Primitive regenerated-tissue evolution in situ after implantation of a 3D-printed tracheal graft
Tissue-engineered trachea offers a potential solution for patients needing long-segment tracheal resections. In our research, robust neotissue growth, including cartilage, muscle, adipose, and glands, was observed on the external surface of three-dimensional (3D)-printed tracheal grafts transplanted into a 3-month-old large-scale porcine, noticeable after 7 days. This study is the first to categorize the regeneration stages in detail, aiming for a clearer understanding of the cell development process, as previous studies have not fully elucidated the mechanisms of chondrogenesis and glandogenesis. We have identified four stages of chondrogenesis based on chondrocyte numbers, protein expression, and perichondrium presence. Muscle cells evolved from a fibroblast-like state, confirmed by alpha-smooth muscle actin and smooth muscle-myosin heavy chain markers, while initial adipose tissue resembling brown fat diminished over time. Gland development, marked by a change in MUC5B expression, paralleled the findings in native trachea epithelium and submucosal glands. Transforming growth factor-β1 and type XII collagen were key indicators in the emerging neotissue post-transplant.
- Nakanishi R. Cryopreservation of the tracheal grafts: review and perspective. Organogenesis. 2009;5(3):113-118. doi: 10.4161/org.5.3.9494
- Han Y, Lan N, Pang C, Tong X. Bone marrow-derived mesenchymal stem cells enhance cryopreserved trachea allograft epithelium regeneration and vascular endothelial growth factor expression. Transplantation. 2011;92(6):620-626. doi: 10.1097/TP.0b013e31822a4082
- Martinod E, Seguin A, Radu DM, et al. Airway transplantation: a challenge for regenerative medicine. Eur J Med Res. 2013;18(1):25. doi: 10.1186/2047-783x-18-25
- Candas F, Gorur R, Haholu A, et al. Is tracheal transplantation possible with cryopreserved tracheal allograft and hyperbaric oxygen therapy? An experimental study. Ann Thorac Surg. 2016;101(3):1139-1144. doi: 10.1016/j.athoracsur.2015.09.018
- Al-Ayoubi AM, Rehmani SS, Sinclair CF, Lebovics RS, Bhora FY. Reconstruction of anterior tracheal defects using a bioengineered graft in a porcine model. Ann Thorac Surg. 2017;103(2):381-389. doi: 10.1016/j.athoracsur.2016.10.034
- Ott LM, Weatherly RA, Detamore MS. Overview of tracheal tissue engineering: clinical need drives the laboratory approach. Ann Biomed Eng. 2011;39(8):2091-2113. doi: 10.1007/s10439-011-0318-1
- Zhao L, Sundaram S, Le AV, et al. Engineered tissue-stent biocomposites as tracheal replacements. Tissue Eng Part A. 2016;22(17-18):1086-1097. doi: 10.1089/ten.TEA.2016.0132
- Weidenbecher M, Tucker HM, Gilpin DA, Dennis JE. Tissue-engineered trachea for airway reconstruction. Laryngoscope. 2009;119(11):2118-2123. doi: 10.1002/lary.20700
- Komura M, Komura H, Kanamori Y, et al. An animal model study for tissue-engineered trachea fabricated from a biodegradable scaffold using chondrocytes to augment repair of tracheal stenosis. J Pediatr Surg. 2008;43(12): 2141-2146. doi: 10.1016/j.jpedsurg.2008.08.038
- Luo X, Liu Y, Zhang Z, et al. Long-term functional reconstruction of segmental tracheal defect by pedicled tissue-engineered trachea in rabbits. Biomaterials. 2013;34(13):3336-3344. doi: 10.1016/j.biomaterials.2013.01.060
- Gao M, Zhang H, Dong W, et al. Tissue-engineered trachea from a 3D-printed scaffold enhances whole-segment tracheal repair. Sci Rep. 2017;7(1):5246. doi: 10.1038/s41598-017-05518-3
- Yahaya B. Understanding cellular mechanisms underlying airway epithelial repair: selecting the most appropriate animal models. Sci World J. 2012;2012:961684. doi: 10.1100/2012/961684
- Rehmani SS, Al-Ayoubi AM, Ayub A, et al. Three-dimensional-printed bioengineered tracheal grafts: preclinical results and potential for human use. Ann Thorac Surg. 2017;104(3):998-1004. doi: 10.1016/j.athoracsur.2017.03.051
- Park JH, Ahn M, Park SH, et al. 3D bioprinting of a trachea-mimetic cellular construct of a clinically relevant size. Biomaterials. 2021;279:121246. doi: 10.1016/j.biomaterials.2021.121246
- Martinod E, Chouahnia K, Radu DM, et al. Feasibility of bioengineered tracheal and bronchial reconstruction using stented aortic matrices. JAMA. 2018;319(21):2212-2222. doi: 10.1001/jama.2018.4653
- Martinod E, Paquet J, Dutau H, et al. In vivo tissue engineering of human airways. Ann Thorac Surg. 2017;103(5):1631-1640. doi: 10.1016/j.athoracsur.2016.11.027
- Halwani R, Al-Muhsen S, Al-Jahdali H, Hamid Q. Role of transforming growth factor-β in airway remodeling in asthma. Am J Respir Cell Mol Biol. 2011;44(2):127-133. doi: 10.1165/rcmb.2010-0027TR
- Lee P, Kupeli E, Mehta AC. Airway stents. Clin Chest Med. 2010;31(1):141-150, Table of Contents. doi: 10.1016/j.ccm.2009.08.002
- Shai SE, Lai YL, Hsieh CW, Hung SC. A modified procedure of T-tube maneuver to treat tracheal total obstruction involving ablative bronchoscopy sparing open surgical intervention. JTCVS Tech. 2023;22:317-330. doi: 10.1016/j.xjtc.2023.09.004
- Shai SE, Lai YL, Hung YW, et al. De novo cartilage growth after implantation of a 3-D-printed tracheal graft in a porcine model. Am J Transl Res. 2020;12(7):3728-3740.
- Ponte AL, Marais E, Gallay N, et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells. 2007;25(7):1737-1745. doi: 10.1634/stemcells.2007-0054
- Okuda K, Chen G, Subramani DB, et al. Localization of secretory mucins MUC5AC and MUC5B in normal/ healthy human airways. Am J Respir Crit Care Med. 2019;199(6):715-727. doi: 10.1164/rccm.201804-0734OC
- Lee J, Yi S, Chang JY, et al. Regeneration of thyroid follicles from primordial cells in a murine thyroidectomized model. Lab Invest. 2017;97(4):478-489. doi: 10.1038/labinvest.2016.158
- Sun H, Mei L, Song C, Cui X, Wang P. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials. 2006;27(9):1735-1740. doi: 10.1016/j.biomaterials.2005.09.019
- Gao F, Chiu SM, Motan DA, et al. Mesenchymal stem cells and immunomodulation: current status and future prospects. Cell Death Dis. 2016;7(1):e2062. doi: 10.1038/cddis.2015.327
- Tracy LE, Minasian RA, Caterson EJ. Extracellular matrix and dermal fibroblast function in the healing wound. Adv Wound Care (New Rochelle). 2016;5(3):119-136. doi: 10.1089/wound.2014.0561
- Gabner S, Häusler G, Böck P. Vascular canals in permanent hyaline cartilage: development, corrosion of nonmineralized cartilage matrix, and removal of matrix degradation products. Anat Rec (Hoboken). 2017;300(6):1067-1082. doi: 10.1002/ar.23537
- Kesimer M, Kirkham S, Pickles RJ, et al. Tracheobronchial air-liquid interface cell culture: a model for innate mucosal defense of the upper airways? Am J Physiol Lung Cell Mol Physiol. 2009;296(1):L92-l100. doi: 10.1152/ajplung.90388.2008
- Buisine MP, Devisme L, Copin MC, et al. Developmental mucin gene expression in the human respiratory tract. Am J Respir Cell Mol Biol. 1999;20(2):209-218. doi: 10.1165/ajrcmb.20.2.3259
- Kirkham S, Sheehan JK, Knight D, Richardson PS, Thornton DJ. Heterogeneity of airways mucus: variations in the amounts and glycoforms of the major oligomeric mucins MUC5AC and MUC5B. Biochem J. 2002;361(Pt 3):537-546. doi: 10.1042/0264-6021:3610537
- Kesimer M, Ehre C, Burns KA, Davis CW, Sheehan JK, Pickles RJ. Molecular organization of the mucins and glycocalyx underlying mucus transport over mucosal surfaces of the airways. Mucosal Immunol. 2013;6(2):379-392. doi: 10.1038/mi.2012.81
- Audie JP, Janin A, Porchet N, Copin MC, Gosselin B, Aubert JP. Expression of human mucin genes in respiratory, digestive, and reproductive tracts ascertained by in situ hybridization. J Histochem Cytochem. 1993;41(10):1479-1485. doi: 10.1177/41.10.8245407
- Groneberg DA, Eynott PR, Oates T, et al. Expression of MUC5AC and MUC5B mucins in normal and cystic fibrosis lung. Respir Med. 2002;96(2):81-86. doi: 10.1053/rmed.2001.1221
- Groneberg DA, Eynott PR, Lim S, et al. Expression of respiratory mucins in fatal status asthmaticus and mild asthma. Histopathology. 2002;40(4):367-373. doi: 10.1046/j.1365-2559.2002.01378.x
- Hovenberg HW, Davies JR, Carlstedt I. Different mucins are produced by the surface epithelium and the submucosa in human trachea: identification of MUC5AC as a major mucin from the goblet cells. Biochem J. 1996;318 (Pt 1):319-324. doi: 10.1042/bj3180319
- Young HW, Williams OW, Chandra D, et al. Central role of Muc5ac expression in mucous metaplasia and its regulation by conserved 5’ elements. Am J Respir Cell Mol Biol. 2007;37(3):273-290. doi: 10.1165/rcmb.2005-0460OC
- Bonser LR, Zlock L, Finkbeiner W, Erle DJ. Epithelial tethering of MUC5AC-rich mucus impairs mucociliary transport in asthma. J Clin Invest. 2016;126(6):2367-2371. doi: 10.1172/jci84910
- Park JA, Tschumperlin DJ. Chronic intermittent mechanical stress increases MUC5AC protein expression. Am J Respir Cell Mol Biol. 2009;41(4):459-466. doi: 10.1165/rcmb.2008-0195OC
- Darby IA, Laverdet B, Bonté F, Desmoulière A. Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol. 2014;7:301-311. doi: 10.2147/ccid.S50046
- Alexander MR, Owens GK. Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annu Rev Physiol. 2012;74:13-40. doi: 10.1146/annurev-physiol-012110-142315
- Seeger T, Hart M, Patarroyo M, Rolauffs B, Aicher WK, Klein G. Mesenchymal stromal cells for sphincter regeneration: role of laminin isoforms upon myogenic differentiation. PLoS One. 2015;10(9):e0137419. doi: 10.1371/journal.pone.0137419
- Shi N, Chen SY. From nerve to blood vessel: a new role of Olfm2 in smooth muscle differentiation from human embryonic stem cell-derived mesenchymal cells. J Biomed Res. 2015;29(4):261-263. doi: 10.7555/jbr.29.20150027
- Dauncey MJ, Wooding FB, Ingram DL. Evidence for the presence of brown adipose tissue in the pig. Res Vet Sci. 1981;31(1):76-81.
- Taylor DW, Ahmed N, Parreno J, et al. Collagen type XII and versican are present in the early stages of cartilage tissue formation by both redifferentating passaged and primary chondrocytes. Tissue Eng Part A. 2015;21(3-4): 683-693. doi: 10.1089/ten.TEA.2014.0103
- Nakamura T, Sato T, Araki M, et al. In situ tissue engineering for tracheal reconstruction using a luminar remodeling type of artificial trachea. J Thorac Cardiovasc Surg. 2009;138(4):811-819. doi: 10.1016/j.jtcvs.2008.07.072
- Weber JF, Rehmani SS, Baig MZ, Jadoon Y, Bhora FY. Successes and failures in tracheal bioengineering: lessons learned. Ann Thorac Surg. 2021;112(4):1089-1094. doi: 10.1016/j.athoracsur.2020.10.021
- Kastanos N, Estopá Miró R, Marín Perez A, Xaubet Mir A, Agustí-Vidal A. Laryngotracheal injury due to endotracheal intubation: incidence, evolution, and predisposing factors. A prospective long-term study. Crit Care Med. 1983;11(5):362-367. doi: 10.1097/00003246-198305000-00009
- Dooms C, De Keukeleire T, Janssens A, Carron K. Performance of fully covered self-expanding metallic stents in benign airway strictures. Respiration. 2009;77(4):420-426. doi: 10.1159/000203364
- Sarper A, Ayten A, Eser I, Ozbudak O, Demircan A. Tracheal stenosis aftertracheostomy or intubation: review with special regard to cause and management. Tex Heart Inst J. 2005;32(2):154-158.