AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.4999
Cite this article
33
Download
533
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Application of 3D printing in bacterial detection

Tingting Cui1,2 Ziye Xu1,2 Ting Cao1,2*
Show Less
1 Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
2 Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, Zhejiang, China
Submitted: 30 September 2024 | Accepted: 5 November 2024 | Published: 5 November 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Diseases caused by bacterial infections, especially pathogen variations and drug-resistant bacteria, are a serious threat to human health globally. Accurate and rapid identification of bacterial pathogens is essential for early diagnosis of infections and timely treatment of disease. At present, the routine diagnostic methods for identifying bacterial pathogens in clinic are bacterial culture, immunological detection, genetic analysis, etc. These methods occupy foundational position for bacterial detection that favors for clinical diagnosis of pathogen infection in daily life. Notably, 3D printing technology, together with 3D bioprinting technology, provides more options for bacterial detection due to its personalized design and manufacturing. Compared with traditional methods, 3D printing provides a more convenient, rapid and accurate bacterial detection platform, thus meeting the urgent needs of clinical and scientific research. Here, we have summarized the research progress and given a comprehensive review of 3D printing technology in bacterial detection, including bacterial detection sensors, microfluidic chips, bioprinting microarray technology, AI and spectroscopy technology, providing a scientific reference and filling in gaps in 3D printing-assistance bacterial detection. At the same time, technical advantages, challenges and future development trends will also be discussed in related healthcare fields.

Graphical abstract
Keywords
Three-dimensional (3D) printing
Bacterial detection
Bacterial infection
Funding
This work was financially supported by the National Natural Science Foundation of China (Grant Number: 32400074) and Seed Funding of the First Affiliated Hospital, Zhejiang University School of Medicine (Grant Number: BQD2319).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Varadi L, Luo JL, Hibbs DE, et al. Methods for the detection and identification of pathogenic bacteria: past, present, and future. Chem Soc Rev. 2017;46(16):4818-4832. doi: 10.1039/c6cs00693k
  2. Huber F, Lang HP, Lang D, et al. Rapid and ultrasensitive detection of mutations and genes relevant to antimicrobial resistance in bacteria. Glob Chall. 2021;5(2):2000066. doi: 10.1002/gch2.202000066
  3. Tang JW, Yuan Q, Wen XR, et al. Label‐free surface‐enhanced Raman spectroscopy coupled with machine learning algorithms in pathogenic microbial identification: current trends, challenges, and perspectives. Interdiscip Med. 2024;2(3):e20230060. doi: 10.1002/inmd.20230060
  4. Santoni S, Gugliandolo SG, Sponchioni M, Moscatelli D, Colosimo BM. 3D bioprinting: current status and trends—a guide to the literature and industrial practice. Bio-Des Manuf. 2021;5(1):14-42. doi: 10.1007/s42242-021-00165-0
  5. Md Fadilah NI, Khairul Nizam NAA, Fauzi MB. Antibacterial compounds-incorporated functional biomaterials for chronic wound healing application via 3D bioprinting: the mechanism of action. Int J Bioprint. 2024; 10(4):3372. doi: 10.36922/ijb.3372
  6. Pramanik J, Brahma B, Pradhan S, et al. 3D printing application in biomedical—a review. Mater Today Proc. 2023. doi: 10.1016/j.matpr.2023.07.046
  7. Ryoo M, Kim D, Noh J, Ih Ahn S. 3D-printed electronics for biomedical applications. Int J Bioprint. 2024. doi: 10.36922/ijb.4139
  8. Liu Y, Sing S L. A review of advances in additive manufacturing and the integration of high-performance polymers, alloys, and their composites. Mater Sci Addit Manuf. 2023;2(3):1587. doi: 10.36922/msam.1587
  9. Manos J. The human microbiome in disease and pathology. APMIS. 2022;130(12):690-705. doi: 10.1111/apm.13225
  10. Ding X, Ma J, Fan T, et al. Inorganic nanoparticles‐based strategies for the microbial detection in infectious diseases. Interdiscip Med. 2024;2(2):e20230045. doi: 10.1002/inmd.20230045
  11. Sheikhzadeh E, Chamsaz M, Turner APF, Jager EWH, Beni V. Label-free impedimetric biosensor for Salmonella Typhimurium detection based on poly [pyrrole-co-3- carboxyl-pyrrole] copolymer supported aptamer. Biosens Bioelectron. 2016;80:194-200. doi: 10.1016/j.bios.2016.01.057
  12. Nguyen TT, Trinh KTL, Yoon WJ, Lee NY, Ju H. Integration of a microfluidic polymerase chain reaction device and surface plasmon resonance fiber sensor into an inline all-in-one platform for pathogenic bacteria detection. Sens Actuators B. 2017;242:1-8. doi: 10.1016/j.snb.2016.10.137
  13. Jackson N, Wu TZ, Adams-Sapper S, et al. A multiplexed, indirect enzyme-linked immunoassay for the detection and differentiation of E. coli from other Enterobacteriaceae and P. aeruginosa from other glucose non-fermenters. J Microbiol Methods. 2019;158(1):52-58. doi: 10.1016/j.mimet.2019.01.014
  14. Ellington M J, Ekelund O, Aarestrup FM, et al. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin Microbiol Infect. 2017;23(1):2-22. doi: 10.1016/j.cmi.2016.11.012
  15. Shen W, Wang C, Zheng S, et al. Ultrasensitive multichannel immunochromatographic assay for rapid detection of foodborne bacteria based on two-dimensional film-like SERS labels. J Hazard Mater. 2022;437:129347. doi: 10.1016/j.jhazmat.2022.129347
  16. Gopinath SC, Tang TH, Chen Y, Citartan M, Lakshmipriya T. Bacterial detection: from microscope to smartphone. Biosens Bioelectron. 2014;60:332-342. doi: 10.1016/j.bios.2014.04.014
  17. Braga PAC, Tata A, Gonçalves dos Santos V, et al. Bacterial identification: from the agar plate to the mass spectrometer. RSC Adv. 2013;3(4):994-1008. doi: 10.1039/c2ra22063f
  18. Yang M, Wang Z, Su M, et al. Smart nanozymes for diagnosis of bacterial infection: the next frontier from laboratory to bedside testing. ACS Appl Mater Interfaces. 2024;16(34) 44361-44375. doi: 10.1021/acsami.4c07043
  19. Kabiraz MP, Majumdar PR, Mahmud MMC, Bhowmik S, Ali A. Conventional and advanced detection techniques of foodborne pathogens: a comprehensive review. Heliyon. 2023;9(4):e15482. doi: 10.1016/j.heliyon.2023.e15482
  20. Aladhadh M. A review of modern methods for the detection of foodborne pathogens. Microorganisms. 2023;11(5):1111. doi: 10.3390/microorganisms11051111
  21. Rodino Kyle G, Wolf Matthew J, Sheldon S, et al. Detection of tick-borne bacteria from whole blood using 16S ribosomal RNA gene PCR followed by next-generation sequencing. J Clin Microbiol. 2021;59(5):e03129-20. doi: 10.1128/JCM.03129-20
  22. Yang Q, Zu J, Zhang S, et al. An overview of rapid detection methods for Salmonella. Food Control. 2025;167:110771. doi: 10.1016/j.foodcont.2024.110771
  23. Cao X, Chen C, Zhu Q. Biosensors based on functional nucleic acids and isothermal amplification techniques. Talanta. 2023;253:123977. doi: 10.1016/j.talanta.2022.123977
  24. Liu D, Zhu Y, Li N, et al. A portable microfluidic analyzer for integrated bacterial detection using visible loop-mediated amplification. Sens Actuators B. 2020; 310:127834. doi: 10.1016/j.snb.2020.127834
  25. Lu Y, Zhang J, Lu X and Liu Q. Isothermal nucleic acid amplification based microfluidic “lab-on-a-chip” for the detection of pathogenic bacteria and viruses in agri-foods. Trends Food Sci Technol. 2024;148:104482. doi: 10.1016/j.tifs.2024.104482
  26. Gao D, Guo X, Yang Y, et al. Microfluidic chip and isothermal amplification technologies for the detection of pathogenic nucleic acid. J Biol Eng. 2022;16(1):33. doi: 10.1186/s13036-022-00312-w
  27. Kartsova LA, Makeeva DV, Kravchenko AV, Moskvichev D O. Polikarpova DA. Capillary electrophoresis as a powerful tool for the analyses of bacterial samples. Trends Anal Chem. 2021;134:116110. doi: 10.1016/j.trac.2020.116110
  28. Lian DS, Zeng HS. Capillary electrophoresis based on nucleic acid detection as used in food analysis. Compr Rev Food Sci Food Saf. 2017;16(6):1281-1295. doi: 10.1111/1541-4337.12297
  29. Okuda K I, Yoshii Y, Yamada S, et al. Detection of bacterial DNA from central venous catheter removed from patients by next generation sequencing: a preliminary clinical study. Ann Clin Microbiol Antimicrob. 2018;17(1):44. doi: 10.1186/s12941-018-0297-2
  30. Song M, Han C, Liu L, et al. MIST: a microbial identification and source tracking system for next‐generation sequencing data. iMeta. 2023;2(4):e146. doi: 10.1002/imt2.146
  31. Xia H, Zhang Z, Luo C, et al. MultiPrime: a reliable and efficient tool for targeted next-generation sequencing. iMeta. 2023;2(4):e143. doi: 10.1002/imt2.143
  32. Botan A, Campisciano G, Zerbato V, et al. Performance of 16S rRNA gene next-generation sequencing and the culture method in the detection of bacteria in clinical specimens. Diagnostics. 2024;14(13):1318. doi: 10.3390/diagnostics14131318
  33. Zhang M, Wu J, Shi Z, et al. Molecular methods for identification and quantification of foodborne pathogens. Molecules. 2022;27(23):8262. doi: 10.3390/molecules27238262
  34. Yin G, Bie S, Gu H, et al. Application of gene chip technology in the diagnostic and drug resistance detection of Helicobacter pylori in children. J Gastroenterol Hepatol. 2020;35(8):1331-1339. doi: 10.1111/jgh.14980
  35. Ding Q, Zhang W, Guo Y, et al. β-lactamase sensitive probe for rapid detection of antibiotic-resistant bacteria with gas chromatography-tandem mass spectrometry. Anal Chem. 2023;95(14):6098-6106. doi: 10.1021/acs.analchem.3c00381
  36. Olajide OE, Yi Y, Zheng J, Hamid AM. Strain-level discrimination of bacteria by liquid chromatography and paper spray ion mobility mass spectrometry. J Am Soc Mass Spectrom. 2023;34(6):1125-1135. doi: 10.1021/jasms.3c00070
  37. Boardman AK, Wong WS, Premasiri WR, et al. Rapid detection of bacteria from blood with surface-enhanced raman spectroscopy. Anal Chem. 2016;88(16): 8026-8035. doi: 10.1021/acs.analchem.6b01273
  38. Bullock A J, Garcia M, Shepherd J, Rehman I, Sheila M. Bacteria induced pH changes in tissue-engineered human skin detected non-invasively using Raman confocal spectroscopy. Appl Spectrosc Rev. 2019;55(2);158-171. doi: 10.1080/05704928.2018.1558232
  39. Usman M, Tang J W, Li F, et al. Recent advances in surface enhanced Raman spectroscopy for bacterial pathogen identifications. J Adv Res. 2023;51:91-107. doi: 10.1016/j.jare.2022.11.010
  40. Zhu J, Wu P, Chao Y, et al. Recent advances in 3D printing for catalytic applications. Chem Eng J. 2022;433:134341. doi: 10.1016/j.cej.2021.134341
  41. Liu N, Zhang X, Guo Q, Wu T, Wang Y. 3D bioprinted scaffolds for tissue repair and regeneration. Front Mater. 2022;9:925321. doi: 10.3389/fmats.2022.925321
  42. Aimar A, Palermo A, Innocenti B. The role of 3D printing in medical applications: a state of the art. J Healthc Eng. 2019;2019(10):5340616. doi: 10.1155/2019/5340616
  43. Cui M, Pan H, Su Y, et al. Opportunities and challenges of three-dimensional printing technology in pharmaceutical formulation development. Acta Pharm Sin B. 2021;11(8):2488-2504. doi: 10.1016/j.apsb.2021.03.015
  44. Nadagouda MN, Rastogi V, Ginn M. A review on 3D printing techniques for medical applications. Curr Opin Chem Eng. 2020;28:152-157. doi: 10.1016/j.coche.2020.05.007
  45. Alami A H, Ghani Olabi A, Alashkar A, et al. Additive manufacturing in the aerospace and automotive industries: recent trends and role in achieving sustainable development goals. Ain Shams Eng J. 2023;14(11):102516. doi: 10.1016/j.asej.2023.102516
  46. Bici A and Yunitsyna A. Analysis of 3D printing techniques for building construction: a review. Constr Robot. 2023;7(2):107-123. doi: 10.1007/s41693-023-00108-4
  47. Hussain S, Malakar S, Arora VK. Extrusion-based 3D food printing: technological approaches, material characteristics, printing stability, and post-processing. Food Eng. Rev. 2022;14(1):100-119. doi: 10.1007/s12393-021-09293-w
  48. Wang S, Zhao S, Yu J, Gu Z, Zhang Y. Advances in translational 3D printing for cartilage, bone, and osteochondral tissue engineering. Small. 2022;18(36):e2201869. doi: 10.1002/smll.202201869
  49. Cresswell-Boyes AJ, Davis GR, Krishnamoorthy M, Mills D, Barber AH. Composite 3D printing of biomimetic human teeth. Sci Rep. 2022;12(1):7830. doi: 10.1038/s41598-022-11658-y
  50. Vernon MJ, Mela P, Dilley RJ, et al. 3D printing of heart valves. Trends Biotechnol. 2024;42(5):612-630. doi: 10.1016/j.tibtech.2023.11.001
  51. Huang G, Zhao Y, Chen D, et al. Applications, advancements, and challenges of 3D bioprinting in organ transplantation. Biomater Sci. 2024;12(6):1425-1448. doi: 10.1039/d3bm01934a
  52. Herzog J, Franke L, Lai Y, et al. 3D bioprinting of microorganisms: principles and applications. Bioprocess Biosyst Eng. 2024;47(4):443-461. doi: 10.1007/s00449-023-02965-3
  53. Fu Z, Naghieh S, Xu C, et al. Printability in extrusion bioprinting. Biofabrication. 2021;13(3):033001. doi: 10.1088/1758-5090/abe7ab
  54. Bartolo P, Malshe A, Ferraris E, Koc B. 3D bioprinting: materials, processes, and applications. CIRP Ann. 2022;71(2):577-597. doi: 10.1016/j.cirp.2022.06.001
  55. Ng WL, Shkolnikov V. Jetting-based bioprinting: process, dispense physics, and applications. Bio-Des Manuf. 2024;7(5):771-799. doi: 10.1007/s42242-024-00285-3
  56. Choudary R, Saini N, Chopra DS, Singh D, Singh N. A comprehensive review of 3D bioprinting biomaterials: properties, strategies and wound healing application. J Mater Res. 2023;38(13):3264-3300. doi: 10.1557/s43578-023-01078-7
  57. McMillan A, McMillan N, Gupta N, Kanotra S P, Salem AK. 3D bioprinting in otolaryngology: a review. Adv Healthcare Mater. 2023;12(19):e2203268. doi: 10.1002/adhm.202203268
  58. Jentsch S, Nasehi R, Kuckelkorn C, et al. Multiscale 3D bioprinting by nozzle-free acoustic droplet ejection. Small Methods. 2021;5(6):e2000971. doi: 10.1002/smtd.202000971
  59. Ng WL, Lee JM, Yeong WY, Win Naing M. Microvalve-based bioprinting - process, bio-inks and applications. Biomater Sci. 2017;5(4):632-647. doi: 10.1039/c6bm00861e
  60. Li Y, Zhang X, Zhang X, Zhang Y, Hou D. Recent progress of the vat photopolymerization technique in tissue engineering: a brief review of mechanisms, methods, materials, and applications. Polymers. 2023;15(19):3940. doi: 10.3390/polym15193940
  61. Frankowski J, Kurzatkowska M, Sobczak M, Piotrowska U. Utilization of 3D bioprinting technology in creating human tissue and organoid models for preclinical drug research— State-of-the-art. Int J Pharm. 2023;644(11):123313. doi: 10.1016/j.ijpharm.2023.123313
  62. Seo JW, Kim GM, Choi Y, Cha JM, Bae H. Improving printability of digital-light-processing 3D bioprinting via photoabsorber pigment adjustment. Int J Mol Sci. 2022;23(10):5428. doi: 10.3390/ijms23105428
  63. Xu HQ, Liu JC, Zhang ZY, Xu CX. A review on cell damage, viability, and functionality during 3D bioprinting. Mil Med Res. 2022;9(1):70. doi: 10.1186/s40779-022-00429-5
  64. Lepowsky E, Muradoglu M, Tasoglu S. Towards preserving post-printing cell viability and improving the resolution: past, present, and future of 3D bioprinting theory. Bioprinting. 2018;11:e00034. doi: 10.1016/j.bprint.2018.e00034
  65. Wang J, Cui Z, Maniruzzaman M. Bioprinting: a focus on improving bioink printability and cell performance based on different process parameters. Int J Pharm. 2023;640:123020. doi: 10.1016/j.ijpharm.2023.123020
  66. Zhao T, Liu Y, Wu Y, Zhao M, Zhao Y. Controllable and biocompatible 3D bioprinting technology for microorganisms: fundamental, environmental applications and challenges. Biotechnol Adv. 2023;69(2):108243. doi: 10.1016/j.biotechadv.2023.108243
  67. Prabhakaran P, Palaniyandi T, Kanagavalli B, et al. Prospect and retrospect of 3D bio-printing. Acta Histochem. 2022;124(7):151932. doi: 10.1016/j.acthis.2022.151932
  68. Gungor-Ozkerim PS, Inci I, Zhang Y S, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915-946. doi: 10.1039/c7bm00765e
  69. Jia W, Yang X, Liu Z, et al. Nasal cartilage tissue engineering materials based on 3D bioprinting: seed cells and dECM. Appl Mater Today. 2024;40(1):102364. doi: 10.1016/j.apmt.2024.102364
  70. Sasikumar SC, Goswami U, Raichur AM. 3D bioprinting with visible light cross-linkable mucin-hyaluronic acid composite bioink for lung tissue engineering. ACS Appl Bio Mater. 2024;7(8):5411-5422. doi: 10.1021/acsabm.4c00579
  71. Breathwaite E, Weaver J, Odanga J, Dela Pena-Ponce M, Lee JB. 3D bioprinted osteogenic tissue models for in vitro drug screening. Molecules. 2020;25(15):3442. doi: 10.3390/molecules25153442
  72. Salles GR, Dall’Agnol Ferreira N, Pacheco‐Soares C, Porcionatto MA. 3D bioprinted human neuron‐like spheroids as an in vitro model for neurodegenerative diseases. Alzheimers Dement. 2023;19(S13):e075956. doi: 10.1002/alz.075956
  73. Chua CK, An J, Fan S, et al. A perspective on transformative bioprinting. Int J Bioprint. 2024. doi: 10.36922/ijb.3525
  74. Mori S, Ishiguro S, Miyazaki S, et al. Usefulness of a 3D-printing air sampler for capturing live airborne bacteria and exploring the environmental factors that can influence bacterial dynamics. Res Microbiol. 2021;172(6):103864. doi: 10.1016/j.resmic.2021.103864
  75. Joskowiak A, Nogueira CL, Costa SP, et al. A magnetic nanoparticle-based microfluidic device fabricated using a 3D-printed mould for separation of Escherichia coli from blood. Microchim Acta. 2023;190(9):356. doi: 10.1007/s00604-023-05924-7
  76. Lee W, Kwon D, Choi W, Jung GY, Jeon S. 3D-printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section. Sci Rep. 2015;5(1):7717. doi: 10.1038/srep07717
  77. Pahlow S, Hentschel S, Horbert P, et al. Isolation of pathogenic bacteria from sputum samples using a 3D-printed cartridge system. Anal Methods. 2021;13(41):4884-4895. doi: 10.1039/d1ay00924a
  78. Feng S, Mo K, Song X. 3D printed microfluidic chip integrated with nanointerferometer for multiplex detection of foodborne pathogens. AIP Adv. 2024;14(6):065033. doi: 10.1063/5.0208274
  79. Malhotra S, Pham DS, Lau MPH, Nguyen AH, Cao H. A low-cost, 3D-printed biosensor for rapid detection of Escherichia coli. Sensors. 2022;22(6):2382. doi: 10.3390/s22062382
  80. Aliyazdi S, Frisch S, Hidalgo A, et al. 3D bioprinting of E. coli MG1655 biofilms on human lung epithelial cells for building complexin vitroinfection models.Biofabrication. 2023;15(3):035019. doi: 10.1088/1758-5090/acd95e
  81. Xu Y, Zhang Q, Li Y, Pang X, Cheng N. A 3D-printed integrated handheld biosensor for the detection of vibrio parahaemolyticus. Foods. 2024;13(11):1775. doi: 10.3390/foods13111775
  82. Angelopoulou M, Kourti D, Mertiri M, et al. A 3D-printed electrochemical immunosensor employing Cd/Se ZnS QDs as labels for the rapid and ultrasensitive detection of Salmonella typhimurium in poultry samples. Chemosensors. 2023;11(9):475. doi: 10.3390/chemosensors11090475
  83. Yin P, Wang J, Li T, et al. A smartphone-based fluorescent sensor for rapid detection of multiple pathogenic bacteria. Biosens Bioelectron. 2023;242(3):115744. doi: 10.1016/j.bios.2023.115744
  84. Zhang T, Monia Kabandana GK, Ratajczak AM, Chen C. A quantitative sensing system based on a 3D-printed ion-selective electrode for rapid and sensitive detection of bacteria in biological fluid. Talanta. 2022;238(Pt 2):123040. doi: 10.1016/j.talanta.2021.123040
  85. Panda S, Hajra S, Kim HG, et al. Carbohydrate-protein interaction-based detection of pathogenic bacteria using a biodegradable self-powered biosensor. J Mater Chem B. 2023;11(42):10147-10157. doi: 10.1039/d3tb01820b
  86. Park C, Lee J, Kim Y, et al. 3D-printed microfluidic magnetic preconcentrator for the detection of bacterial pathogen using an ATP luminometer and antibody-conjugated magnetic nanoparticles. J Microbiol Methods. 2017;132:128-133. doi: 10.1016/j.mimet.2016.12.001
  87. Kim Y, Lee J, Park S. A 3D-printed millifluidic platform enabling bacterial preconcentration and DNA purification for molecular detection of pathogens in blood. Micromachines. 2018;9(9):472. doi: 10.3390/mi9090472
  88. Yin K, Ding X, Xu Z, et al. Multiplexed colorimetric detection of SARS-CoV-2 and other pathogens in wastewater on a 3D printed integrated microfluidic chip. Sens Actuators B. 2021;344:130242. doi: 10.1016/j.snb.2021.130242
  89. Srikanth S, Jayapiriya US, Dubey SK, Javed A, Goel S. A lab-on-chip platform for simultaneous culture and electrochemical detection of bacteria. iScience. 2022;25(11):105388. doi: 10.1016/j.isci.2022.105388
  90. Dey P, Fabri-Faja N, Calvo-Lozano O, et al. Label-free bacteria quantification in blood plasma by a bioprinted microarray based interferometric point-of-care device. ACS Sens. 2019;4(1):52-60. doi: 10.1021/acssensors.8b00789
  91. Al-Taie A, Han X, Williams CM, et al. 3-D printed polyvinyl alcohol matrix for detection of airborne pathogens in respiratory bacterial infections. Microbiol Res. 2020;241(20):126587. doi: 10.1016/j.micres.2020.126587
  92. Sharma A, Sharma A, Malhotra R, et al. An accurate artificial intelligence system for the detection of pulmonary and extra pulmonary Tuberculosis. Tuberculosis. 2021;131: 102143. doi: 10.1016/j.tube.2021.102143
  93. Nehal SA, Roy D, Devi M, Srinivas T. Highly sensitive lab-on-chip with deep learning AI for detection of bacteria in water. Int J Inf Technol. 2019;12(2):495-501. doi: 10.1007/s41870-019-00363-1
  94. Cui R, Tang H, Huang Q, et al. AI-assisted smartphone-based colorimetric biosensor for visualized, rapid and sensitive detection of pathogenic bacteria. Biosens Bioelectron. 2024;259(8):116369. doi: 10.1016/j.bios.2024.116369
  95. Safir F, Vu N, Tadesse LF, et al. Combining acoustic bioprinting with AI-assisted Raman spectroscopy for high-throughput identification of bacteria in blood. Nano Lett. 2023;23(6):2065-2073. doi: 10.1021/acs.nanolett.2c03015
  96. Law JW-F, Ab Mutalib N-S, Chan K-G, Lee L-H. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol. 2015;5(770):770. doi: 10.3389/fmicb.2014.00770
  97. Kim SO, Kim SS. Bacterial pathogen detection by conventional culture‐based and recent alternative (polymerase chain reaction, isothermal amplification, enzyme linked immunosorbent assay, bacteriophage amplification, and gold nanoparticle aggregation) methods in food samples: a review. J Food Saf. 2020;41(1):e12870. doi: 10.1111/jfs.12870

 

 

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing