AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.5102
REVIEW

Projection algorithm and its optimizations for computed axial lithography: A review

Jian-Su Sun1,2 Di Wang3 Xue Zhang1,2 Haiyue Jiang3* Maobin Xie4* Jia-Qi Lü1,2*
Show Less
1 Center for Advanced Laser Technology, Hebei University of Technology, Tianjin, China
2 Hebei Key Laboratory of Advanced Laser Technology and Equipment, Hebei University of Technology, Tianjin, China
3 Plastic Surgery Hospital of Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
4 The Fourth Affiliated Hospital of Guangzhou Medical University, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
Submitted: 9 October 2024 | Accepted: 15 November 2024 | Published: 19 November 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Volumetric additive manufacturing (AM) is a novel AM method that offers advantages such as fast printing speed and isotropic mechanical properties. As an important branch of volumetric AM, computed axial lithography (CAL) based on azimuthal projections and rotational printing has attracted great attention and has been widely used in recent years. Here, we focus on the projection algorithms of CAL, which is critical to the printing quality, including its fidelity and accuracy. Different optimization methods, including iterative optimization of projection space and objective model, optimization for the optical influences of materials, and optimizations with hardware upgrades, are summarized. The features and advantages of different projection optimization algorithms are also analyzed and discussed, which could promote the application and development of volumetric AM.

Graphical abstract
Keywords
Computed axial lithography
Radon transform
3D bioprinting
Volumetric additive manufacturing
Funding
This work was supported by the National Natural Science Foundation of China (82371796; 82402936).
Conflict of interest
The authors declare no conflict of interest.
References
  1. Burger J, Huber T, Lloret-Fritschi E, et al. Design and fabrication of optimised ribbed concrete floor slabs using large scale 3D printed formwork. Automat Constr. 2022;114:104599. doi: 10.1016/j.autcon.2022.104599
  2. de Mattos Nascimento DL, Mury Nepomuceno R, Caiado RGG, et al. A sustainable circular 3D printing model for recycling metal scrap in the automotive industry. J Manuf Technol Manage. 2022;33:876-892. doi: 10.1108/JMTM-10-2021-0391
  3. Yan Q, Dong H, Song B, et al. A review of 3D printing technology for medical applications. Engineering. 2018;4:729-742. doi: 10.1016/j.eng.2018.07.021
  4. Atala A. Introduction: 3D printing for biomaterials. Chem Rev. 2020;120:10545-10546. doi: 10.1021/acs.chemrev.0c00139
  5. Joshi SC, Sheikh AA. 3D printing in aerospace and its long-term sustainability. Virtual Phys Prototyp. 2015;10:175-185. doi: 10.1080/17452759.2015.1111519
  6. Mishra PK, Jagadesh T. Applications and challenges of 3D printed polymer composites in the emerging domain of automotive and aerospace: a converged review. J Institut Eng (India): Ser C. 2023;104:849-866. doi: 10.1007/s40033-022-00426-x
  7. Tan K, Chua C, Leong K, et al. Selective laser sintering of biocompatible polymers for applications in tissue engineering. Biomed Mater Eng. 2005;15:113-124.
  8. Bertrand P, Bayle F, Combe C, et al. Ceramic components manufacturing by selective laser sintering. Appl Surf Sci. 2007;254:989-992. doi: 10.1016/j.apsusc.2007.08.085
  9. Olakanmi EO, Cochrane RF, Dalgarno KW, et al. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog Mater Sci. 2015;74:401-477. doi: 10.1016/j.pmatsci.2015.03.002
  10. Hu Q, Rance G, Trindade G, et al. The influence of printing parameters on multi-material two-photon polymerisation based micro additive manufacturing. Addit Manuf. 2022;51:102575. doi: 10.1016/j.addma.2021.102575
  11. Serles P, Haché M, Tam J, et al. Mechanically robust pyrolyzed carbon produced by two photon polymerization. Carbon. 2023;201:161-169. doi: 10.1016/j.carbon.2022.09.016
  12. Colombo F, Taale M, Taheri F, et al. Two-photon laser printing to mechanically stimulate multicellular systems in 3D. Adv Funct Mater. 2024;34:2303601. doi: 10.1002/adfm.202303601
