AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.4925
REVIEW

Revolutionizing regenerative rehabilitation: 3D printing for musculoskeletal regeneration

Ai-Jia Guan1,2 Yong-Chao Zhao3 Xiao-Na Xiang1,2 Ma-Ling Gou3* Hong-Chen He1,2*
Show Less
1 Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
2 Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
3 Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
Submitted: 24 September 2024 | Accepted: 7 November 2024 | Published: 8 November 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Musculoskeletal disorders, such as bone fractures, osteoarthritis, meniscus injuries, muscle diseases, and tendon injuries, are common disorders among individuals in need of rehabilitation. Trauma, sports-related injuries, and degeneration mainly cause these disorders. Regenerative rehabilitation medicine aims to enhance the regenerative capacity of musculoskeletal tissues and optimize functional recovery through the combination of regenerative medicine and rehabilitation medicine treatments. However, these treatments are insufficient for the complete restoration of damaged tissue structures. Three-dimensional (3D) printing technology, referred to as the additive manufacturing (AM) technique, can accelerate the rehabilitation process for musculoskeletal diseases, especially for developing regenerative rehabilitation and engineering rehabilitation. Recently, an increasing number of studies reported on the basic and clinical applications of 3D printing in assisting with the treatment of musculoskeletal disorders. Therefore, this review summarizes how 3D printing technologies are changing treatment and assessment methods, as well as improving therapeutic outcomes in regenerative rehabilitation for musculoskeletal diseases. Finally, this review discusses the current status of the clinical translation for 3D printing.

Graphical abstract
Keywords
3D printing
Regenerative rehabilitation
Musculoskeletal disorder
Medical devices
Tissue engineering
Funding
This work was supported by the National Natural Science Foundation of China (82302884), the Department of Science and Technology of Sichuan Province (2022JDKP0015), the Sichuan University Education Foundation (23JZH002), and the Sichuan University Postdoctoral Interdisciplinary Innovation Fund (JCXK2215).
Conflict of interest
Ma-Ling Gou is an Editorial Board Member of this journal but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Briggs AM, Cross MJ, Hoy DG, et al. Musculoskeletal health conditions represent a global threat to healthy aging: a report for the 2015 World Health Organization World Report on Ageing and Health. Gerontologist. 2016;56:S243-S255. doi: 10.1093/geront/gnw002
  2. Zheng YL, Song G, Guo JB. Interactions among lncRNA/ circRNA, miRNA, and mRNA in musculoskeletal degenerative diseases. Front Cell Dev Biol. 2021;9:753931. doi: 10.3389/fcell.2021.753931
  3. Cieza A, Causey K, Kamenov K, et al. Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020;396(10267):2006-2017. doi: 10.1016/S0140-6736(20)32340-0
  4. Collins NJ, Hart HF, Mills KAG. Osteoarthritis year in review 2018: rehabilitation and outcomes. Osteoarthritis Cartilage. 2019;27(3):378-391. doi: 10.1016/j.joca.2018.11.010
  5. Zhu SY, Wang Z, Liang Q, et al. Chinese guidelines for the rehabilitation treatment of knee osteoarthritis: an CSPMR evidence-based practice guideline. J Evid-Based Med. 2023;16(3):376-393. doi: 10.1111/jebm.12555
  6. Cavanaugh JT, Killian SE. Rehabilitation following meniscal repair. Curr Rev Musculoskelet Med. 2012; 5(1):46-58. doi: 10.1007/s12178-011-9110-y
  7. Ambrosio F, Russell A. Regenerative rehabilitation: a call to action. J Rehabil Res Dev. 2010;47(3):Xi-Xv. doi: 10.1682/Jrrd.2010.03.0021
  8. Rando TA, Ambrosio F. Regenerative rehabilitation: applied biophysics meets stem cell therapeutics. Cell Stem Cell. 2018;22(3):306-309. doi: 10.1016/j.stem.2018.02.003
  9. Liaw CY, Guvendiren M. Current and emerging applications of 3D printing in medicine. Biofabrication. 2017; 9(2):024102. doi: 10.1088/1758-5090/aa7279
  10. Zhang JM, Hu QP, Wang S, et al. Digital light processing based three-dimensional printing for medical applications. Int J Bioprinting. 2020;6(1):12-27. doi: 10.18063/ijb.v6i1.242
  11. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-785. doi: 10.1038/nbt.2958
  12. Trucco D, Sharma A, Manferdini C, et al. Modeling and fabrication of silk fibroin–gelatin-based constructs using extrusion-based three-dimensional bioprinting. ACS Biomater Sci Eng. 2021;7(7):3306-3320. doi: 10.1021/acsbiomaterials.1c00410
  13. Zhou ZY, Cui J, Wu SL, et al. Silk fibroin-based biomaterials for cartilage/osteochondral repair. Theranostics. 2022;12(11):5103-5124. doi: 10.7150/thno.74548
  14. Pinto RMR, Faraji M, Vinayakumar KB. A 3D-printed printhead: custom inkjet dispenser for medium viscosity fluids. Adv Eng Mater. 2024;26(12):14. doi: 10.1002/adem.202400205
  15. Li XD, Liu BX, Pei B, et al. Inkjet bioprinting of biomaterials. Chem Rev. 2020;120(19):10596-10636. doi: 10.1021/acs.chemrev.0c00008
  16. Rasaki SA, Xiong DY, Xiong SF, et al. Photopolymerization-based additive manufacturing of ceramics: a systematic review. J Adv Ceram. 2021;10(3):442-471. doi: 10.1007/s40145-021-0468-z
  17. Zhang J, Hu Q, Wang S, et al. Digital light processing based three-dimensional printing for medical applications. Int J Bioprint. 2020;6(1):242. doi: 10.18063/ijb.v6i1.242
  18. Zhang P, Gao Q, Yu KC, et al. Investigation on the temperature control accuracy of a print head for extrusion 3D printing and its improved design. Biomedicines. 2022; 10(6):13. doi: 10.3390/biomedicines10061233
  19. Grivet-Brancot A, Boffito M, Ciardelli G. Use of polyesters in fused deposition modeling for biomedical applications. Macromol Biosci. 2022;22(10):29. doi: 10.1002/mabi.202200039
  20. Tabriz AG, Kuofie H, Scoble J, et al. Selective laser sintering for printing pharmaceutical dosage forms. J Drug Deliv Sci Technol. 2023;86:13. doi: 10.1016/j.jddst.2023.104699
  21. Han W, Kong LB, Xu M. Advances in selective laser sintering of polymers. Int J Extreme Manuf. 2022;4(4):37. doi: 10.1088/2631-7990/ac9096
  22. Wu M, Zheng K, Li W, et al. Nature‐inspired strategies for the treatment of osteoarthritis. Adv Funct Mater. 2023;34(4):2305603. doi: 10.1002/adfm.202305603
  23. Baniasadi H, Madani Z, Ajdary R, et al. Ascorbic acid-loaded polyvinyl alcohol/cellulose nanofibril hydrogels as precursors for 3D printed materials. Mater Sci Eng C-Mater Biol Appl. 2021;130:12. doi: 10.1016/j.msec.2021.112424
  24. Caprioli M, Roppolo I, Chiappone A, et al. 3D-printed self-healing hydrogels via digital light processing. Nat Commun. 2021;12(1):9. doi: 10.1038/s41467-021-22802-z
  25. Kumar A, Han SS. PVA-based hydrogels for tissue engineering: a review. Int J Polym Mater Polym Biomat. 2017;66(4):159-182. doi: 10.1080/00914037.2016.1190930
  26. Gu XC, Cheng HG, Lu XY, et al. Plant-based biomass/ polyvinyl alcohol gels for flexible sensors. Chem-Asian J. 2023;18(18):18. doi: 10.1002/asia.202300483
  27. Tümer EH, Erbil HY. Extrusion-based 3D printing applications of PLA composites: a review. Coatings. 2021;11(4):42. doi: 10.3390/coatings11040390
  28. Murab S, Herold S, Hawk T, et al. Advances in additive manufacturing of polycaprolactone based scaffolds for bone regeneration. J Mat Chem B. 2023;11(31):7250-7279. doi: 10.1039/d2tb02052a
  29. Yang XJ, Wang YT, Zhou Y, et al. The application of polycaprolactone in three-dimensional printing scaffolds for bone tissue engineering. Polymers. 2021;13(16):19. doi: 10.3390/polym13162754
  30. Hamedi E, Vahedi N, Sigaroodi F, et al. Recent progress of bio-printed PEGDA-based bioinks for tissue regeneration. Polym Adv Technol. 2023;34(11):3505-3517. doi: 10.1002/pat.6164
  31. Liang WQ, Zhou C, Zhang HW, et al. Recent advances in 3D printing of biodegradable metals for orthopaedic applications. J Biol Eng. 2023;17(1):24. doi: 10.1186/s13036-023-00371-7
  32. Martinelli A, Nitti A, Po RC, et al. 3D printing of layered structures of metal-ionic polymers: recent progress, challenges and opportunities. Materials. 2023; 16(15):16. doi: 10.3390/ma16155327
  33. Velásquez-García LF, Kornbluth Y. Biomedical applications of metal 3D printing. In: Yarmush ML, ed. Annual Review of Biomedical Engineering, vol. 23. Palo Alto: Annual Reviews 2021:307-338. doi: 10.1146/annurev-bioeng-082020-032402
  34. Ni J, Ling H, Zhang S, et al. Three-dimensional printing of metals for biomedical applications. Mater Today Bio. 2019;3:18. doi: 10.1016/j.mtbio.2019.100024
  35. Yuan XY, Xu YB, Lu TL, et al. Enhancing the bioactivity of hydroxyapatite bioceramic via encapsulating with silica-based bioactive glass sol. J Mech Behav Biomed Mater. 2022;128:9. doi: 10.1016/j.jmbbm.2022.105104
  36. Liu MY, Wang YE, Liu XW, et al. Comprehensive review on fabricating bioactive ceramic bone scaffold using vat photopolymerization. ACS Biomater Sci Eng. 2023;9(6):3032-3057. doi: 10.1021/acsbiomaterials.3c00051
  37. Vennam S, Vijayasankar KN, Pati F. 3D printed personalized assistive devices: a material, technique, and medical condition perspective. Appl Mater Today. 2024;40:15. doi: 10.1016/j.apmt.2024.102403
  38. Li JQ, Chen SG, Shang X, et al. Research progress of rehabilitation orthoses based on 3D printing technology. Adv Mater Sci Eng. 2022;2022:16. doi: 10.1155/2022/5321570
  39. Buchner TJK, Rogler S, Weirich S, et al. Vision-controlled jetting for composite systems and robots. Nature. 2023;623(7987):522-530. doi: 10.1038/s41586-023-06684-3
  40. Wang B, Feng CW, Pan JY, et al. The effect of 3D printing metal materials on osteoporosis treatment. Biomed Res Int. 2021;2021:7. doi: 10.1155/2021/9972867
  41. Wu D, Zhao XS, Xie JH, et al. Physical modulation of mesenchymal stem cell exosomes: a new perspective for regenerative medicine. Cell Prolif. 2024;57(8):16. doi: 10.1111/cpr.13630
  42. Liu S, Zhang LG, Li Z, et al. Materials-mediated in situ physical cues for bone regeneration. Adv Funct Mater. 2024;34(1):32. doi: 10.1002/adfm.202306534
  43. Shuai CJ, Yang WJ, Peng SP, et al. Physical stimulations and their osteogenesis-inducing mechanisms. Int J Bioprinting. 2018;4(2):20. doi: 10.18063/IJB.v4i2.138
  44. Huang X, Das R, Patel A, et al. Physical Stimulations for Bone and Cartilage Regeneration. Regen Eng Transl Med. 2018;4(4):216-237. doi: 10.1007/s40883-018-0064-0
  45. Liang WX, Liang BB, Yan KC, et al. Low-intensity pulsed ultrasound: a physical stimulus with immunomodulatory and anti-inflammatory potential. Ann Biomed Eng. 2024;52(8):1955-1981. doi: 10.1007/s10439-024-03523-y
  46. Luo TY, Tan BW, Liao JF, et al. A review on external physical stimuli with biomaterials for bone repair. Chem Eng J. 2024;496:18. doi: 10.1016/j.cej.2024.153749
  47. Axtell LA, Yasuda YL. Assistive devices and home modifications in geriatric rehabilitation. Clin Geriatr Med. 1993;9(4):803-821. doi: 10.1016/S0749-0690(18)30378-1
  48. Nyberg EL, Farris AL, Hung B, et al. 3D-printing technologies for craniofacial rehabilitation, reconstruction, and regeneration. Ann Biomed Eng. 2017;45(1):45-57. doi: 10.1007/s10439-016-1668-5
  49. Cuellar JS, Smit G, Breedveld P, et al. Functional evaluation of a non-assembly 3D-printed hand prosthesis. P I Mech Eng H. 2019;233(11):1122-1131. doi: 10.1177/0954411919874523
  50. Rumfelt S, Mintz T, Brooks A. Rehabilitation and orthoses for adult hand fractures. In: Abzug JM, Gaston RG, Osterman AL, et al., eds. Pediatric and Adult Hand Fractures. Cham: Springer International Publishing; 2023: 389-413. doi: 10.1007/978-3-031-32072-9_22
  51. Walker KJ, Przestrzelski BT, Kaluf B, et al. Novel 3D-printed foot orthoses with variable hardness: a comfort comparison to traditional orthoses. Med Eng Phys. 2023;115:103978. doi: 10.1016/j.medengphy.2023.103978
  52. Xu GS, Gao L, Tao K, et al. Three-dimensional-printed upper limb prosthesis for a child with traumatic amputation of right wrist: a case report. Medicine. 2017;96(52):5. doi: 10.1097/md.0000000000009426
  53. Dombroski CE, Balsdon MER, Froats A. The use of a low cost 3D scanning and printing tool in the manufacture of custom-made foot orthoses: a preliminary study. BMC Res Notes. 2014;7(1):443. doi: 10.1186/1756-0500-7-443
  54. Silva K, Rand S, Cancel D, et al. Three-dimensional (3-D) printing: a cost-effective solution for improving global accessibility to prostheses. Pm&R. 2015;7(12):1312-1314. doi: 10.1016/j.pmrj.2015.06.438
  55. Stout A, Friedly J, Standaert CJ. Systemic absorption and side effects of locally injected glucocorticoids. Pm&R. 2019;11(4):409-419. doi: 10.1002/pmrj.12042
  56. Majrashi M, Kotowska A, Scurr D, et al. Sustained release of dexamethasone from 3D-printed scaffolds modulates macrophage activation and enhances osteogenic differentiation. ACS Appl Mater Interfaces. 2023;15(49):56623-56638. doi: 10.1021/acsami.3c09774
  57. Liao CD, Chen HC, Huang MH, et al. Comparative efficacy of intra-articular injection, physical therapy, and combined treatments on pain, function, and sarcopenia indices in knee osteoarthritis: a network meta-analysis of randomized controlled trials. Int J Mol Sci. 2023;24(7):24. doi: 10.3390/ijms24076078
  58. Park YB, Ha CW, Lee CH, et al. Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up. Stem Cells Transl Med. 2017;6(2):613-621. doi: 10.5966/sctm.2016-0157
  59. Rim YA, Nam Y, Ju JH. The role of chondrocyte hypertrophy and senescence in osteoarthritis initiation and progression. Int J Mol Sci. 2020;21(7):2358. doi: 10.3390/ijms21072358
  60. Fu LL, Li L, Bian QY, et al. Cartilage-like protein hydrogels engineered via entanglement. Nature. 2023;618(7966):740-747. doi: 10.1038/s41586-023-06037-0
  61. Cho Y, Jeong S, Kim H, et al. Disease-modifying therapeutic strategies in osteoarthritis: current status and future directions. Exp Mol Med. 2021;53(11):1689-1696. doi: 10.1038/s12276-021-00710-y
  62. Grässel S, Aszodi A. Osteoarthritis and cartilage regeneration: focus on pathophysiology and molecular mechanisms. Int J Mol Sci. 2019;20(24):6156. doi: 10.3390/ijms20246156
  63. Schroeppel JP, Crist JD, Anderson HC, et al. Molecular regulation of articular chondrocyte function and its significance in osteoarthritis. Histol Histopathol. 2011;26(3):377-394. doi: 10.14670/HH-26.377
  64. Li Q, Yu H, Zhao F, et al. 3D printing of microenvironment‐specific bioinspired and exosome‐reinforced hydrogel scaffolds for efficient cartilage and subchondral bone regeneration. Adv Sci. 2023;10(26):2303650. doi: 10.1002/advs.202303650
  65. Jiang GY, Li SH, Yu K, et al. A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model. Acta Biomater. 2021;128:150-162. doi: 10.1016/j.actbio.2021.04.010
  66. Zhang H, Huang H, Hao G, et al. 3D printing hydrogel scaffolds with nanohydroxyapatite gradient to effectively repair osteochondral defects in rats. Adv Funct Mater. 2020;31(1):2006697. doi: 10.1002/adfm.202006697
  67. Sardroud HA, Chen XB, Eames BF. Applied compressive strain governs hyaline-like cartilage versus fibrocartilage-like ECM produced within hydrogel constructs. Int J Mol Sci. 2023;24(8):17. doi: 10.3390/ijms24087410
  68. Gong YP, Wang F, Al-Furjan MSH, et al. Experimental investigation and optimal 3d bioprinting parameters of SA-Gel porous cartilage scaffold. Appl Sci-Basel. 2020;10(3):768. doi: 10.3390/app10030768
  69. Shojarazavi N, Mashayekhan S, Pazooki H, et al. Alginate/cartilage extracellular matrix-based injectable interpenetrating polymer network hydrogel for cartilage tissue engineering. J Biomater Appl. 2021;36(5):803-817. doi: 10.1177/08853282211024020
  70. Ma FB, Ge YM, Liu N, et al. fabrication of a composite hydrogel with tunable mechanical properties for cartilage tissue engineering. J Mat Chem B. 2019;7(15):2463-2473. doi: 10.1039/c8tb01331d
  71. Deng CX, Yang J, He HT, et al. 3D bio-printed biphasic scaffolds with dual modification of silk fibroin for the integrated repair of osteochondral defects. Biomater Sci. 2021;9(14):4891-4903. doi: 10.1039/d1bm00535a
  72. Sadeghianmaryan A, Naghieh S, Yazdanpanah Z, et al. Fabrication of chitosan/alginate/hydroxyapatite hybrid scaffolds using 3D printing and impregnating techniques for potential cartilage regeneration. Int J Biol Macromol. 2022;204:62-75. doi: 10.1016/j.ijbiomac.2022.01.201
  73. Cheng K, Xia P, Lin Q, et al. Effects of low-intensity pulsed ultrasound on integrin-FAK-PI3K/Akt mechanochemical transduction in rabbit osteoarthritis chondrocytes. Ultrasound Med Biol. 2014;40(7):1609-1618. doi: 10.1016/j.ultrasmedbio.2014.03.002
  74. Prasopthum A, Deng ZX, Khan IM, et al. Three dimensional printed degradable and conductive polymer scaffolds promote chondrogenic differentiation of chondroprogenitor cells. Biomater Sci. 2020;8(15):4287-4298. doi: 10.1039/d0bm00621a
  75. Gee SM, Posner M. Meniscus anatomy and basic science. Sports Med Arthrosc. 2021;29(3):E18-E23. doi: 10.1097/Jsa.0000000000000327
  76. Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure–function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials. 2011;32(30):7411-7431. doi: 10.1016/j.biomaterials.2011.06.037
  77. Li L, Yang LF, Zhang KJ, et al. Three-dimensional finite-element analysis of aggravating medial meniscus tears on knee osteoarthritis. J Orthop Transl. 2020; 20:47-55. doi: 10.1016/j.jot.2019.06.007
  78. Tarafder S, Gulko J, Kim D, et al. Effect of dose and release rate of CTGF and TGFβ3 on avascular meniscus healing. J Orthop Res. 2019;37(7):1555-1562. doi: 10.1002/jor.24287
  79. Pauli C, Grogan SP, Patil S, et al. Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis. Osteoarthritis Cartilage. 2011;19(9):1132-1141. doi: 10.1016/j.joca.2011.05.008
  80. Murphy CA, Garg AK, Silva-Correia J, et al. The meniscus in normal and osteoarthritic tissues: facing the structure property challenges and current treatment trends. Annu Rev Biomed Eng. 2019;21(1):495-521. doi: 10.1146/annurev-bioeng-060418-052547
  81. Wang B, Barceló X, Von Euw S, et al. 3D printing of mechanically functional meniscal tissue equivalents using high concentration extracellular matrix inks. Mater Today Bio. 2023;20:12. doi: 10.1016/j.mtbio.2023.100624
  82. Gunja NJ, Huey DJ, James RA, et al. Effects of agarose mould compliance and surface roughness on self-assembled meniscus-shaped constructs. J Tissue Eng Regen Med. 2009;3(7):521-530. doi: 10.1002/term.191
  83. Jian Z, Zhuang T, Qinyu T. 3D bioprinting of a biomimetic meniscal scaffold for application in tissue engineering. Bioact Mater. 2021;6(6):1711-1726. doi: 10.1016/j.bioactmat.2020.11.027
  84. Zhang Q, Xu Z, Zhang X, et al. 3D printed high‐strength supramolecular polymer hydrogel‐cushioned radially and circumferentially oriented meniscus substitute. Adv Funct Mater. 2022;32(23):2200360. doi: 10.1002/adfm.202200360
  85. Chevrier A, Nelea M, Hurtig MB, et al. Meniscus structure in human, sheep, and rabbit for animal models of meniscus repair. J Orthop Res. 2009;27(9):1197-1203. doi: 10.1002/jor.20869
  86. Cheung HS. Distribution of Type-I, Type-Ii, Type-Iii, and Type-V in the pepsin solubilized collagens in bovine menisci. Connect Tissue Res. 1987;16(4):343-356. doi: 10.3109/03008208709005619
  87. Yan WQ, Maimaitimin M, Wu Y, et al. Meniscal fibrocartilage regeneration inspired by meniscal maturational and regenerative process. Sci Adv. 2023;9(45):eadg8138. doi: 10.1126/sciadv.adg8138
  88. Chae S, Lee S-S, Choi Y-J, et al. 3D cell-printing of biocompatible and functional meniscus constructs using meniscus‐derived bioink. Biomaterials. 2021;267:120466. doi: 10.1016/j.biomaterials.2020.120466
  89. Grogan SP, Duffy SF, Pauli C, et al. Gene expression profiles of the meniscus avascular phenotype: a guide for meniscus tissue engineering. J Orthop Res. 2018;36(7):1947-1958. doi: 10.1002/jor.23864
  90. Whitney NP, Lamb AC, Louw TM, et al. Integrin-mediated mechanotransduction pathway of low-intensity continuous ultrasound in human chondrocytes. Ultrasound Med Biol. 2012;38(10):1734-1743. doi: 10.1016/j.ultrasmedbio.2012.06.002
  91. Babaei M, Jamshidi N, Amiri F, et al. Effects of low-intensity pulsed ultrasound stimulation on cell seeded 3D hybrid scaffold as a novel strategy for meniscus regeneration: an in vitro study. J Tissue Eng Regen Med. 2022;16(9):812-824. doi: 10.1002/term.3331
  92. Ebner N, Sliziuk V, Scherbakov N, et al. Muscle wasting in ageing and chronic illness. ESC Heart Fail. 2015;2(2): 58-68. doi: 10.1002/ehf2.12033
  93. Voet NBM, van der Kooi EL, Riphagen II, et al. Strength training and aerobic exercise training for muscle disease. Cochrane Database Syst Rev. 2013;(7):CD003907. doi: 10.1002/14651858.CD003907.pub4
  94. Grogan BF, Hsu JR, Consortium STR. Volumetric muscle loss. J Am Acad Orthop Surg. 2011;19:S35-S37. doi: 10.5435/00124635-201102001-00007
  95. Basurto IM, Passipieri JA, Gardner GM, et al. Photoreactive hydrogel stiffness influences volumetric muscle loss repair. Tissue Eng Part A. 2022;28(7-8):312-329. doi: 10.1089/ten.tea.2021.0137
  96. Shayan M, Huang NF. Pre-clinical cell therapeutic approaches for repair of volumetric muscle loss. Bioeng Basel. 2020;7(3):97. doi: 10.3390/bioengineering7030097
  97. Nakayama KH, Quarta M, Paine P, et al. Treatment of volumetric muscle loss in mice using nanofibrillar scaffolds enhances vascular organization and integration. Commun Biol. 2019;2(1):170. doi: 10.1038/s42003-019-0416-4
  98. Eugenis I, Wu D, Rando TA. Cells, scaffolds, and bioactive factors: engineering strategies for improving regeneration following volumetric muscle loss. Biomaterials. 2021;278:121173. doi: 10.1016/j.biomaterials.2021.121173
  99. Shen S, Chen MX, Guo WM, et al. Three dimensional printing-based strategies for functional cartilage regeneration. Tissue Eng Part B Rev. 2019;25(3):187-201. doi: 10.1089/ten.teb.2018.0248
  100. Hwangbo H, Lee H, Jin EJ, et al. Bio-printing of aligned GelMa-based cell-laden structure for muscle tissue regeneration. Bioact Mater. 2022;8:57-70. doi: 10.1016/j.bioactmat.2021.06.031
  101. Gokyer S, Yilgor E, Yilgor I, et al. 3D printed biodegradable polyurethaneurea elastomer recapitulates skeletal muscle structure and function. ACS Biomater Sci Eng. 2021;7(11):5189-5205. doi: 10.1021/acsbiomaterials.1c00703
  102. Latroche C, Gitiaux C, Chrétien F, et al. Skeletal muscle microvasculature: a highly dynamic lifeline. Physiology. 2015;30(6):417-427. doi: 10.1152/physiol.00026.2015
  103. Luo ZY, Tang GS, Ravanbakhsh H, et al. Vertical extrusion cryo(bio)printing for anisotropic tissue manufacturing. Adv Mater. 2022;34(12):2108931. doi: 10.1002/adma.202108931
  104. Kim JH, Seol YJ, Ko IK, et al. 3D bioprinted human skeletal muscle constructs for muscle function restoration. Sci Rep. 2018;8(1):12307. doi: 10.1038/s41598-018-29968-5
  105. Andarawis‐Puri N, Flatow EL, Soslowsky LJ. Tendon basic science: development, repair, regeneration, and healing. J Orthop Res. 2015;33(6):780-784. doi: 10.1002/jor.22869
  106. Zhang YJ, Lei TY, Tang CQ, et al. 3D printing of chemical-empowered tendon stem/progenitor cells for functional tissue repair. Biomaterials. 2021;271:120722. doi: 10.1016/j.biomaterials.2021.120722
  107. Mccormick A, Charlton J, Fleming D. Assessing health needs in primary-care - morbidity study from general-practice provides another source of information. Br Med J. 1995;310(6993):1534. doi: 10.1136/bmj.310.6993.1534d
  108. Murray MM. Current status and potential of primary ACL repair. Clin Sports Med. 2009;28(1):51-61. doi: 10.1016/j.csm.2008.08.005
  109. Li CS, Wang J, Yang WA, et al. 3D-printed hydrogel particles containing PRP laden with TDSCs promote tendon repair in a rat model of tendinopathy. J Nanobiotechnol. 2023;21(1):177. doi: 10.1186/s12951-023-01892-5
  110. Kim D, Kim G. Bioprinted hASC-laden cell constructs with mechanically stable and cell alignment cue for tenogenic differentiation. Biofabrication. 2023;15(4):045006. doi: 10.1088/1758-5090/ace740
  111. Patel M, Amini MH. Management of acute rotator cuff tears. Orthop Clin North Am. 2022;53(1):69-76. doi: 10.1016/j.ocl.2021.08.003
  112. Keener JD, Patterson BM, Orvets N, et al. Degenerative rotator cuff tears: refining surgical indications based on natural history data. J Am Acad Orthop Surg. 2019;27(5):156-165. doi: 10.5435/Jaaos-D-17-00480
  113. Huang Y, He B, Wang L, et al. Bone marrow mesenchymal stem cell-derived exosomes promote rotator cuff tendon-bone healing by promoting angiogenesis and regulating M1 macrophages in rats. Stem Cell Res Ther. 2020;11(1):496. doi: 10.1186/s13287-020-02005-x
  114. Rothrauff BB, Tuan RS. Cellular therapy in bone-tendon interface regeneration. Organogenesis. 2014;10(1):13-28. doi: 10.4161/org.27404
  115. Cao Y, Yang SB, Zhao DY, et al. Three-dimensional printed multiphasic scaffolds with stratified cell-laden gelatin methacrylate hydrogels for biomimetic tendon-to-bone interface engineering. J Orthop Transl. 2020;23:89-100. doi: 10.1016/j.jot.2020.01.004
  116. Gaffney LS, Davis ZG, Mora-Navarro C, et al. Extracellular matrix hydrogels promote expression of muscle-tendon junction proteins. Tissue Eng Part A. 2022;28(5-6):270-282. doi: 10.1089/ten.tea.2021.0070
  117. Hou YB, Gao M, Gao JW, et al. 3D printed conformal strain and humidity sensors for human motion prediction and health monitoring via machine learning. Adv Sci. 2023;10(36):e2304132. doi: 10.1002/advs.202304132
  118. Paterson TE, Hagis N, Boufidis D, et al. Monitoring of hand function enabled by low complexity sensors printed on textile. Flex Print Electron. 2022;7(3):035003. doi: 10.1088/2058-8585/ac7dd1
  119. Chen RY, Pye JS, Li JR, et al. Multiphasic scaffolds for the repair of osteochondral defects: outcomes of preclinical studies. Bioact Mater. 2023;27:505-545. doi: 10.1016/j.bioactmat.2023.04.016
  120. Caliogna L, Bina V, Brancato AM, et al. The Role of PEMFs on Bone Healing: An In Vitro Study. Int J Mol Sci. 2022;23(22):17. doi: 10.3390/ijms232214298
  121. Lang S, Ma J, Gong S, et al. Pulse electromagnetic field for treating postmenopausal osteoporosis: a systematic review and meta‐analysis of randomized controlled trials. Bioelectromagnetics. 2022;43(6):381-393. doi: 10.1002/bem.22419
  122. Tong J, Chen ZY, Sun GH, et al. The efficacy of pulsed electromagnetic fields on pain, stiffness, and physical function in osteoarthritis: a systematic review and meta-analysis. Pain Res Manag. 2022;2022:9939891. doi: 10.1155/2022/9939891
  123. Stefani RM, Barbosa S, Tan ARR, et al. Pulsed electromagnetic fields promote repair of focal articular cartilage defects with engineered osteochondral constructs. Biotechnol Bioeng. 2020;117(5):1584-1596. doi: 10.1002/bit.27287
  124. Liang Q, Ma Y, Yao X, et al. Advanced 3D-printing bioinks for articular cartilage repair. Int J Bioprinting. 2022;8(3):511. doi: 10.18063/ijb.v8i3.511
  125. Pugliese R, Regondi S. Artificial intelligence-empowered 3d and 4d printing technologies toward smarter biomedical materials and approaches. Polymers. 2022;14(14):2794. doi: 10.3390/polym14142794
  126. Gao B, Yang QZ, Zhao X, et al. 4D bioprinting for biomedical applications. Trends Biotechnol. 2016;34(9):746-756. doi: 10.1016/j.tibtech.2016.03.004

 

 

 

 

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing