AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.5178
RESEARCH ARTICLE

Primitive regenerated-tissue evolution in situ after implantation of a 3D-printed tracheal graft

Sen-Ei Shai1,2,3* Yi-Ling Lai1 Yi-Wen Hung4,5 Chi-Wei Hsieh6 Kuo-Chih Su7 Chun-Hsiang Wang7 Te-Hsin Chao8 Yung-Tsung Chiu9 Chia-Ching Wu6,10 Shih-Chieh Hung11,12
Show Less
1 Department of Surgery, Division of Thoracic Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
2 Department of Applied Chemistry, Faculty of Science and Technology, National Chi Nan University, Nantou, Taiwan
3 Department of Medicine, Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
4 Animal Radiation Therapy Research Center, Central Taiwan University of Science and Technology, Taichung, Taiwan
5 Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
6 Department of Medicine, School of Medicine, National Cheng Kung University, Tainan, Taiwan
7 Department of Medical Research, Three-Dimensional Printing Research and Development Group, Taichung Veterans General Hospital, Taichung, Taiwan
8 Division of Colon and Rectal Surgery, Department of Surgery, Chiayi and Wangiao Branch, Taichung Veterans General Hospital, Chiayi, Taiwan
9 Department of Medical Research and Education, Taichung Veterans General Hospital, Taichung, Taiwan
10 Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
11 Integrative Stem Cell Center, China Medical University Hospital, Taichung, Taiwan
12 Institute of New Drug Development, China Medical University, Taichung, Taiwan
Submitted: 17 October 2024 | Accepted: 12 November 2024 | Published: 13 November 2024
(This article belongs to the Special Issue 3D Printing for Tissue Engineering and Regenerative Medicine-Series 2)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Tissue-engineered trachea offers a potential solution for patients needing long-segment tracheal resections. In our research, robust neotissue growth, including cartilage, muscle, adipose, and glands, was observed on the external surface of three-dimensional (3D)-printed tracheal grafts transplanted into a 3-month-old large-scale porcine, noticeable after 7 days. This study is the first to categorize the regeneration stages in detail, aiming for a clearer understanding of the cell development process, as previous studies have not fully elucidated the mechanisms of chondrogenesis and glandogenesis. We have identified four stages of chondrogenesis based on chondrocyte numbers, protein expression, and perichondrium presence. Muscle cells evolved from a fibroblast-like state, confirmed by alpha-smooth muscle actin and smooth muscle-myosin heavy chain markers, while initial adipose tissue resembling brown fat diminished over time. Gland development, marked by a change in MUC5B expression, paralleled the findings in native trachea epithelium and submucosal glands. Transforming growth factor-β1 and type XII collagen were key indicators in the emerging neotissue post-transplant.

Graphical abstract
Keywords
Primitive regenerated-tissue evolution
Vivid neotissue growth
Glandogenesis
Tracheal graft transplantation
Funding
This research was funded by the Ministry of Science and Technology, Taiwan (Grant No. MOST 110-2314-B-075A-013-1); Yen Tjing Ling Medical Foundation, Taiwan (Grant No. CI-112-9); Taichung Veterans General Hospital and National Yang-Ming University, Taiwan (Grant No. TCVGH-YM1100104); Taichung Veterans General Hospital and National Yang-Ming University, Taiwan (Grant No. TCVGH-YM1110105); and Taichung Veterans General Hospital, Taiwan, (Grant No. TCVGH-1104701C).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Nakanishi R. Cryopreservation of the tracheal grafts: review and perspective. Organogenesis. 2009;5(3):113-118. doi: 10.4161/org.5.3.9494