  13. Zhang Y, Li D, Liu Y. Inkjet printing in liquid environments. Small. 2018;14:1801212. doi: 10.1002/smll.201801212
  14. Zub K, Hoeppener S, Schubert US. Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications. Adv Mater. 2022;34:2105015. doi: 10.1002/adma.202105015
  15. Carou-Senra P, Rodriguez-Pombo L, Awad A, et al. Inkjet printing of pharmaceuticals. Adv Mater. 2024;36:2309164. doi: 10.1002/adma.202309164
  16. Yan Y, Xiong Z, Hu Y, et al. Layered manufacturing of tissue engineering scaffolds via multinozzle deposition. Mater Lett. 2003;57:2623-2628. doi: 10.1016/S0167-577X(02)01339-3
  17. Woodfield TB, Malda J, De Wijn J, et al. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition. Biomaterials. 2004;25:4149-4161. doi: 10.1016/j.biomaterials.2003.10.056
  18. Rajan K, Samykano M, Kadirgama K, et al. Fused deposition modeling: process, materials, parameters, properties, and applications. Int J Adv Manuf Technol. 2022;120:1531-1570. doi: 10.1007/s00170-022- 08860-7
  19. Mu Q, Wang L, Dun C, et al. Digital light processing 3D printing of conductive complex structures. Addit Manuf. 2017;18:74-83. doi: 10.1016/j.addma.2017.08.011
  20. Li W, Wang M, Mille LS, et al. A smartphone-enabled portable digital light processing 3D printer. Adv Mater. 2021;33:2102153. doi: 10.1002/adma.202102153
  21. He CF, Sun Y, He Y, et al. High-resolution projection-based 3D bioprinting. Nat Rev Bioeng. 2024:1-16. doi: 10.1038/s44222-024-00218-w
  22. Tumbleston JR, Shirvanyants D, Ermoshkin N, et al. Continuous liquid interface production of 3D objects. Science. 2015;347:1349-1352. doi: 10.1126/science.aaa2397
  23. Janusziewicz R, Tumbleston JR, Quintanilla AL, et al. Layerless fabrication with continuous liquid interface production. Proc Natl Acad Sci USA. 2016;113:11703-11708. doi: 10.1073/pnas.1605271113
  24. Hsiao K, Lee BJ, Samuelsen T, et al. Single-digit-micrometer-resolution continuous liquid interface production. Sci Adv. 2022;8:eabq2846. doi: 10.1126/sciadv.abq2846
  25. Jiménez M, Romero L, Dominguez IA, et al. Additive manufacturing technologies: an overview about 3D printing methods and future prospects. Complexity. 2019;2019:9656938. doi: 10.1155/2019/965693
  26. Quan H, Zhang T, Xu H, et al. Photocuring 3D printing technique and its challenges. Bioact Mater. 2020;5:110-115. doi: 10.1016/j.bioactmat.2019.12.003
  27. Oropallo W, Piegl LA. Ten challenges in 3D printing. Eng Comput. 2016;32:135-148. doi: 10.1007/s00366-015-0407-0
  28. Jambhulkar S, Ravichandran D, Sundaravadivelan B, Song K. Hybrid 3D printing for highly efficient nanoparticle micropatterning. J Mater Chem C. 2023;11:4333-4341. doi: 10.1039/D3TC00168G
  29. Dai C, Wang CC, Wu C, et al. Support-free volume printing by multi-axis motion. ACM Trans Graph. 2018;37:1-14. doi: 10.1145/3197517.3201342
  30. Bhattacharya I, Toombs J, Taylor H, et al. High fidelity volumetric additive manufacturing. Addit Manuf. 2021;47:102299. doi: 10.1016/j.addma.2021.102299
  31. Yao Y, Cheng L, Li Z. A comparative review of multiaxis 3D printing. J Manuf Process. 2024;120:1002-1022. doi: 10.1016/j.jmapro.2024.04.084
  32. Shusteff M, Browar AEM, Kelly BE, et al. One-step volumetric additive manufacturing of complex polymer structures. Sci Adv. 2017;3:eaao5496. doi: 10.1126/sciadv.aao5496
  33. Kelly BE, Bhattacharya I, Taylor HK, et al. Volumetric additive manufacturing via tomographic reconstruction. Science. 2019;363:1075-1079. doi: 10.1126/science.aau7114
  34. Van Der Laan HL, Burns MA, Scott TF. Volumetric photopolymerization confinement through dual-wavelength photoinitiation and photoinhibition. ACS Macro Lett. 2019;8: 899-904. doi: 10.1021/acsmacrolett.9b00412
  35. Regehly M, Garmshausen Y, Reuter M, et al. Xolography for linear volumetric 3D printing. Nature. 2020;588:620-624. doi: 10.1038/s41586-020-3029-7
  36. Cook CC, Fong EJ, Schwartz M, et al. Highly tunable thiol-ene photoresins for volumetric additive manufacturing. Adv Mater. 2020;32:2003376. doi: 10.1002/adma.202003376
  37. Li CC, Toombs J, Taylor H, et al. Tomographic color Schlieren refractive index mapping for computed axial lithography. Proc 5th Annu ACM Symp Comput Fabr. 2020;12:1–7. doi: 10.1145/3424630.3425421
  38. Orth A, Sampson KL, Zhang Y, et al. On-the-fly 3D metrology of volumetric additive manufacturing. Addit Manuf. 2022;56:102869. doi: 10.1016/j.addma.2022.102869
  39. Rackson CM, Toombs JT, De Beer MP, et al. Latent image volumetric additive manufacturing. Opt Lett. 2022;47:1279-1282. doi: 10.1364/OL.449220
  40. Salajeghe R, Meile DH, Kruse CS, et al. Numerical modeling of part sedimentation during volumetric additive manufacturing. Addit Manuf. 2023;66:103459. doi: 10.1016/j.addma.2023.103459
  41. Darkes-Burkey C, Shepherd RF. Volumetric 3D printing of endoskeletal soft robots. Adv Mater. 2024;36:2402217. doi: 10.1002/adma.202402217
  42. Bernal PN, Delrot P, Loterie D, et al. Volumetric bioprinting of complex living-tissue constructs within seconds. Adv Mater. 2019;31:1904209. doi: 10.1002/adma.201904209
  43. Rizzo R, Ruetsche D, Liu H, et al. Optimized photoclick (bio) resins for fast volumetric bioprinting. Adv Mater. 2021;33:2102900. doi: 10.1002/adma.202102900
  44. Rodríguez-Pombo L, Martínez-Castro L, Xu X, et al. Simultaneous fabrication of multiple tablets within seconds using tomographic volumetric 3D printing. Int J Pharm. 2023;5:100166. doi: 10.1016/j.ijpx.2023.100166
  45. Helgason S. The Radon Transform. Boston: Birkhäuser; 2019. doi: 10.1007/978-1-4757-1463-0
  46. Li CC, Toombs J, Taylor HK, et al. Tomographic projection optimization for volumetric additive manufacturing with general band constraint Lp-norm minimization. Addit Manuf. 2024;94:104447. doi: 10.1016/j.addma.2024.104447
  47. Rackson CM, Champley KM, Toombs JT, et al. Object-space optimization of tomographic reconstructions for additive manufacturing. Addit Manuf. 2021;48:102367. doi: 10.1016/j.addma.2021.102367
  48. Zhang Y, Liu M, Gao C, et al. Edge-enhanced object-space model optimization of tomographic reconstructions for additive manufacturing. Micromachines. 2023;14:1362. doi: 10.3390/mi1407136
  49. Chen T, Li HF, Liu X. Statistical iterative pattern generation in volumetric additive manufacturing based on ML-EM. Opt Commun. 2023;537:129448. doi: 10.1016/j.optcom.2023.129448
  50. Chen T, You S, Li HF, et al. High-fidelity tomographic additive manufacturing for large-volume and high-attenuation situations using expectation maximization algorithm. Addit Manuf. 2024;80:103968. doi: 10.1016/j.addma.2024.103968
  51. Madrid-Wolff J, Boniface A, Loterie D, et al. Controlling light in scattering materials for volumetric additive manufacturing. Adv Sci. 2022;9:2105144. doi: 10.1002/advs.202105144
  52. Loterie D, Delrot P, Moser C. High-resolution tomographic volumetric additive manufacturing. Nat Commun. 2020;11:852. doi: 10.1038/s41467-020-14630-4
  53. Webber D, Zhang Y, Picard M, et al. Versatile volumetric additive manufacturing with 3D ray tracing. Opt Express. 2023;31:5531-5546. doi: 10.1364/OE.481318
  54. Willemink MJ, Noël PB. The evolution of image reconstruction for CT—from filtered back projection to artificial intelligence. Eur Radiol. 2019;29:2185-2195. doi: 10.1007/s00330-018-5810-7
  55. Thijssen Q, Toombs J, Li CC, et al. From pixels to voxels: a mechanistic perspective on volumetric 3D-printing. Prog Polym Sci. 2023;147:101755. doi: 10.1016/j.progpolymsci.2023.101755
  56. Whyte DJ, Doeven EH, Sutti A, et al. Volumetric additive manufacturing: a new frontier in layer-less 3D printing. Addit Manuf. 2024;84:104094. doi: 10.1016/j.addma.2024.104094
  57. Calamai PH, Moré JJ. Projected gradient methods for linearly constrained problems. Math Program. 1987;39:93-116. doi: 10.1007/BF02592073.
  58. Fei Y, Rong G, Wang B, et al. Parallel L-BFGS-B algorithm on gpu. Comput Graph. 2014;40:1–9. doi: 10.1016/j.cag.2014.01.002
  59. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B. 1977;39:1-22. doi: 10.1111/j.2517-6161.1977.tb01600.x
  60. Yi S, Liu Q, Luo Z, et al. Micropore-forming gelatin methacryloyl (GelMA) biolink toolbox 2.0: designable tunability and adaptability for 3D bioprinting applications. Small 2022;18:2106357. doi: 10.1002/smll.202106357
  61. Weisgraber TH, de Beer MP, Huang S, et al. Virtual volumetric additive manufacturing (VirtualVAM). Adv Mater Technol. 2023;8:2301054. doi: 10.1002/admt.202301054

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing