiteru O, et al. 3D bioprinted silk fibroin hydrogels for tissue engineering. Nat Protoc. 2021;16(12):5484-5532. doi: 10.1038/s41596-021-00622-1
- Chen J, Liu X, Tian Y, et al. 3D-printed anisotropic polymer materials for functional applications. Adv Mater. 2022;34(5):e2102877. doi: 10.1002/adma.202102877
- Bai J, Wang H, Gao W, et al. Melt electrohydrodynamic 3D printed poly (epsilon-caprolactone)/polyethylene glycol/roxithromycin scaffold as a potential anti-infective implant in bone repair. Int J Pharmaceutics. 2020; 576:118941. doi: 10.1016/j.ijpharm.2019.118941
- Farto-Vaamonde X, Diaz-Gomez L, Parga A, Otero A, Concheiro A, Alvarez-Lorenzo C. Perimeter and carvacrol-loading regulate angiogenesis and biofilm 3D printed PLA scaffolds. J Control Release. 2022;352:776-792. doi: 10.1016/j.jconrel.2022.10.060
- Shao J, Ma J, Lin L, et al. Three-dimensional Printing of drug-loaded scaffolds for antibacterial and analgesic applications. Tissue Eng Part C Methods. 19;25(4):222-231. doi: 10.1089/ten.TEC.2018.0293
- Hosseinabadi HG, Nieto D, Yousefinejad A, Fattel H, Ionov L, Miri AK. Ink material Selection and optical design considerations in DLP 3D printing. Appl Mater Today. 2023;30:101721. doi: 10.1016/j.apmt.2022.101721
- Bom S, Ribeiro R, Ribeiro HM, Santos C, Marto J. On the progress of hydrogel-based 3D printing: correlating rheological properties with printing behaviour. Int J Pharm. 2022;615:121506. doi: 10.1016/j.ijpharm.2022.121506
- Yao Y, Shapiro MG. Using ultrasound to 3D-print materials. Science. 2023;382(6675):1126. doi: 10.1126/science.adl5887
- Li S, Yang H, Qu X, et al. Multiscale architecture design of 3D printed biodegradable Zn-based porous scaffolds for immunomodulatory osteogenesis. Nat Commun. 2024;15(1):3131. doi: 10.1038/s41467-024-47189-5
- Wang X, Liu A, Zhang Z, et al. Additively manufactured Zn- 2Mg alloy porous scaffolds with customizable biodegradable performance and enhanced osteogenic ability. Adv Sci (Weinh). 2024;11(5):e2307329. doi: 10.1002/advs.202307329
- Liang W, Zhou C, Zhang H, et al. Recent advances in 3D printing of biodegradable metals for orthopaedic applications. J Biol Eng. 2023;17(1):56. doi: 10.1186/s13036-023-00371-7
- Ying J, Yu H, Cheng L, et al. Research progress and clinical translation of three-dimensional printed porous tantalum in orthopaedics. Biomater Transl. 2023;4(3):166-179. doi: 10.12336/biomatertransl.2023.03.005
- Liu T, Liu W, Zeng L, et al. Biofunctionalization of 3D printed porous tantalum using a vancomycin-carboxymethyl chitosan composite coating to improve osteogenesis and antibiofilm properties. ACS Appl Mater Interfaces. 2022;14(37):41764-41778. doi: 10.1021/acsami.2c11715
- Zhang S, Shi X, Miao Z, et al. 3D‐Printed polyurethane tissue‐engineering scaffold with hierarchical microcellular foam structure and antibacterial properties. Adv Eng Mater. 2022;24(3): 2101134. doi: 10.1002/adem.202101134
- Zhang X, He J, Qiao L, et al. 3D printed PCLA scaffold with nano-hydroxyapatite coating doped green tea EGCG promotes bone growth and inhibits multidrug-resistant bacteria colonization. Cell Prolif. 2022;55(10):e13289. doi: 10.1111/cpr.13289
- Jenny JY. Specificities of total hip and knee arthroplasty revision for infection. Orthop Traumatol Surg Res. 2020;106(1S):S27-S34. doi: 10.1016/j.otsr.2019.05.020
- Gillieron P, Boillat-Blanco N, Nicod Lalonde M, et al. [Diagnosis and management of chronic osteomyelitis of long bones in adults]. Rev Med Suisse. 2021;17(763):2194-2200. Diagnostic et prise en charge de l’osteomyelite chronique des os longs chez l’adulte.
- Liu Y, He L, Cheng L, et al. Enhancing bone grafting outcomes: a comprehensive review of antibacterial artificial composite bone scaffolds. Med Sci Monit. 2023;29: e939972. doi: 10.12659/MSM.939972
- Parry JA, Chavarria J, Giddins S, et al. Efficacy of cefazolin versus vancomycin antibiotic cement spacers. J Orthop Trauma. 2023;37(3):e118-e121. doi: 10.1097/BOT.0000000000002496
- Hu X, Chen J, Yang S, et al. 3D printed multifunctional biomimetic bone scaffold combined with tp-mg nanoparticles for the infectious bone defects repair. Small. 2024;20(40):e2403681. doi: 10.1002/smll.202403681
- Zhou Z, Yao Q, Li L, et al. Antimicrobial activity of 3D-Printed Poly(epsilon-Caprolactone) (PCL) composite scaffolds presenting vancomycin-loaded polylactic acid-glycolic acid (PLGA) microspheres. Med Sci Monit. 2018;24:6934-6945. doi: 10.12659/MSM.911770
- Li J, Li K, Du Y, et al. Dual-nozzle 3D printed nano-hydroxyapatite scaffold loaded with vancomycin sustained-release microspheres for enhancing bone regeneration. Int J Nanomedicine. 2023;18:307-322. doi: 10.2147/IJN.S394366
- Luo C, Wang C, Wu X, et al. Influence of porous tantalum scaffold pore size on osteogenesis and osteointegration: a comprehensive study based on 3D-printing technology. Mater Sci Eng C Mater Biol Appl. 2021;129:112382. doi: 10.1016/j.msec.2021.112382
- Deng C, Zhou Q, Zhang M, et al. Bioceramic scaffolds with antioxidative functions for ROS scavenging and osteochondral regeneration. Adv Sci (Weinh). 2022;9(12):e2105727. doi: 10.1002/advs.202105727
- Polley C, Distler T, Scheufler C, et al. 3D printing of piezoelectric and bioactive barium titanate-bioactive glass scaffolds for bone tissue engineering. Mater Today Bio. 2023;21:100719. doi: 10.1016/j.mtbio.2023.100719
- Wang Z, Cui H, Liu M, et al. Tough, transparent, 3D-printable, and self-healing poly(ethylene glycol)-Gel (PEGgel). Adv Mater. 2022;34(11):e2107791. doi: 10.1002/adma.202107791
- Long J, Yao Z, Zhang W, et al. Regulation of osteoimmune microenvironment and osteogenesis by 3D-printed PLAG/ black phosphorus scaffolds for bone regeneration. Adv Sci (Weinh). 2023;10(28):e2302539. doi: 10.1002/advs.202302539
- Brachet A, Bełżek A, Furtak D, et al. Application of 3D printing in bone grafts. Cells. 2023;12(6):859. doi: 10.3390/cells12060859
- Wu Y, Deng Z, Wang X, Chen A, Li Y. Synergistic antibacterial photocatalytic and photothermal properties over bowl-shaped TiO(2) nanostructures on Ti-19Zr-10Nb- 1Fe alloy. Regen Biomater. 2022;9:rbac025. doi: 10.1093/rb/rbac025
- Liu H, Gu R, Li W, et al. Engineering 3D-printed strontium-titanium scaffold-integrated highly bioactive serum exosomes for critical bone defects by osteogenesis and angiogenesis. ACS Appl Mater Interfaces. 2023;15(23):27486-27501. doi: 10.1021/acsami.3c00898
- Wu HY, Lin YH, Lee AK, Kuo TY, Tsai CH, Shie MY. Combined effects of polydopamine-assisted copper immobilization on 3D-printed porous Ti6Al4V scaffold for angiogenic and osteogenic bone regeneration. Cells. 2022;11(18):2824. doi: 10.3390/cells11182824
- Zhang Y, Xu J, Ruan YC, et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat Med. 2016;22(10):1160-1169. doi: 10.1038/nm.4162
- Dong J, Li Y, Lin P, et al. Solvent-cast 3D printing of magnesium scaffolds. Acta Biomater. 2020;114:497-514. doi: 10.1016/j.actbio.2020.08.002
- Hua L, Lei T, Qian H, Zhang Y, Hu Y, Lei P. 3D-printed porous tantalum: recent application in various drug delivery systems to repair hard tissue defects. Expert Opin Drug Deliv. 2021;18(5):625-634. doi: 10.1080/17425247.2021.1860015
- Wang H, Su K, Su L, Liang P, Ji P, Wang C. Comparison of 3D-printed porous tantalum and titanium scaffolds on osteointegration and osteogenesis. Mater Sci Eng C Mater Biol Appl. 2019;104:109908. doi: 10.1016/j.msec.2019.109908
- Di Fiore A, Savio G, Stellini E, Vigolo P, Monaco C, Meneghello R. Influence of ceramic firing on marginal gap accuracy and metal-ceramic bond strength of 3D-printed Co-Cr frameworks. J Prosthetic Dent. 2020;124(1): 75-80. doi: 10.1016/j.prosdent.2019.08.001
- Ryu JI, Yang BE, Yi SM, et al. Bone regeneration of a 3D-printed alloplastic and particulate Xenogenic graft with rhBMP-2. Int J Mol Sci. 2021;22(22):12518. doi: 10.3390/ijms222212518
- Sheikh Z, Zhang YL, Grover L, Merle GE, Tamimi F, Barralet J. In vitro degradation and in vivo resorption of dicalcium phosphate cement based grafts. Acta Biomater. 2015;26:338-346. doi: 10.1016/j.actbio.2015.08.031
- Chen D, Chen G, Zhang X, et al. Fabrication and in vitro evaluation of 3D printed porous silicate substituted calcium phosphate scaffolds for bone tissue engineering. Biotechnol Bioeng. 2022;119(11):3297-3310. doi: 10.1002/bit.28202
- Mansour A, Abu-Nada L, Al-Waeli H, et al. Bone extracts immunomodulate and enhance the regenerative performance of dicalcium phosphates bioceramics. Acta Biomater. 2019;89:343-358. doi: 10.1016/j.actbio.2019.03.012
- Chocholata P, Kulda V, Babuska V. Fabrication of scaffolds for bone-tissue regeneration. Materials (Basel, Switzerland). 2019;12(4):568. doi: 10.3390/ma12040568
- Saberi A, Behnamghader A, Aghabarari B, et al. 3D direct printing of composite bone scaffolds containing polylactic acid and spray dried mesoporous bioactive glass-ceramic microparticles. Int J Biol Macromol. 2022;207:9-22. doi: 10.1016/j.ijbiomac.2022.02.067
- Van der Stok J, Van Lieshout EM, El-Massoudi Y, Van Kralingen GH, Patka P. Bone substitutes in the Netherlands - a systematic literature review. Acta Biomater. 2011;7(2):739-750. doi: 10.1016/j.actbio.2010.07.035
- Ding H, Zhao CJ, Cui X, et al. A novel injectable borate bioactive glass cement as an antibiotic delivery vehicle for treating osteomyelitis. PLoS One. 2014;9(1):e85472. doi: 10.1371/journal.pone.0085472
- Cui X, Zhang YD, Wang H, et al. An injectable borate bioactive glass cement for bone repair: Preparation, bioactivity and setting mechanism. J Non-Crystalline Solids. 2016;432:150-157. doi: 10.1016/j.jnoncrysol.2015.06.001
- Meng C, Liu X, Li R, et al. 3D Poly (L-lactic acid) fibrous sponge with interconnected porous structure for bone tissue scaffold. Int J Biol Macromol. 2024;268(Pt 1): 131688. doi: 10.1016/j.ijbiomac.2024.131688
- Alven S, Buyana B, Feketshane Z, Aderibigbe BA. Electrospun nanofibers/nanofibrous scaffolds loaded with silver nanoparticles as effective antibacterial wound dressing materials. Pharmaceutics. 2021;13(7);964. doi: 10.3390/pharmaceutics13070964
- Jirofti N, Hashemi M, Moradi A, Kalalinia F. Fabrication and characterization of 3D printing biocompatible crocin-loaded chitosan/collagen/hydroxyapatite-based scaffolds for bone tissue engineering applications. Int J Biol Macromol. 2023;252:126279. doi: 10.1016/j.ijbiomac.2023.126279
- Chu Y, Huang L, Hao W, et al. Long-term stability, high strength, and 3D printable alginate hydrogel for cartilage tissue engineering application. Biomed Mater. Sep 28 2021;16(6):064102. doi: 10.1088/1748-605X/ac2595
- Li P, Fu L, Liao Z, et al. Chitosan hydrogel/3D-printed poly(ε-caprolactone) hybrid scaffold containing synovial mesenchymal stem cells for cartilage regeneration based on tetrahedral framework nucleic acid recruitment. Biomaterials. 2021;278:121131. doi: 10.1016/j.biomaterials.2021.121131
- Suo H, Zhang J, Xu M, Wang L. Low-temperature 3D printing of collagen and chitosan composite for tissue engineering. Mater Sci Eng C Mater Biol Appl. 2021;123:111963. doi: 10.1016/j.msec.2021.111963
- Li C, Zhang W, Nie Y, et al. Time-sequential and multi-functional 3D Printed MgO(2) /PLGA scaffold developed as a novel biodegradable and bioactive bone substitute for challenging postsurgical osteosarcoma treatment. Adv Mater. 2024;36(34):e2308875. doi: 10.1002/adma.202308875
- Qiu M, Li C, Cai Z, et al. 3D biomimetic calcified cartilaginous callus that induces type H vessels Formation and Osteoclastogenesis. Adv Sci (Weinh). 2023;10(16): e2207089. doi: 10.1002/advs.202207089
- Zhu J, Marchant RE. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices. 2011;8(5):607-626. doi: 10.1586/erd.11.27
- Liu DS, Jiang P, Wang YX, et al. Engineering tridimensional hydrogel tissue and organ phantoms with tunable springiness. Adv Funct Mater. 2023;33(17):1. doi: 10.1002/adfm.202214885
- Bi S, Pang J, Huang L, Sun M, Cheng X, Chen X. The toughness chitosan-PVA double network hydrogel based on alkali solution system and hydrogen bonding for tissue engineering applications. Int J Biol Macromol. 2020;146:99-109. doi: 10.1016/j.ijbiomac.2019.12.186
- Tabriz AG, Hermida MA, Leslie NR, Shu W. Three-dimensional bioprinting of complex cell laden alginate hydrogel structures. Biofabrication. 2015;7(4):045012. doi: 10.1088/1758-5090/7/4/045012
- Guvendiren M, Molde J, Soares RM, Kohn J. Designing biomaterials for 3D printing. ACS Biomater Sci Eng. 2016;2(10):1679-1693. doi: 10.1021/acsbiomaterials.6b00121
- Chen L, Deng J, Yu A, et al. Drug-peptide supramolecular hydrogel boosting transcorneal permeability and pharmacological activity via ligand-receptor interaction. Bioact Mater. 2022;10:420-429. doi: 10.1016/j.bioactmat.2021.09.006
- Chen P, Zheng L, Wang Y, et al. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/ mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics. 2019;9(9):2439-2459. doi: 10.7150/thno.31017
- Sun T, Feng Z, He W, et al. Novel 3D-printing bilayer GelMA-based hydrogel containing BP,β-TCP and exosomes for cartilage-bone integrated repair. Biofabrication. 2023;16(1):015008. doi: 10.1088/1758-5090/ad04fe
- Banche-Niclot F, Montalbano G, Fiorilli S, Vitale-Brovarone C. PEG-coated large mesoporous silicas as smart platform for protein delivery and their use in a collagen-based formulation for 3D printing. Int J Mol Sci. 2021;22(4):1718. doi: 10.3390/ijms22041718
- Li Z, Liu L, Chen Y. Direct 3D printing of thermosensitive AOP127-oxidized dextran hydrogel with dual dynamic crosslinking and high toughness. Carbohydr Polym. 2022;291:119616. doi: 10.1016/j.carbpol.2022.119616
- Song X, Liu X, Ma Y, Zhu Q, Bi M. Synthesis of Ce/Gd@ HA/PLGA scaffolds contributing to bone repair and MRI enhancement. Front Bioeng Biotechnol. 2022;10:834226. doi: 10.3389/fbioe.2022.834226
- Chao YL, Wang TM, Chang HH, Lin LD. Effects of low-dose rhBMP-2 on peri-implant ridge augmentation in a canine model. J Clin Periodontol. 2021;48(5):734-744. doi: 10.1111/jcpe.13440
- Turnbull G, Clarke J, Picard F, et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater. 2018;3(3):278-314. doi: 10.1016/j.bioactmat.2017.10.001
- Song JE, Lee DH, Khang G, Yoon SJ. Accelerating bone regeneration using poly(lactic-co-glycolic acid)/ hydroxyapatite scaffolds containing duck feet-derived collagen. Int J Biol Macromol. 2023;229:486-495. doi: 10.1016/j.ijbiomac.2022.12.296
- Yahay Z, Moein Farsani N, Mirhadi M, Tavangarian F. Fabrication of highly ordered willemite/PCL bone scaffolds by 3D printing: Nanostructure effects on compressive strength and in vitro behavior. J Mech Behav Biomed Mater. 2023;144:105996. doi: 10.1016/j.jmbbm.2023.105996
- Pan C, Sun X, Xu G, Su Y, Liu D. The effects of β-TCP on mechanical properties, corrosion behavior and biocompatibility of β-TCP/Zn-Mg composites. Mater Sci Eng C Mater Biol Appl. 2020;108:110397. doi: 10.1016/j.msec.2019.110397
- Williams DF. On the mechanisms of biocompatibility. Biomaterials. 2008;29(20):2941-2953. doi: 10.1016/j.biomaterials.2008.04.023
- Zaszczyńska A, Moczulska-Heljak M, Gradys A, Sajkiewicz P. Advances in 3D Printing for Tissue Engineering. Materials (Basel). 2021;14(12):3149. doi: 10.3390/ma14123149
- Xu J, Ji J, Jiao J, et al. 3D printing for bone-cartilage interface regeneration. Front Bioeng Biotechnol. 2022;10:828921. doi: 10.3389/fbioe.2022.828921
- Critchley S, Sheehy EJ, Cunniffe G, et al. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects. Acta Biomater. 2020;113:130-143. doi: 10.1016/j.actbio.2020.05.040
- Li Q, Lei X, Wang X, Cai Z, Lyu P, Zhang G. Hydroxyapatite/ Collagen three-dimensional printed scaffolds and their osteogenic effects on human bone marrow-derived mesenchymal stem cells. Tissue Eng Part A. 2019;25(17-18):1261-1271. doi: 10.1089/ten.TEA.2018.0201
- Nyberg E, Rindone A, Dorafshar A, Grayson WL. Comparison of 3D-printed Poly-ε-Caprolactone scaffolds functionalized with tricalcium phosphate, hydroxyapatite, Bio-Oss, or decellularized bone matrix. Tissue Eng Part A. 2017;23(11-12):503-514. doi: 10.1089/ten.TEA.2016.0418
- Yang Y, Yang S, Wang Y, et al. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan. Acta Biomater. 2016;46:112-128. doi: 10.1016/j.actbio.2016.09.035
- Wu Y, Ji Y, Lyu Z. 3D printing technology and its combination with nanotechnology in bone tissue engineering. Biomed Eng Lett. 2024;14(3):451-464. doi: 10.1007/s13534-024-00350-x
- Do AV, Khorsand B, Geary SM, Salem AK. 3D printing of scaffolds for tissue regeneration applications. Adv Healthc Mater. 2015;4(12):1742-1762. doi: 10.1002/adhm.201500168
- Schneider Werner Vianna T, Sartoretto SC, Neves Novellino Alves AT, et al. Nanostructured carbonated hydroxyapatite associated to rhBMP-2 improves bone repair in rat Calvaria. J Funct Biomater. 2020;11(4):87. doi: 10.3390/jfb11040087
- Mucalo M. Hydroxyapatite (HAp) for Biomedical Applications. Elsevier; 2015. doi: 10.1016/C2013-0-16440-9
- Fang X, Lei L, Jiang T, Chen Y, Kang Y. Injectable thermosensitive alginate/β-tricalcium phosphate/aspirin hydrogels for bone augmentation. J Biomed Mater Res B Appl Biomater. 2018;106(5):1739-1751. doi: 10.1002/jbm.b.33982
- Wang M, Li W, Luo Z, et al. A multifunctional micropore-forming bioink with enhanced anti-bacterial and anti-inflammatory properties. Biofabrication. 2022;14(2): 1088/1758-5090/ac5936. doi: 10.1088/1758-5090/ac5936
- Debnar M, Kopp L, Misicko R. Management of bone defects using the Masquelet technique of induced membrane. Rozhl Chir. 2021;100(8):390-397. doi: 10.33699/PIS.2021.100.8.390-397
- Amouzadeh Omrani F, Sarzaeem MM, Noorbakhsh M, et al. The outcomes of distraction osteogenesis over an intramedullary nail for the treatment of bone defects in infectious nonunions. Arch Bone Jt Surg. 2024;12(3): 204-210. doi: 10.22038/ABJS.2023.73572.3407
- Qin Q, Lee S, Patel N, et al. Neurovascular coupling in bone regeneration. Exp Mol Med. 2022;54(11):1844-1849. doi: 10.1038/s12276-022-00899-6
- Tuckermann J, Adams RH. The endothelium-bone axis in development, homeostasis and bone and joint disease. Nat Rev Rheumatol. 2021;17(10):608-620. doi: 10.1038/s41584-021-00682-3
- Vermeulen S, Tahmasebi Birgani Z, Habibovic P. Biomaterial-induced pathway modulation for bone regeneration. Biomaterials. 2022;283:121431. doi: 10.1016/j.biomaterials.2022.121431
- Mizraji G, Davidzohn A, Gursoy M, Gursoy U, Shapira L, Wilensky A. Membrane barriers for guided bone regeneration: an overview of available biomaterials. Periodontol 2000. 2023;93(1):56-76. doi: 10.1111/prd.12502
- Yang L, Gao Q, Ge L, et al. Topography induced stiffness alteration of stem cells influences osteogenic differentiation. Biomater Sci. 2020;8(9):2638-2652. doi: 10.1039/d0bm00264j
- Isoshima K, Ueno T, Arai Y, et al. The change of surface charge by lithium ion coating enhances protein adsorption on titanium. J Mech Behav Biomed Mater. 2019;100:103393. doi: 10.1016/j.jmbbm.2019.103393
- Hao L, Li T, Wang L, et al. Mechanistic insights into the adsorption and bioactivity of fibronectin on surfaces with varying chemistries by a combination of experimental strategies and molecular simulations. Bioact Mater. 2021;6(10):3125-3135. doi: 10.1016/j.bioactmat.2021.02.021
- Gelain F, Bottai D, Vescovi A, Zhang S. Designer self-assembling peptide nanofiber scaffolds for adult mouse neural stem cell 3-dimensional cultures. PloS One. 2006;1(1):e119. doi: 10.1371/journal.pone.0000119
- O’Brien FJ, Harley BA, Yannas IV, Gibson LJ. The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials. 2005;26(4):433-441. doi: 10.1016/j.biomaterials.2004.02.052
- Murphy CM, Haugh MG, O’Brien FJ. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010;31(3):461-466. doi: 10.1016/j.biomaterials.2009.09.063
- McDermott AM, Herberg S, Mason DE, et al. Recapitulating bone development through engineered mesenchymal condensations and mechanical cues for tissue regeneration. Sci Transl Med. 2019;11(495):e aav7756. doi: 10.1126/scitranslmed.aav7756
- Vanderburgh JP, Fernando SJ, Merkel AR, Sterling JA, Guelcher SA. Fabrication of trabecular bone-templated tissue-engineered constructs by 3D inkjet printing. Adv Healthc Mater. 2017;6(22): doi: 10.1002/adhm.201700369
- Jurak M, Wiacek AE, Ladniak A, Przykaza K, Szafran K. What affects the biocompatibility of polymers? Adv Colloid Interface Sci. 2021;294:102451. doi: 10.1016/j.cis.2021.102451
- Vezenkova A, Locs J. Sudoku of porous, injectable calcium phosphate cements - path to osteoinductivity. Bioact Mater. 2022;17:109-124. doi: 10.1016/j.bioactmat.2022.01.001
- Chauhan A, Bhatt AD. A review on design of scaffold for osteoinduction: toward the unification of independent design variables. Biomech Model Mechanobiol. 2023;22(1):1-21. doi: 10.1007/s10237-022-01635-9
- Kumar Shetty S, Sundar Santhanakrishnan S, Padurao S, Mirazkar Dasharatharao P. Prioritizing biomaterial driven clinical bioactivity over designing intricacy during bioprinting of trabecular microarchitecture: a clinician’s perspective. ACS Omega. 2024;9(11):12426-12435. doi: 10.1021/acsomega.3c08112
- Golubovsky JL, Ejikeme T, Winkelman R, Steinmetz MP. Osteobiologics. Oper Neurosurg (Hagerstown). 2021;21(Suppl 1):S2-S9. doi: 10.1093/ons/opaa383
- Jiang S, Wang M, He J. A review of biomimetic scaffolds for bone regeneration: toward a cell-free strategy. Bioeng Transl Med. 2021;6(2):e10206. doi: 10.1002/btm2.10206
- Wu Q, Wang X, Jiang F, Zhu Z, Wen J, Jiang X. Study of Sr- Ca-Si-based scaffolds for bone regeneration in osteoporotic models. Int J Oral Sci. 2020;12(1):25. doi: 10.1038/s41368-020-00094-1
- van Houdt CIA, Koolen MKE, Lopez-Perez PM, et al. Regenerating critical size rat segmental bone defects with a self-healing hybrid nanocomposite hydrogel: effect of bone condition and BMP-2 incorporation. Macromol Biosci. 2021;21(8):e2100088. doi: 10.1002/mabi.202100088
- Gurel Pekozer G, Abay Akar N, Cumbul A, Beyzadeoglu T, Torun Kose G. Investigation of vasculogenesis inducing biphasic scaffolds for bone tissue engineering. ACS Biomater Sci Eng. 2021;7(4):1526-1538. doi: 10.1021/acsbiomaterials.0c01071
- George J, Kuboki Y, Miyata T. Differentiation of mesenchymal stem cells into osteoblasts on honeycomb collagen scaffolds. Biotechnol Bioeng. 2006;95(3):404-411. doi: 10.1002/bit.20939
- Dong L, Wang SJ, Zhao XR, Zhu YF, Yu JK. 3D- printed poly(epsilon-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering. Sci Rep. 2017;7(1):13412. doi: 10.1038/s41598-017-13838-7
- Liu ZB, Li Q, Liu WX, et al. Comparison of clinical effects of the modified masquelet technique and kirschner wire external fixation-assisted autogenous bone transplantation in the treatment of segmental metacarpophalangeal bone defects. Int J Gen Med. 2022;15:1619-1635. doi: 10.2147/IJGM.S343617
- Schweiberer L, Stutzle H, Mandelkow HK. Bone transplantation. Arch Orthop Trauma Surg. 1990;109(1): 1-8. doi: 10.1007/BF00441902
- Misch CM. Autogenous bone is still the gold standard of graft materials in 2022. J Oral Implantol. 2022;48(3): 169-170. doi: 10.1563/aaid-joi-D-22-Editorial.4803
- Zhang B, Nasereddin J, McDonagh T, et al. Effects of porosity on drug release kinetics of swellable and erodible porous pharmaceutical solid dosage forms fabricated by hot melt droplet deposition 3D printing. Int J Pharma. 2021;604:120626. doi: 10.1016/j.ijpharm.2021.120626
- Gupta D, Vashisth P, Bellare J. Multiscale porosity in a 3D printed gellan-gelatin composite for bone tissue engineering. Biomed Mater. 2021;16(3):034103. doi: 10.1088/1748-605X/abf1a7
- Karamat-Ullah N, Demidov Y, Schramm M, et al. 3D printing of antibacterial, biocompatible, and biomimetic hybrid aerogel-based scaffolds with hierarchical porosities via integrating antibacterial peptide-modified silk fibroin with silica nanostructure. ACS Biomater Sci Eng. 2021;7(9):4545-4556. doi: 10.1021/acsbiomaterials.1c00483
- Putra NE, Leeflang MA, Minneboo M, et al. Extrusion-based 3D printed biodegradable porous iron. Acta Biomater. 2021;121:741-756. doi: 10.1016/j.actbio.2020.11.022
- Sharma P, Pandey PM. Corrosion rate modelling of biodegradable porous iron scaffold considering the effect of porosity and pore morphology. Mater Sci Eng C Mater Biol Appl. 2019;103:109776. doi: 10.1016/j.msec.2019.109776
- Xiu P, Jia Z, Lv J, et al. Tailored surface treatment of 3D printed porous Ti6Al4V by microarc oxidation for enhanced osseointegration via optimized bone in-growth patterns and interlocked bone/implant interface. ACS Appl Mater Interfaces. 2016;8(28):17964-75. doi: 10.1021/acsami.6b05893
- Zhang T, Wei Q, Zhou H, et al. Sustainable release of vancomycin from micro-arc oxidised 3D-printed porous Ti6Al4V for treating methicillin-resistant Staphylococcus aureus bone infection and enhancing osteogenesis in a rabbit tibia osteomyelitis model. Biomater Sci. 2020;8(11):3106-3115. doi: 10.1039/c9bm01968e
- Yang Y, Cheng Y, Deng F, et al. A bifunctional bone scaffold combines osteogenesis and antibacterial activity via in situ grown hydroxyapatite and silver nanoparticles. Bio-Design Manuf. 2021;4(3):452-468. doi: 10.1007/s42242-021-00130-x
- Qiu X, Li S, Li X, et al. Experimental study of beta-TCP scaffold loaded with VAN/PLGA microspheres in the treatment of infectious bone defects. Colloids Surf B Biointerfaces. 2022;213:112424. doi: 10.1016/j.colsurfb.2022.112424
- Zhang L, Lu C, Lv Y, Wang X, Guo S, Zhang H. Three-dimensional printing-assisted masquelet technique in the treatment of calcaneal defects. Orthop Surg. 2021;13(3):876-883. doi: 10.1111/os.12873
- Wang X, Wang S, Xu J, Sun D, Shen J, Xie Z. Antibiotic cement plate composite structure internal fixation after debridement of bone infection. Sci Rep. 2021;11(1):16921. doi: 10.1038/s41598-021-96522-1
- Zhang Y, Zhai D, Xu M, et al. 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity. Biofabrication. 2017;9(2):025037. doi: 10.1088/1758-5090/aa6ed6
- Xu K, Li K, He Y, et al. Functional titanium substrates synergetic photothermal therapy for enhanced antibacterial and osteogenic performance via immunity regulation. Adv Healthc Mater. 2023;12(19):e2300494. doi: 10.1002/adhm.202300494
- Zhou W, Yan J, Li Y, et al. Based on the synergistic effect of Mg(2+) and antibacterial peptides to improve the corrosion resistance, antibacterial ability and osteogenic activity of magnesium-based degradable metals. Biomater Sci. 2021;9(3):807-825. doi: 10.1039/d0bm01584a
- Sabharwal S, Wilson H. Orthogeriatrics in the management of frail older patients with a fragility fracture. Osteoporos Int. 2015;26(10):2387-2399. doi: 10.1007/s00198-015-3166-2
- Moghaddaszadeh A, Seddiqi H, Najmoddin N, Abbasi Ravasjani S, Klein-Nulend J. Biomimetic 3D-printed PCL scaffold containing a high concentration carbonated-nanohydroxyapatite with immobilized-collagen for bone tissue engineering: enhanced bioactivity and physicomechanical characteristics. Biomed Mater. 2021;16(6):065029. doi: 10.1088/1748-605X/ac3147
- Yu J, Xu Y, Li S, Seifert GV, Becker ML. Three-dimensional printing of nano hydroxyapatite/poly(ester urea) composite scaffolds with enhanced bioactivity. Biomacromolecules. 2017;18(12):4171-4183. doi: 10.1021/acs.biomac.7b01222
- Liu H, Lin J, Roy K. Effect of 3D scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells. Biomaterials. 2006;27(36): 5978-5989. doi: 10.1016/j.biomaterials.2006.05.053
- Lee JW, Wen HB, Battula S, Akella R, Collins M, Romanos GE. Outcome after placement of tantalum porous engineered dental implants in fresh extraction sockets: a canine study. Int J Oral Maxillofac Implants. 2015;30(1):134-142. doi: 10.11607/jomi.3692
- Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res. 2019;23:4. doi: 10.1186/s40824-018-0149-3
- Martinez-Zelaya VR, Zarranz L, Herrera EZ, et al. In vitro and in vivo evaluations of nanocrystalline Zn-doped carbonated hydroxyapatite/alginate microspheres: zinc and calcium bioavailability and bone regeneration. Int J Nanomedicine. 2019;14:3471-3490. doi: 10.2147/ijn.S197157
- Li Z, Kawashita M. Current progress in inorganic artificial biomaterials. J Artif Organs. 2011;14(3):163-170. doi: 10.1007/s10047-011-0585-5
- Chou DT, Wells D, Hong D, Lee B, Kuhn H, Kumta PN. Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-D printing. Acta Biomater. 2013;9(10): 8593-8603. doi: 10.1016/j.actbio.2013.04.016
- Liu YJ, Yang ZY, Tan LL, Li H, Zhang YZ. An animal experimental study of porous magnesium scaffold degradation and osteogenesis. Braz J Med Biol Res. 2014;47(8):715-720. doi: 10.1590/1414-431x20144009
- Alves APN, Arango-Ospina M, Oliveira R, et al. 3D-printed β-TCP/S53P4 bioactive glass scaffolds coated with tea tree oil: Coating optimization, in vitro bioactivity and antibacterial properties. J Biomed Mater Res B Appl Biomater. 2023;111(4):881-894. doi: 10.1002/jbm.b.35198
- Wang W, Liu P, Zhang B, et al. Fused deposition modeling printed PLA/Nano β-TCP composite bone tissue engineering scaffolds for promoting osteogenic induction function. Int J Nanomedicine. 2023;18:5815-5830. doi: 10.2147/ijn.S416098
- Wang J, Liu M, Yang C, et al. Biomaterials for bone defect repair: types, mechanisms and effects. Int J Artif Organs. 2024;47(2):75-84. doi: 10.1177/03913988231218884
- Gupta D, Singh AK, Bellare J. Natural bone inspired core-shell triple-layered gel/PCL/gel 3D printed scaffolds for bone tissue engineering. Biomed Mater. 3 2023;18(6):065027. doi: 10.1088/1748-605X/ad06c2
- Guo W, Xu H, Liu D, et al. 3D-Printed lattice-inspired composites for bone reconstruction. J Mater Chem B. 2023;11(31):7353-7363. doi: 10.1039/d3tb01053h
- Qin H, Wei Y, Han J, et al. 3D printed bioceramic scaffolds: Adjusting pore dimension is beneficial for mandibular bone defects repair. J Tissue Eng Regen Med. 2022;16(4):409-421. doi: 10.1002/term.3287
- Demirtas TT, Irmak G, Gumusderelioglu M. A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication. 2017;9(3):035003. doi: 10.1088/1758-5090/aa7b1d
- Pant S, Thomas S, Loganathan S, Valapa RB. 3D bioprinted poly(lactic acid)/mesoporous bioactive glass based biomimetic scaffold with rapid apatite crystallization and in-vitro Cytocompatability for bone tissue engineering. Int J Biol Macromol. 2022;217:979-997. doi: 10.1016/j.ijbiomac.2022.07.202
- Zhao S, Xie K, Guo Y, et al. Fabrication and biological activity of 3D-printed polycaprolactone/magnesium porous scaffolds for critical size bone defect repair. ACS Biomater Sci Eng. 2020;6(9):5120-5131. doi: 10.1021/acsbiomaterials.9b01911
- Tian L, Zhang Z, Tian B, Zhang X, Wang N. Study on antibacterial properties and cytocompatibility of EPL coated 3D printed PCL/HA composite scaffolds. RSC Adv. 2020;10(8):4805-4816. doi: 10.1039/c9ra10275b
- Lin H, Li Z, Xie Z, et al. An anti-infection and biodegradable TFRD-loaded porous scaffold promotes bone regeneration in segmental bone defects -experimental studies. Int J Surg. 2024;110(6):3269-3284. doi: 10.1097/JS9.0000000000001291
- Ji C, Zhang C, Xu Z, et al. Mussel-inspired HA@TA-CS/SA biomimetic 3D printed scaffolds with antibacterial activity for bone repair. Front Bioeng Biotechnol. 2023;11:1193605. doi: 10.3389/fbioe.2023.1193605
- Urish KL, Cassat JE. Staphylococcus aureus Osteomyelitis: bone, bugs, and surgery. Infect Immun. 2020;88(7):00932-19. doi: 10.1128/iai.00932-19
- Chen ZY, Gao S, Zhang YW, Zhou RB, Zhou F. Antibacterial biomaterials in bone tissue engineering. J Mater Chem B. 2021;9(11):2594-2612. doi: 10.1039/d0tb02983a
- Shuaishuai W, Tongtong Z, Dapeng W, et al. Implantable biomedical materials for treatment of bone infection. Front Bioeng Biotechnol. 2023;11:1081446. doi: 10.3389/fbioe.2023.1081446
- Cheng T, Qu H, Zhang G, Zhang X. Osteogenic and antibacterial properties of vancomycin-laden mesoporous bioglass/PLGA composite scaffolds for bone regeneration in infected bone defects. Artif Cells Nanomed Biotechnol. 2018;46(8):1935-1947. doi: 10.1080/21691401.2017.1396997
- Gao X, Xu Z, Li S, et al. Chitosan-vancomycin hydrogel incorporated bone repair scaffold based on staggered orthogonal structure: a viable dually controlled drug delivery system. RSC Adv. 2023;13(6):3759-3765. doi: 10.1039/d2ra07828g
- Camarero-Espinosa S, Calore A, Wilbers A, Harings J, Moroni L. Additive manufacturing of an elastic poly(ester) urethane for cartilage tissue engineering. Acta Biomater. 2020;102:192-204. doi: 10.1016/j.actbio.2019.11.041
- Jaidev LR, Chatterjee K. Surface functionalization of 3D printed polymer scaffolds to augment stem cell response. Mater Design. 2019;161:44-54. doi: 10.1016/j.matdes.2018.11.018
- Traub WH, Leonhard B. Heat stability of the antimicrobial activity of sixty-two antibacterial agents. J Antimicrob Chemother. 1995;35(1):149-154. doi: 10.1093/jac/35.1.149
- Kutlu B, Schröttner P, Leuteritz A, Boldt R, Jacobs E, Heinrich G. Preparation of melt-spun antimicrobially modified LDH/ polyolefin nanocomposite fibers. Mater Sci Eng C Mater Biol Appl. 2014;41:8-16. doi: 10.1016/j.msec.2014.04.021
- Camara-Torres M, Duarte S, Sinha R, et al. 3D additive manufactured composite scaffolds with antibiotic-loaded lamellar fillers for bone infection prevention and tissue regeneration. Bioact Mater. 2021;6(4):1073-1082. doi: 10.1016/j.bioactmat.2020.09.031
- Azevedo HS, Pashkuleva I. Biomimetic supramolecular designs for the controlled release of growth factors in bone regeneration. Adv Drug Deliv Rev. 2015;94:63-76. doi: 10.1016/j.addr.2015.08.003
- Lienemann PS, Lutolf MP, Ehrbar M. Biomimetic hydrogels for controlled biomolecule delivery to augment bone regeneration. Adv Drug Deliv Rev. 2012;64(12):1078-1089. doi: 10.1016/j.addr.2012.03.010
- Ball JR, Shelby T, Hernandez F, Mayfield CK, Lieberman JR. Delivery of growth factors to enhance bone repair. Bioengineering (Basel). 2023;10(11):1252. doi: 10.3390/bioengineering10111252
- Quinlan E, Thompson EM, Matsiko A, O’Brien FJ, Lopez- Noriega A. Long-term controlled delivery of rhBMP-2 from collagen-hydroxyapatite scaffolds for superior bone tissue regeneration. J Control Release. 2015;207:112-119. doi: 10.1016/j.jconrel.2015.03.028
- Liu P, Bao T, Sun L, et al. In situ mineralized PLGA/ zwitterionic hydrogel composite scaffold enables high-efficiency rhBMP-2 release for critical-sized bone healing. Biomater Sci. 2022;10(3):781-793. doi: 10.1039/d1bm01521d
- Liu C, Peng Z, Xu H, et al. 3D printed platelet-rich plasma-loaded scaffold with sustained cytokine release for bone defect repair. Tissue Eng Part A. 2022;28(15-16):700-711. doi: 10.1089/ten.TEA.2021.0211
- Cao B, Lin J, Tan J, et al. 3D-printed vascularized biofunctional scaffold for bone regeneration. Int J Bioprint. 2023;9(3):702. doi: 10.18063/ijb.702
- Seyednejad H, Gawlitta D, Kuiper RV, et al. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε- caprolactone). Biomaterials. 2012;33(17):4309-4318. doi: 10.1016/j.biomaterials.2012.03.002
- Wu GH, Hsu SH. Review: polymeric-based 3D printing for tissue engineering. J Med Biol Eng. 2015;35(3):285-292. doi: 10.1007/s40846-015-0038-3
- Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA. Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci U S A. 2016;113(12):3179-3184. doi: 10.1073/pnas.1521342113
- Duan B, Kapetanovic E, Hockaday LA, Butcher JT. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater. 2014;10(5):1836-1846. doi: 10.1016/j.actbio.2013.12.005
- de Morree A, Rando TA. Regulation of adult stem cell quiescence and its functions in the maintenance of tissue integrity. Nat Rev Mol Cell Biol. 2023;24(5):334-354. doi: 10.1038/s41580-022-00568-6
- Xing F, Li L, Sun J, et al. Surface mineralized biphasic calcium phosphate ceramics loaded with urine-derived stem cells are effective in bone regeneration. J Orthop Surg Res. 2019;14(1):419. doi: 10.1186/s13018-019-1500-7
- Xing F, Yin HM, Zhe M, et al. Nanotopographical 3D-printed Poly(ε-caprolactone) scaffolds enhance proliferation and osteogenic differentiation of urine-derived stem cells for bone regeneration. Pharmaceutics. 2022;14(7);1437. doi: 10.3390/pharmaceutics14071437
- Carvalho CMF, Leonel L, Cañada RR, et al. Comparison between placental and skeletal muscle ECM: in vivo implantation. Connect Tissue Res. 2021;62(6):629-642. doi: 10.1080/03008207.2020.1834540
- Kronstadt SM, Patel DB, Born LJ, et al. Mesenchymal stem cell culture within perfusion bioreactors incorporating 3D-printed scaffolds enables improved extracellular vesicle yield with preserved bioactivity. Adv Healthc Mater. 2023;12(20):e2300584. doi: 10.1002/adhm.202300584
- Jiang W, Zhan Y, Zhang Y, et al. Synergistic large segmental bone repair by 3D printed bionic scaffolds and engineered ADSC nanovesicles: towards an optimized regenerative microenvironment. Biomaterials. 2024;308:122566. doi: 10.1016/j.biomaterials.2024.122566
- Roskies M, Jordan JO, Fang D, et al. Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells. J Biomater Appl. 2016;31(1):132-139. doi: 10.1177/0885328216638636
- Wang N, Fuh JYH, Dheen ST, Senthil Kumar A. Functions and applications of metallic and metallic oxide nanoparticles in orthopedic implants and scaffolds. J Biomed Mater Res B Appl Biomater. 2021;109(2):160-179. doi: 10.1002/jbm.b.34688
- Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface. Appl Environ Microbiol. 2011;77(5):1541-1547. doi: 10.1128/aem.02766-10
- Xiang Y, Li J, Liu X, et al. Construction of poly(lactic-co-glycolic acid)/ZnO nanorods/Ag nanoparticles hybrid coating on Ti implants for enhanced antibacterial activity and biocompatibility. Mater Sci Eng C Mater Biol Appl. 2017;79:629-637. doi: 10.1016/j.msec.2017.05.115
- Storm WL, Johnson JA, Worley BV, Slomberg DL, Schoenfisch MH. Dual action antimicrobial surfaces via combined nitric oxide and silver release. J Biomed Mater Res Part A. 2015;103(6):1974-1984. doi: 10.1002/jbm.a.35331
- Gao A, Hang R, Huang X, et al. The effects of titania nanotubes with embedded silver oxide nanoparticles on bacteria and osteoblasts. Biomaterials. 2014;35(13): 4223-4235. doi: 10.1016/j.biomaterials.2014.01.058
- Zhang R, Lee P, Lui VC, et al. Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomedicine. 2015;11(8):1949-1959. doi: 10.1016/j.nano.2015.07.016
- Kim H-I, Raja N, Kim J, et al. A 3D calcium-deficient hydroxyapatite-based scaffold with gold nanoparticles effective against Micrococcus luteus as an artificial bone substitute. Mater Design. 2022;219:110793. doi: 10.1016/j.matdes.2022.110793
- Ohtsu N, Kakuchi Y, Ohtsuki T. Antibacterial effect of zinc oxide/hydroxyapatite coatings prepared by chemical solution deposition. Appl Surf Sci. 2018;445: 596-600. doi: 10.1016/j.apsusc.2017.09.101
- Li Y-L, He J, Ye H-X, et al. Atomic layer deposition of zinc oxide onto 3D porous iron scaffolds for bone repair: in vitro degradation, antibacterial activity and cytocompatibility evaluation. Rare Metals. 2022;41(2):546-558. doi: 10.1007/s12598-021-01852-8
- Nadi A, Khodaei M, Javdani M, et al. Fabrication of functional and nano-biocomposite scaffolds using strontium-doped bredigite nanoparticles/polycaprolactone/poly lactic acid via 3D printing for bone regeneration. Int J Biol Macromol. 2022;219:1319-1336. doi: 10.1016/j.ijbiomac.2022.08.136
- Sanchez-Salcedo S, Garcia A, Gonzalez-Jimenez A, Vallet- Regi M. Antibacterial effect of 3D printed mesoporous bioactive glass scaffolds doped with metallic silver nanoparticles. Acta Biomater. 2023;155:654-666. doi: 10.1016/j.actbio.2022.10.045
- Wang M, Yang Y, Chi G, et al. A 3D printed Ga containing scaffold with both anti-infection and bone homeostasis-regulating properties for the treatment of infected bone defects. J Mater Chem B. 2021;9(23):4735-4745. doi: 10.1039/d1tb00387a
- Dediu V, Ghitman J, Gradisteanu Pircalabioru G, Chan KH, Iliescu FS, Iliescu C. Trends in photothermal nanostructures for antimicrobial applications. Int J Mol Sci. 2023;24(11):9375. doi: 10.3390/ijms24119375
- Du T, Xiao Z, Zhang G, et al. An injectable multifunctional hydrogel for eradication of bacterial biofilms and wound healing. Acta Biomater. 2023;161:112-133. doi: 10.1016/j.actbio.2023.03.008
- Fu H, Xue K, Zhang Y, et al. Thermoresponsive hydrogel-enabled thermostatic photothermal therapy for enhanced healing of bacteria-infected wounds. Adv Sci (Weinh). 2023;10(11):e2206865. doi: 10.1002/advs.202206865
- Liu W, Zuo R, Zhu T, Zhu M, Zhao S, Zhu Y. Forsterite-hydroxyapatite composite scaffolds with photothermal antibacterial activity for bone repair. J Adv Ceramics. 2021;10(5):1095-1106. doi: 10.1007/s40145-021-0494-x
- Zhu Z, Lin Y, Li L, et al. 3D printing drug-free scaffold with triple-effect combination induced by copper-doped layered double hydroxides for the treatment of bone defects. ACS Appl Mater Interfaces. 2023;15(50): 58196-58211. doi: 10.1021/acsami.3c13336
- Tan Y, Sun H, Lan Y, et al. Study on 3D printed MXene-berberine-integrated scaffold for photo-activated antibacterial activity and bone regeneration. J Mater Chem B. 2024;12(8):2158-2179. doi: 10.1039/d3tb02306k
- Nie R, Sun Y, Lv H, et al. 3D printing of MXene composite hydrogel scaffolds for photothermal antibacterial activity and bone regeneration in infected bone defect models. Nanoscale. 2022;14(22):8112-8129. doi: 10.1039/d2nr02176e
- Zeng Y, Ouyang Q, Yu Y, et al. Defective homojunction porphyrin-based metal-organic frameworks for highly efficient sonodynamic therapy. Small Methods. 2023;7(1):e2201248. doi: 10.1002/smtd.202201248
- Nene LC, Nyokong T. Enhancement of the in vitro anticancer photo-sonodynamic combination therapy activity of cationic thiazole-phthalocyanines using gold and silver nanoparticles. J Photochem Photobiol A: Chem. 2023;435:114339. doi: 10.1016/j.jphotochem.2022.114339
- Wang R, Liu Q, Gao A, et al. Recent developments of sonodynamic therapy in antibacterial application. Nanoscale. 2022;14(36):12999-13017. doi: 10.1039/d2nr01847k
- Han J, Ma Q, An Y, et al. Correction: the current status of stimuli-responsive nanotechnologies on orthopedic titanium implant surfaces. J Nanobiotechnology. 2023; 21(1):390. doi: 10.1186/s12951-023-02102-y
- Lei Q, Chen Y, Gao S, et al. Enhanced magnetothermal effect of high porous bioglass for both bone repair and antitumor therapy. Mater Design. 2023;227:111754. doi: 10.1016/j.matdes.2023.111754
- Zhuang H, Qin C, Zhang M, et al. 3D-printed bioceramic scaffolds with Fe(3)S(4)microflowers for magnetothermal and chemodynamic therapy of bone tumor and regeneration of bone defects. Biofabrication. 2021;13(4):045010. doi: 10.1088/1758-5090/ac19c7
- Xia G, Song B, Fang J. Electrical stimulation enabled via electrospun piezoelectric polymeric nanofibers for tissue regeneration. Research (Wash D C). 2022;2022:9896274. doi: 10.34133/2022/9896274
- Lee J, Dutta SD, Acharya R, et al. Stimuli-responsive 3D printable conductive hydrogel: a step toward regulating macrophage polarization and wound healing. Adv Healthc Mater. 2024;13(4):e2302394. doi: 10.1002/adhm.202302394
- Asadi MR, Torkaman G. Bacterial inhibition by electrical stimulation. Adv Wound Care (New Rochelle). 2014;3(2):91-97. doi: 10.1089/wound.2012.0410
- Carvalho EO, Fernandes MM, Padrao J, et al. Tailoring bacteria response by piezoelectric stimulation. ACS Appl Mater Interfaces. 2019;11(30):27297-27305. doi: 10.1021/acsami.9b05013
- Lai S, Wang Y, Wan Y, Ma H, Fang L, Su J. Magnetoelectric polymer membrane-based electrical microenvironment with magnetically controlled antibacterial activity. ACS Appl Mater Interfaces. 2022;14(17):20139-20150. doi: 10.1021/acsami.2c04359
- Jo GH, Lim WS, Kim HW, Park HJ. Post-processing and printability evaluation of red ginseng snacks for three-dimensional (3D) printing. Food Bioscience. 2021; 42:101094. doi: 10.1016/j.fbio.2021.101094
- Tetik H, Zhao K, Shah N, Lin D. 3D freeze-printed cellulose-based aerogels: obtaining truly 3D shapes, and functionalization with cross-linking and conductive additives. J Manuf Processes. 2021;68:445-453. doi: 10.1016/j.jmapro.2021.05.051
- Zhao Z, Wu H, Liu X, et al. Synthesis and characterization of tung oil-based UV curable for three-dimensional printing resins. RSC Adv. 2022;12(34):22119-22130. doi: 10.1039/d2ra03182e
- Chen K, Kuang X, Li V, Kang G, Qi HJ. Fabrication of tough epoxy with shape memory effects by UV-assisted direct-ink write printing. Soft Matter. 2018;14(10):1879-1886. doi: 10.1039/c7sm02362f
- Yang Z, Wu G, Wang S, Xu M, Feng X. Dynamic postpolymerization of 3D-printed photopolymer nanocomposites: effect of cellulose nanocrystal and postcure temperature. Journal of Polymer Science Part B: Polymer Physics. 2018/06/15 2018;56(12):935-946. doi: 10.1002/polb.24610
- Sun Z, Lu Y, Zhao Q, Wu J. A new stereolithographic 3D printing strategy for hydrogels with a large mechanical tunability and self-weldability. Additive Manuf. 2022;50: 102563. doi: 10.1016/j.addma.2021.102563
- Zou S, Gong H, Gao J. Additively manufactured multilevel voronoi-lattice scaffolds with bonelike mechanical properties. ACS Biomater Sci Eng. 2022;8(7):3022-3037. doi: 10.1021/acsbiomaterials.1c01482
- Wittig NK, Birkedal H. Bone hierarchical structure: spatial variation across length scales. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2022;78(Pt 3 Pt 1):305-311. doi: 10.1107/S2052520622001524
- Chang B, Liu X. Osteon: structure, turnover, and regeneration. Tissue Eng Part B Rev. 2022;28(2):261-278. doi: 10.1089/ten.TEB.2020.0322
- Li L, Wang P, Liang H, et al. Design of a Haversian system-like gradient porous scaffold based on triply periodic minimal surfaces for promoting bone regeneration. J Adv Res. 2023;54:89-104. doi: 10.1016/j.jare.2023.01.004
- Peng Y, Wu S, Li Y, Crane JL. Type H blood vessels in bone modeling and remodeling. Theranostics. 2020;10(1):426-436. doi: 10.7150/thno.34126
- Zhang H, Zhang M, Zhai D, et al. Polyhedron-like biomaterials for innervated and vascularized bone regeneration. Adv Mater. 2023;35(42):e2302716. doi: 10.1002/adma.202302716
- Zhang Q, Ma L, Ji X, et al. High‐strength hydroxyapatite scaffolds with minimal surface macrostructures for load‐bearing bone regeneration. Adv Funct Mater. 2022;32(33):2204182. doi: 10.1002/adfm.202204182
- Yang Y, Xu T, Bei HP, et al. Gaussian curvature-driven direction of cell fate toward osteogenesis with triply periodic minimal surface scaffolds. Proc Natl Acad Sci U S A. 2022;119(41):e2206684119. doi: 10.1073/pnas.2206684119
- Horst A, McDonald F. Uncertain but not unregulated: medical product regulation in the light of three-dimensional printed medical products. 3D Print Addit Manuf. 2020;7(5):248-257. doi: 10.1089/3dp.2020.0076
- Murr LE. Global trends in the development of complex, personalized, biomedical, surgical implant devices using 3D printing/additive manufacturing: a review. Medical Dev Sens. 2020;3(6):e10126. doi: 10.1002/mds3.10126
- Jia Z, Zhou W, Yan J, et al. Constructing multilayer silk protein/nanosilver biofunctionalized hierarchically structured 3D printed Ti6Al4 V scaffold for repair of infective bone defects. ACS Biomater Sci Eng. 2019;5(1):244-261. doi: 10.1021/acsbiomaterials.8b00857
- Huang F, Liu X, Fu X, et al. 3D-printed bioactive scaffold loaded with GW9508 promotes critical-size bone defect repair by regulating intracellular metabolism. Bioengineering (Basel). 2023;10(5):535. doi: 10.3390/bioengineering10050535
- Wu Y, Shi X, Zi S, et al. The clinical application of customized 3D-printed porous tantalum scaffolds combined with Masquelet’s induced membrane technique to reconstruct infective segmental femoral defect. J Orthop Surg Res. 2022;17(1):479. doi: 10.1186/s13018-022-03371-3
- Zheng K, Yu XC, Xu M, et al. Using 3D printing technology to manufacture personalized bone cement placeholder mold for bone defect repair and reconstruction with infection: a case report. Orthop Surg. 2023;15(10):2724-2729. doi: 10.1111/os.13779
- Liu YB, Pan H, Chen L, et al. Total hip revision with custom-made spacer and prosthesis: a case report. World J Clin Cases. 2021;9(25):7605-7613. doi: 10.12998/wjcc.v9.i25.7605
- Laubach M, Suresh S, Herath B, et al. Clinical translation of a patient-specific scaffold-guided bone regeneration concept in four cases with large long bone defects. J Orthop Translat. 2022;34:73-84. doi: 10.1016/j.jot.2022.04.004
- Castrisos G, Gonzalez Matheus I, Sparks D, et al. Regenerative matching axial vascularisation of absorbable 3D-printed scaffold for large bone defects: a first in human series. J Plast Reconstr Aesthet Surg. 2022;75(7): 2108-2118. doi: 10.1016/j.bjps.2022.02.057
- Zhong L, Chen J, Ma Z, et al. 3D printing of metal-organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration. Nanoscale. 2020;12(48):24437-24449. doi: 10.1039/d0nr06297a
- Wang G, Luo W, Zhou Y, et al. Custom-made antibiotic cement-coated nail for the treatment of infected bone defect. Biomed Res Int. 2021;2021:6693906. doi: 10.1155/2021/6693906
- Rastin H, Ramezanpour M, Hassan K, et al. 3D bioprinting of a cell-laden antibacterial polysaccharide hydrogel composite. Carbohydr Polym. 2021;264:117989. doi: 10.1016/j.carbpol.2021.117989
- Ciliveri S, Bandyopadhyay A. Additively manufactured SiO(2) and Cu-added Ti implants for synergistic enhancement of bone formation and antibacterial efficacy. ACS Appl Mater Interfaces. 2024;16(3):3106-3115. doi: 10.1021/acsami.3c14994
- Shi Z, Yang F, Hu Y, et al. An oxidized dextran-composite self-healing coated magnesium scaffold reduces apoptosis to induce bone regeneration. Carbohydr Polym. 2024;327:121666. doi: 10.1016/j.carbpol.2023.121666
- Liu Q, Dong X, Qi H, et al. 3D printable strong and tough composite organo-hydrogels inspired by natural hierarchical composite design principles. Nat Commun. 2024;15(1):3237. doi: 10.1038/s41467-024-47597-7
- Freeman FE, Pitacco P, van Dommelen LHA, et al. 3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration. Sci Adv. 2020;6(33):eabb5093. doi: 10.1126/sciadv.abb5093
- Cui Y, Liu H, Tian Y, et al. Dual-functional composite scaffolds for inhibiting infection and promoting bone regeneration. Mater Today Bio. 2022;16:100409. doi: 10.1016/j.mtbio.2022.100409
- Meng M, Wang J, Sun T, et al. Clinical applications and prospects of 3D printing guide templates in orthopaedics. J Orthop Translat. 2022;34:22-41. doi: 10.1016/j.jot.2022.03.001
- Sukanya VS, Panigrahy N, Rath SN. Recent approaches in clinical applications of 3D printing in neonates and pediatrics. Eur J Pediatr. 2021;180(2):323-332. doi: 10.1007/s00431-020-03819-w
- Aguado-Maestro I, Simon-Perez C, Garcia-Alonso M, Ailagas-De Las Heras JJ, Paredes-Herrero E. Clinical applications of “In-Hospital” 3D printing in hip surgery: a systematic narrative review. J Clin Med. 2024;13(2):599. doi: 10.3390/jcm13020599
- Kumar Gupta D, Ali MH, Ali A, et al. 3D printing technology in healthcare: applications, regulatory understanding, IP repository and clinical trial status. J Drug Target. 2022;30(2):131-150. doi: 10.1080/1061186X.2021.1935973
- Keller M, Guebeli A, Thieringer F, Honigmann P. Overview of in-hospital 3D printing and practical applications in hand surgery. Biomed Res Int. 2021;2021:4650245. doi: 10.1155/2021/4650245
- Wang Z, Xiang L, Lin F, Tang Y, Cui W. 3D bioprinting of emulating homeostasis regulation for regenerative medicine applications. J Control Release. 2023;353:147-165. doi: 10.1016/j.jconrel.2022.11.035
- Bliley JM, Shiwarski DJ, Feinberg AW. 3D-bioprinted human tissue and the path toward clinical translation. Sci Transl Med. 2022;14(666):eabo7047. doi: 10.1126/scitranslmed.abo7047
- Roppolo I, Caprioli M, Pirri CF, Magdassi S. 3D printing of self-healing materials. Adv Mater. 2024;36(9): e2305537. doi: 10.1002/adma.202305537
- Palmquist A, Jolic M, Hryha E, Shah FA. Complex geometry and integrated macro-porosity: Clinical applications of electron beam melting to fabricate bespoke bone-anchored implants. Acta Biomater. 2023;156:125-145. doi: 10.1016/j.actbio.2022.06.002
- Qu H, Gao C, Liu K, et al. Gradient matters via filament diameter-adjustable 3D printing. Nat Commun. 2024;15(1):2930. doi: 10.1038/s41467-024-47360-y
- Mir A, Lee E, Shih W, et al. 3D bioprinting for vascularization. Bioengineering (Basel). 2023;10(5):606. doi: 10.3390/bioengineering10050606
- Ghosh U, Ning S, Wang Y, Kong YL. Addressing unmet clinical needs with 3d printing technologies. Adv Healthc Mater. 2018;7(17):e1800417. doi: 10.1002/adhm.201800417
- Zhou Z, Liu J, Xiong T, Liu Y, Tuan RS, Li ZA. Engineering innervated musculoskeletal tissues for regenerative orthopedics and disease modeling. Small. 2024;20(23):e2310614. doi: 10.1002/smll.202310614
- Ouyang L, Armstrong JPK, Lin Y, et al. Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. Sci Adv. 2020;6(38): eabc5529. doi: 10.1126/sciadv.abc5529
- Li R, Zhang L, Jiang X, et al. 3D-printed microneedle arrays for drug delivery. J Control Release. 2022;350:933-948. doi: 10.1016/j.jconrel.2022.08.022
- Patel SK, Khoder M, Peak M, Alhnan MA. Controlling drug release with additive manufacturing-based solutions. Adv Drug Deliv Rev. 2021;174:369-386. doi: 10.1016/j.addr.2021.04.020
- Roca M, Villegas L, Kortabitarte ML, Althaus RL, Molina MP. Effect of heat treatments on stability of beta-lactams in milk. J Dairy Sci. 2011;94(3):1155-1164. doi: 10.3168/jds.2010-3599
- Tian L, Khalil S, Bayen S. Effect of thermal treatments on the degradation of antibiotic residues in food. Crit Rev Food Sci Nutr. 2017;57(17):3760-3770. doi: 10.1080/10408398.2016.1164119
- Tappa K, Jammalamadaka U, Weisman JA, et al. 3D printing custom bioactive and absorbable surgical screws, pins, and bone plates for localized drug delivery. J Funct Biomater. Apr 1 2019;10(2):17. doi: 10.3390/jfb10020017
- Ballard DH, Tappa K, Boyer CJ, et al. Antibiotics in 3D-printed implants, instruments and materials: benefits, challenges and future directions. J 3D Print Med. 2019;3(2):83-93. doi: 10.2217/3dp-2019-0007
- Costing drug development. Nat Rev Drug Discov. 2003;2(4):247. doi: 10.1038/nrd1070
- DiMasi JA, Grabowski HG. Economics of new oncology drug development. J Clin Oncol. 2007;25(2):209-216. doi: 10.1200/JCO.2006.09.0803
- Park SM, Vonortas NS. Translational research: from basic research to regional biomedical entrepreneurship. Small Bus Econ (Dordr). 2023;60(4):1761-1783. doi: 10.1007/s11187-022-00676-9
- Kasturi M, Mathur V, Gadre M, Srinivasan V, Vasanthan KS. Three dimensional bioprinting for hepatic tissue engineering: from in vitro models to clinical applications. Tissue Eng Regen Med. 2024;21(1):21-52. doi: 10.1007/s13770-023-00576-3
- Lei C, Song JH, Li S, et al. Advances in materials-based therapeutic strategies against osteoporosis. Biomaterials. 2023;296:122066. doi: 10.1016/j.biomaterials.2023.122066
- Ren Y, Zhang C, Liu Y, et al. Advances in 3D printing of highly bioadaptive bone tissue engineering scaffolds. ACS Biomater Sci Eng. 2024;10(1):255-270. doi: 10.1021/acsbiomaterials.3c01129
- Ansari MAA, Golebiowska AA, Dash M, et al. Engineering biomaterials to 3D-print scaffolds for bone regeneration: practical and theoretical consideration. Biomater Sci. 2022;10(11):2789-2816. doi: 10.1039/d2bm00035k
- Datta P, Cabrera LY, Ozbolat IT. Ethical challenges with 3D bioprinted tissues and organs. Trends Biotechnol. 2023;41(1):6-9. doi: 10.1016/j.tibtech.2022.08.012
- Liu X, Hao M, Chen Z, et al. 3D bioprinted neural tissue constructs for spinal cord injury repair. Biomaterials. May 2021;272:120771. doi: 10.1016/j.biomaterials.2021.120771
- Ricci G, Gibelli F, Sirignano A. Three-dimensional bioprinting of human organs and tissues: bioethical and medico-legal implications examined through a scoping review. Bioengineering (Basel). 2023;10(9):1052. doi: 10.3390/bioengineering10091052
- Sanz-Sanchez I, Sanz-Martin I, Ortiz-Vigon A, Molina A, Sanz M. Complications in bone-grafting procedures: Classification and management. Periodontol 2000. 2022;88(1):86-102. doi: 10.1111/prd.12413
- Li J, Li M, Wang W, Li B, Liu L. Evolution and development of Ilizarov technique in the treatment of infected long bone nonunion with or without bone defects. Orthop Surg. 2022;14(5):824-830. doi: 10.1111/os.13218
- Mathieu L, Mourtialon R, Durand M, de Rousiers A, de l’Escalopier N, Collombet JM. Masquelet technique in military practice: specificities and future directions for combat-related bone defect reconstruction. Mil Med Res. 2022;9(1):48. doi: 10.1186/s40779-022-00411-1
- Abdullah T, Qurban RO, Bolarinwa SO, Mirza AA, Pasovic M, Memic A. 3D printing of metal/metal oxide incorporated thermoplastic nanocomposites with antimicrobial properties. Front Bioeng Biotechnol. 2020;8:568186. doi: 10.3389/fbioe.2020.568186
- Longoni A, Li J, Lindberg GCJ, et al. Strategies for inclusion of growth factors into 3D printed bone grafts. Essays Biochem. 2021;65(3):569-585. doi: 10.1042/EBC20200130
- Meng M, Wang J, Huang H, Liu X, Zhang J, Li Z. 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. J Orthop Translat. 2023;42:94-112. doi: 10.1016/j.jot.2023.08.004
- Velasquez-Garcia LF, Kornbluth Y. Biomedical applications of metal 3D printing. Annu Rev Biomed Eng. 2021;23:307-338. doi: 10.1146/annurev-bioeng-082020-032402
- Liu Z, Liu Q, Guo H, Liang J, Zhang Y. Overview of physical and pharmacological therapy in enhancing bone regeneration formation during distraction osteogenesis. Front Cell Dev Biol. 2022;10:837430. doi: 10.3389/fcell.2022.837430
- Sun Y, Wan B, Wang R, et al. Mechanical stimulation on mesenchymal stem cells and surrounding microenvironments in bone regeneration: regulations and applications. Front Cell Dev Biol. 2022;10:808303. doi: 10.3389/fcell.2022.808303
- Ma Q, Miri Z, Haugen HJ, Moghanian A, Loca D. Significance of mechanical loading in bone fracture healing, bone regeneration, and vascularization. J Tissue Eng. 2023;14:20417314231172573. doi: 10.1177/20417314231172573
- Wan X, Xiao Z, Tian Y, et al. Recent advances in 4D printing of advanced materials and structures for functional applications. Adv Mater. 2024;36(34):e2312263. doi: 10.1002/adma.202312263
- Han X, Saiding Q, Cai X, et al. Intelligent vascularized 3D/4D/5D/6D-printed tissue scaffolds. Nanomicro Lett. 2023;15(1):239. doi: 10.1007/s40820-023-01187-2
- Yarali E, Mirzaali MJ, Ghalayaniesfahani A, Accardo A, Diaz-Payno PJ, Zadpoor AA. 4D printing for biomedical applications. Adv Mater. 2024;36(31):e2402301. doi: 10.1002/adma.202402301
- Lai J, Liu Y, Lu G, et al. 4D bioprinting of programmed dynamic tissues. Bioact Mater. 2024;37:348-377. doi: 10.1016/j.bioactmat.2024.03.033
- Chen X, Han S, Wu W, et al. Harnessing 4D printing bioscaffolds for advanced orthopedics. Small. 2022;18(36):e2106824. doi: 10.1002/smll.202106824
- Qu M, Wang C, Zhou X, et al. Multi-dimensional printing for bone tissue engineering. Adv Healthc Mater. 2021;10(11):e2001986.doi: 10.1002/adhm.202001986
- Ghazal AF, Zhang M, Mujumdar AS, Ghamry M. Progress in 4D/5D/6D printing of foods: applications and R&D opportunities. Crit Rev Food Sci Nutr. 2023;63(25):7399-7422. doi: 10.1080/10408398.2022.2045896
- Sheikh A, Abourehab MAS, Kesharwani P. The clinical significance of 4D printing. Drug Discov Today. 2023;28(1):103391. doi: 10.1016/j.drudis.2022.103391
- Lai J, Wang M. Developments of additive manufacturing and 5D printing in tissue engineering. J Mater Res. 2023;38(21):4692-4725. doi: 10.1557/s43578-023-01193-5
- Khorsandi D, Rezayat D, Sezen S, et al. Application of 3D, 4D, 5D, and 6D bioprinting in cancer research: what does the future look like? J Mater Chem B. 2024;12:4584–4612. doi: 10.1039/d4tb00310a
- Vasiliadis AV, Koukoulias N, Katakalos K. From three-dimensional (3D)- to 6D-printing technology in orthopedics: science fiction or scientific reality? J Funct Biomater. 2022;13(3):101. doi: 10.3390/jfb13030101
- Srivastava S, Pandey VK, Singh R, Dar AH. Recent insights on advancements and substantial transformations in food printing technology from 3 to 7D. Food Sci Biotechnol. 2023;32(13):1783-1804. doi: 10.1007/s10068-023-01352-8
- Wang Y, Yung P, Lu G, et al. Musculoskeletal organs-on-chips: an emerging platform for studying the nanotechnology-biology interface. Adv Mater. 2024:e2401334. doi: 10.1002/adma.202401334