  2. Han Y, Lan N, Pang C, Tong X. Bone marrow-derived mesenchymal stem cells enhance cryopreserved trachea allograft epithelium regeneration and vascular endothelial growth factor expression. Transplantation. 2011;92(6):620-626. doi: 10.1097/TP.0b013e31822a4082
  3. Martinod E, Seguin A, Radu DM, et al. Airway transplantation: a challenge for regenerative medicine. Eur J Med Res. 2013;18(1):25. doi: 10.1186/2047-783x-18-25
  4. Candas F, Gorur R, Haholu A, et al. Is tracheal transplantation possible with cryopreserved tracheal allograft and hyperbaric oxygen therapy? An experimental study. Ann Thorac Surg. 2016;101(3):1139-1144. doi: 10.1016/j.athoracsur.2015.09.018
  5. Al-Ayoubi AM, Rehmani SS, Sinclair CF, Lebovics RS, Bhora FY. Reconstruction of anterior tracheal defects using a bioengineered graft in a porcine model. Ann Thorac Surg. 2017;103(2):381-389. doi: 10.1016/j.athoracsur.2016.10.034
  6. Ott LM, Weatherly RA, Detamore MS. Overview of tracheal tissue engineering: clinical need drives the laboratory approach. Ann Biomed Eng. 2011;39(8):2091-2113. doi: 10.1007/s10439-011-0318-1
  7. Zhao L, Sundaram S, Le AV, et al. Engineered tissue-stent biocomposites as tracheal replacements. Tissue Eng Part A. 2016;22(17-18):1086-1097. doi: 10.1089/ten.TEA.2016.0132
  8. Weidenbecher M, Tucker HM, Gilpin DA, Dennis JE. Tissue-engineered trachea for airway reconstruction. Laryngoscope. 2009;119(11):2118-2123. doi: 10.1002/lary.20700
  9. Komura M, Komura H, Kanamori Y, et al. An animal model study for tissue-engineered trachea fabricated from a biodegradable scaffold using chondrocytes to augment repair of tracheal stenosis. J Pediatr Surg. 2008;43(12): 2141-2146. doi: 10.1016/j.jpedsurg.2008.08.038
  10. Luo X, Liu Y, Zhang Z, et al. Long-term functional reconstruction of segmental tracheal defect by pedicled tissue-engineered trachea in rabbits. Biomaterials. 2013;34(13):3336-3344. doi: 10.1016/j.biomaterials.2013.01.060
  11. Gao M, Zhang H, Dong W, et al. Tissue-engineered trachea from a 3D-printed scaffold enhances whole-segment tracheal repair. Sci Rep. 2017;7(1):5246. doi: 10.1038/s41598-017-05518-3
  12. Yahaya B. Understanding cellular mechanisms underlying airway epithelial repair: selecting the most appropriate animal models. Sci World J. 2012;2012:961684. doi: 10.1100/2012/961684
  13. Rehmani SS, Al-Ayoubi AM, Ayub A, et al. Three-dimensional-printed bioengineered tracheal grafts: preclinical results and potential for human use. Ann Thorac Surg. 2017;104(3):998-1004. doi: 10.1016/j.athoracsur.2017.03.051
  14. Park JH, Ahn M, Park SH, et al. 3D bioprinting of a trachea-mimetic cellular construct of a clinically relevant size. Biomaterials. 2021;279:121246. doi: 10.1016/j.biomaterials.2021.121246
  15. Martinod E, Chouahnia K, Radu DM, et al. Feasibility of bioengineered tracheal and bronchial reconstruction using stented aortic matrices. JAMA. 2018;319(21):2212-2222. doi: 10.1001/jama.2018.4653
  16. Martinod E, Paquet J, Dutau H, et al. In vivo tissue engineering of human airways. Ann Thorac Surg. 2017;103(5):1631-1640. doi: 10.1016/j.athoracsur.2016.11.027
  17. Halwani R, Al-Muhsen S, Al-Jahdali H, Hamid Q. Role of transforming growth factor-β in airway remodeling in asthma. Am J Respir Cell Mol Biol. 2011;44(2):127-133. doi: 10.1165/rcmb.2010-0027TR
  18. Lee P, Kupeli E, Mehta AC. Airway stents. Clin Chest Med. 2010;31(1):141-150, Table of Contents. doi: 10.1016/j.ccm.2009.08.002
  19. Shai SE, Lai YL, Hsieh CW, Hung SC. A modified procedure of T-tube maneuver to treat tracheal total obstruction involving ablative bronchoscopy sparing open surgical intervention. JTCVS Tech. 2023;22:317-330. doi: 10.1016/j.xjtc.2023.09.004
  20. Shai SE, Lai YL, Hung YW, et al. De novo cartilage growth after implantation of a 3-D-printed tracheal graft in a porcine model. Am J Transl Res. 2020;12(7):3728-3740.
  21. Ponte AL, Marais E, Gallay N, et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells. 2007;25(7):1737-1745. doi: 10.1634/stemcells.2007-0054
  22. Okuda K, Chen G, Subramani DB, et al. Localization of secretory mucins MUC5AC and MUC5B in normal/ healthy human airways. Am J Respir Crit Care Med. 2019;199(6):715-727. doi: 10.1164/rccm.201804-0734OC
  23. Lee J, Yi S, Chang JY, et al. Regeneration of thyroid follicles from primordial cells in a murine thyroidectomized model. Lab Invest. 2017;97(4):478-489. doi: 10.1038/labinvest.2016.158
  24. Sun H, Mei L, Song C, Cui X, Wang P. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials. 2006;27(9):1735-1740. doi: 10.1016/j.biomaterials.2005.09.019
  25. Gao F, Chiu SM, Motan DA, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 2016;7(1):e2062. doi: 10.1038/cddis.2015.327
  26. Tracy LE, Minasian RA, Caterson EJ. Extracellular matrix and dermal fibroblast function in the healing wound. Adv Wound Care (New Rochelle). 2016;5(3):119-136. doi: 10.1089/wound.2014.0561
  27. Gabner S, Häusler G, Böck P. Vascular canals in permanent hyaline cartilage: development, corrosion of nonmineralized cartilage matrix, and removal of matrix degradation products. Anat Rec (Hoboken). 2017;300(6):1067-1082. doi: 10.1002/ar.23537
  28. Kesimer M, Kirkham S, Pickles RJ, et al. Tracheobronchial air-liquid interface cell culture: a model for innate mucosal defense of the upper airways? Am J Physiol Lung Cell Mol Physiol. 2009;296(1):L92-l100. doi: 10.1152/ajplung.90388.2008
  29. Buisine MP, Devisme L, Copin MC, et al. Developmental mucin gene expression in the human respiratory tract. Am J Respir Cell Mol Biol. 1999;20(2):209-218. doi: 10.1165/ajrcmb.20.2.3259
  30. Kirkham S, Sheehan JK, Knight D, Richardson PS, Thornton DJ. Heterogeneity of airways mucus: variations in the amounts and glycoforms of the major oligomeric mucins MUC5AC and MUC5B. Biochem J. 2002;361(Pt 3):537-546. doi: 10.1042/0264-6021:3610537
  31. Kesimer M, Ehre C, Burns KA, Davis CW, Sheehan JK, Pickles RJ. Molecular organization of the mucins and glycocalyx underlying mucus transport over mucosal surfaces of the airways. Mucosal Immunol. 2013;6(2):379-392. doi: 10.1038/mi.2012.81
  32. Audie JP, Janin A, Porchet N, Copin MC, Gosselin B, Aubert JP. Expression of human mucin genes in respiratory, digestive, and reproductive tracts ascertained by in situ hybridization. J Histochem Cytochem. 1993;41(10):1479-1485. doi: 10.1177/41.10.8245407
  33. Groneberg DA, Eynott PR, Oates T, et al. Expression of MUC5AC and MUC5B mucins in normal and cystic fibrosis lung. Respir Med. 2002;96(2):81-86. doi: 10.1053/rmed.2001.1221
  34. Groneberg DA, Eynott PR, Lim S, et al. Expression of respiratory mucins in fatal status asthmaticus and mild asthma. Histopathology. 2002;40(4):367-373. doi: 10.1046/j.1365-2559.2002.01378.x
  35. Hovenberg HW, Davies JR, Carlstedt I. Different mucins are produced by the surface epithelium and the submucosa in human trachea: identification of MUC5AC as a major mucin from the goblet cells. Biochem J. 1996;318 (Pt 1):319-324. doi: 10.1042/bj3180319
  36. Young HW, Williams OW, Chandra D, et al. Central role of Muc5ac expression in mucous metaplasia and its regulation by conserved 5’ elements. Am J Respir Cell Mol Biol. 2007;37(3):273-290. doi: 10.1165/rcmb.2005-0460OC
  37. Bonser LR, Zlock L, Finkbeiner W, Erle DJ. Epithelial tethering of MUC5AC-rich mucus impairs mucociliary transport in asthma. J Clin Invest. 2016;126(6):2367-2371. doi: 10.1172/jci84910
  38. Park JA, Tschumperlin DJ. Chronic intermittent mechanical stress increases MUC5AC protein expression. Am J Respir Cell Mol Biol. 2009;41(4):459-466. doi: 10.1165/rcmb.2008-0195OC
  39. Darby IA, Laverdet B, Bonté F, Desmoulière A. Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol. 2014;7:301-311. doi: 10.2147/ccid.S50046
  40. Alexander MR, Owens GK. Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annu Rev Physiol. 2012;74:13-40. doi: 10.1146/annurev-physiol-012110-142315
  41. Seeger T, Hart M, Patarroyo M, Rolauffs B, Aicher WK, Klein G. Mesenchymal stromal cells for sphincter regeneration: role of laminin isoforms upon myogenic differentiation. PLoS One. 2015;10(9):e0137419. doi: 10.1371/journal.pone.0137419
  42. Shi N, Chen SY. From nerve to blood vessel: a new role of Olfm2 in smooth muscle differentiation from human embryonic stem cell-derived mesenchymal cells. J Biomed Res. 2015;29(4):261-263. doi: 10.7555/jbr.29.20150027
  43. Dauncey MJ, Wooding FB, Ingram DL. Evidence for the presence of brown adipose tissue in the pig. Res Vet Sci. 1981;31(1):76-81.
  44. Taylor DW, Ahmed N, Parreno J, et al. Collagen type XII and versican are present in the early stages of cartilage tissue formation by both redifferentating passaged and primary chondrocytes. Tissue Eng Part A. 2015;21(3-4): 683-693. doi: 10.1089/ten.TEA.2014.0103
  45. Nakamura T, Sato T, Araki M, et al. In situ tissue engineering for tracheal reconstruction using a luminar remodeling type of artificial trachea. J Thorac Cardiovasc Surg. 2009;138(4):811-819. doi: 10.1016/j.jtcvs.2008.07.072
  46. Weber JF, Rehmani SS, Baig MZ, Jadoon Y, Bhora FY. Successes and failures in tracheal bioengineering: lessons learned. Ann Thorac Surg. 2021;112(4):1089-1094. doi: 10.1016/j.athoracsur.2020.10.021
  47. Kastanos N, Estopá Miró R, Marín Perez A, Xaubet Mir A, Agustí-Vidal A. Laryngotracheal injury due to endotracheal intubation: incidence, evolution, and predisposing factors. A prospective long-term study. Crit Care Med. 1983;11(5):362-367. doi: 10.1097/00003246-198305000-00009
  48. Dooms C, De Keukeleire T, Janssens A, Carron K. Performance of fully covered self-expanding metallic stents in benign airway strictures. Respiration. 2009;77(4):420-426. doi: 10.1159/000203364
  49. Sarper A, Ayten A, Eser I, Ozbudak O, Demircan A. Tracheal stenosis aftertracheostomy or intubation: review with special regard to cause and management. Tex Heart Inst J. 2005;32(2):154-158.

 

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing