AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.4673
REVIEW

Miniature modeling while aiming for transplantation: Current challenges and future perspectives of lung bioprinting

Judit Bovari-Biri1 Kitti Garai1 Borbal Lovaszi2 Zoltan Vereb2 Judit E Pongracz1*
Show Less
1 Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Baranya, Hungary
2 Department of Dermatology and Allergology, Albert Szentgyorgyi Clinical Centre, University of Szeged, Szeged, Hungary
Submitted: 28 August 2024 | Accepted: 7 October 2024 | Published: 7 October 2024
(This article belongs to the Special Issue 3D Printing for Tissue Engineering and Regenerative Medicine)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The development of three-dimensional (3D) lung organs or tissues using gravitational methods and bioprinting technologies displays significant promise for producing lung tissue for research, pharmaceutical, and clinical applications. The advancement of innovative technologies can improve our understanding of lung diseases and, if necessary, enable the production of replacement lungs for transplantation. The development of functional organs-on-a-chip and disease-specific lung tissues could provide a deep understanding of the molecular mechanisms underlying lung diseases and aid the identification of drug targets. This knowledge has the potential to enhance our understanding of lung tissue regeneration processes, potentially leading to the development of more effective treatments for human lung diseases. This could eliminate the need for lung transplants in most disease-induced cases, as appropriate medications could induce regeneration of the damaged organ. This review highlights the importance of using a variety of materials, preparation methods, and sizes of lung tissues in 3D bioprinting technologies to better understand lung function, facilitate drug selection during therapy, and ultimately produce transplantable organs if needed. The review also emphasizes the need for improvements in legislation and guidelines for researchers aiming to achieve quality-assured biomanufacturing.

Graphical abstract
Keywords
Lung diseases
Lung bioprinting
Lung tissue aggregates
Personalized medicine
Drug testing
Organ-on-a-chip
Funding
This work was funded by a grant from the University of Pécs (grant number POC/2024).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Barnes-Harris M, Allingham S, Morgan D, et al. Comparing functional decline and distress from symptoms in people with thoracic life-limiting illnesses: lung cancers and non-malignant end-stage respiratory diseases. Thorax. 2021;76:989-995. doi: 10.1136/thoraxjnl-2020-216039.
  2. Dey M, Ozbolat IT. 3D bioprinting of cells, tissues and organs. Sci Rep. 2020;10:14023. doi: 10.1038/s41598-020-70086-y
  3. Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M. 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact Mater. 2018;3:144-156. doi: 10.1016/j.bioactmat.2017.11.008
  4. Tuppin MP, Paratz JD, Chang AT, et al. Predictive utility of the 6-minute walk distance on survival in patients awaiting lung transplantation. J Heart Lung Transplant. 2008;27:729-734. doi: 10.1016/j.healun.2008.03.017
  5. Nathan SD. Lung transplantation: disease-specific considerations for referral. Chest. 2005;127;1006-1016. doi: 10.1378/chest.127.3.1006
  6. Van Scott MR, Chandler J, Olmstead S, Brown JM, Mannie M. Airway anatomy, physiology, and inflammation. In: Weggs WJ, ed. The Toxicant Induction of Irritant Asthma, Rhinitis, and Related Conditions; 2013:19–61. doi: 10.1007/978-1-4614-9044-9_2
  7. Ochs M, Nyengaard JR, Jung A, et al. The number of alveoli in the human lung. Am J Respir Crit Care Med. 2004;169:120-124. doi: 10.1164/rccm.200308-1107OC
  8. Travaglini KJ, Nabhan AN, Penland L, et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature. 2020;587:619-625. doi: 10.1038/s41586-020-2922-4
  9. Abdelwahab EMM, Rapp J, Feller D, et al. Wnt signaling regulates trans-differentiation of stem cell like type 2 alveolar epithelial cells to type 1 epithelial cells. Respir Res. 2019;20:204. doi: 10.1186/s12931-019-1176-x
  10. Gillich A, Zhang F, Farmer CG, et al. Capillary cell-type specialization in the alveolus. Nature. 2020;586:785-789. doi: 10.1038/s41586-020-2822-7
  11. Kadur Lakshminarasimha Murthy P, Sontake V, Tata A, et al. Human distal lung maps and lineage hierarchies reveal a bipotent progenitor. Nature. 2022;604:111-119. doi: 10.1038/s41586-022-04541-3
  12. Woo YD, Jeong D, Chung DH. Development and functions of alveolar macrophages. Mol Cells. 2021;44:292-300. doi: 10.14348/molcells.2021.0058
  13. Weibel ER. What makes a good lung? Swiss Med Wkly. 2009;139:375-386. doi: 10.4414/smw.2009.12270
  14. Doryab A, Tas S, Taskin MB, et al. Evolution of bioengineered lung models: recent advances and challenges in tissue mimicry for studying the role of mechanical forces in cell biology. Adv Funct Mater. 2019;29:1903114. doi: 10.1002/adfm.201903114
  15. Bonassar LJ, Vacanti CA. Tissue engineering: the first decade and beyond. J Cell Biochem. 1998;72(Suppl 30–31):297-303. doi:10.1002/(SICI)1097-4644(1998)72:30/31+<297::AID-JCB36>3.0.CO;2-6
  16. Fan P, Jin F, Qin Y, et al. Multiscale 3D bioprinting for the recapitulation of lung tissue. IJB. 2023;9:1166. doi: 10.36922/ijb.1166
  17. Mahfouzi SH, Hamid S, Ghassem, A. 3D bioprinting for lung and tracheal tissue engineering: criteria, advances, challenges, and future directions. Bioprinting. 2021;21:e00124. doi: 10.1016/j.bprint.2020.e00124
  18. Papaioannou TG, Manolesou D, Dimakakos E, Tsoucalas G, Vavuranakis M, Tousoulis D. 3D bioprinting methods and techniques: applications on artificial blood vessel fabrication. Acta Cardiol Sin. 2019;35:284-289. doi: 10.6515/ACS.201905_35(3).20181115A
  19. Roche CD, Brereton RJL, Ashton AW, Jackson C, Gentile C. Current challenges in three-dimensional bioprinting heart tissues for cardiac surgery. Eur J Cardiothorac Surg. 2020;58:500-510. doi: 10.1093/ejcts/ezaa093
  20. Li J, Chen M, Fan X, Zhou H. Recent advances in bioprinting techniques: approaches, applications and future prospects. J Transl Med. 2016;14:271. doi: 10.1186/s12967-016-1028-0
  21. Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. 2016;102:20-42. doi: 10.1016/j.biomaterials.2016.06.012
  22. Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1:e1500758. doi: 10.1126/sciadv.1500758
  23. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663-676. doi: 10.1016/j.cell.2006.07.024
  24. Ben-David U, Nudel N, Benvenisty N. Immunologic and chemical targeting of the tight-junction protein Claudin-6 eliminates tumorigenic human pluripotent stem cells. Nat Commun. 2013;4:1992. doi: 10.1038/ncomms2992
  25. Cunningham JJ, Ulbright TM, Pera MF, Looijenga LH. Lessons from human teratomas to guide development of safe stem cell therapies. Nat Biotechnol. 2012;30:849-857. doi: 10.1038/nbt.2329
  26. Herberts CA, Kwa MS, Hermsen HP. Risk factors in the development of stem cell therapy. J Transl Med. 2011;9:29. doi: 10.1186/1479-5876-9-29
  27. Blasco MA, Serrano M, Fernandez-Capetillo O. Genomic instability in iPS: time for a break. EMBO J. 2011;30:991-993. doi: 10.1038/emboj.2011.50
  28. Haston KM, Finkbeiner S. Clinical trials in a dish: the potential of pluripotent stem cells to develop therapies for neurodegenerative diseases. Annu Rev Pharmacol Toxicol. 2016;56:489-510. doi: 10.1146/annurev-pharmtox-010715-103548
  29. Holbert JM, Strollo DC. Imaging of the normal trachea. J Thorac Imaging. 1995;10:171-179. doi: 10.1097/00005382-199522000-00003
  30. Xing H, Lee H, Luo L, Kyriakides TR. Extracellular matrix-derived biomaterials in engineering cell function. Biotechnol Adv. 2020;42:107421. doi: 10.1016/j.biotechadv.2019.107421
  31. Morwood AJ, El-Karim IA, Clarke SA, Lundy FT. The role of extracellular matrix (ECM) adhesion motifs in functionalised hydrogels. Molecules. 2023;28(12):4616. doi: 10.3390/molecules28124616
  32. Noro J, Vilaça-Faria H, Reis RL, Pirraco RP. Extracellular matrix-derived materials for tissue engineering and regenerative medicine: a journey from isolation to characterization and application. Bioact Mater. 2024;34:494-519. doi: 10.1016/j.bioactmat.2024.01.004
  33. Gao M, Zhang H, Dong W, et al. Tissue-engineered trachea from a 3D-printed scaffold enhances whole-segment tracheal repair. Sci Rep. 2017;7:5246. doi: 10.1038/s41598-017-05518-3
  34. Kim H, Lee JY, Han H, et al. Improved chondrogenic performance with protective tracheal design of Chitosan membrane surrounding 3D-printed trachea. Sci Rep. 2021;11:9258. doi: 10.1038/s41598-021-88830-3
  35. Hiwatashi S, Iwai R, Nakayama Y, Moriwaki T, Okuyama H. Successful tracheal regeneration using biofabricated autologous analogues without artificial supports. Sci Rep. 2022;12:20279. doi: 10.1038/s41598-022-24798-y
  36. Rezaei FS, Khorshidian A, Beram FM, et al. 3D printed chitosan/polycaprolactone scaffold for lung tissue engineering: hope to be useful for COVID-19 studies. RSC Adv. 2021;11:19508-19520. doi: 10.1039/d1ra03410c
  37. Silva S, Bicker J, Falcão A, Fortuna A. Air-liquid interface (ALI) impact on different respiratory cell cultures. Eur J Pharm Biopharm. 2023;184:62-82. doi: 10.1016/j.ejpb.2023.01.013
  38. Sears NA, Seshadri DR, Dhavalikar PS, Cosgriff-Hernandez E. A review of three-dimensional printing in tissue engineering. Tissue Eng Part B Rev. 2016;22:298-310. doi: 10.1089/ten.TEB.2015.0464
  39. Aazmi A, Zhang D, Mazzaglia C, et al. Biofabrication methods for reconstructing extracellular matrix mimetics. Bioact Mater. 2024;31:475-496. doi: 10.1016/j.bioactmat.2023.08.018
  40. Kumar H, Kim K. Stereolithography 3D bioprinting. Methods Mol Biol. 2020;2140:93-108. doi: 10.1007/978-1-0716-0520-2_6
  41. Li W, Wang M, Ma H, Chapa-Villarreal FA, Lobo AO, Zhang YS. Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication. iScience. 2023;26:106039. doi: 10.1016/j.isci.2023.106039
  42. GhavamiNejad A, Ashammakhi N, Wu XY, Khademhosseini A. Crosslinking strategies for 3D bioprinting of polymeric hydrogels. Small. 2020;16:e2002931. doi: 10.1002/smll.202002931
  43. Schuurman W, Levett PA, Pot MW, et al. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci. 2013;13:551-561.doi: 10.1002/mabi.201200471
  44. Galliger Z, Vogt CD, Panoskaltsis-Mortari A. 3D bioprinting for lungs and hollow organs. Transl Res. 2019;211:19-34. doi: 10.1016/j.trsl.2019.05.001
  45. Chen YC, Lin RZ, Qi H, et al. Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv Funct Mater. 2012;22: 2027-2039. doi: 10.1002/adfm.201101662
  46. Camci-Unal G, Cuttica D, Annabi N, Demarchi D, Khademhosseini A. Synthesis and characterization of hybrid hyaluronic acid-gelatin hydrogels. Biomacromolecules. 2013;14:1085-1092. doi: 10.1021/bm3019856
  47. Skardal A, Devarasetty M, Kang HW, et al. A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Acta Biomater. 2015;25:24-34. doi: 10.1016/j.actbio.2015.07.030
  48. Kaully T, Kaufman-Francis K, Lesman A, Levenberg S. Vascularization--the conduit to viable engineered tissues. Tissue Eng Part B Rev. 2009;15:159-169. doi: 10.1089/ten.teb.2008.0193
  49. Bertassoni LE, Cecconi M, Manoharan V, et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip. 2014;14:2202-2211. doi: 10.1039/c4lc00030g
  50. Nashimoto Y, Hayashi T, Kunita I, et al. Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device. Integr Biol (Camb.) 2017;9:506-518. doi: 10.1039/c7ib00024c
  51. L’Heureux N, McAllister TN, de la Fuente LM. Tissue-engineered blood vessel for adult arterial revascularization. N Engl J Med. 2007;357:1451-1453. doi: 10.1056/NEJMc071536
  52. Eduardo DT, Ana SE, José BF. A micro-extrusion 3D printing platform for fabrication of orodispersible printlets for pediatric use. Int J Pharm. 2021;605:120854. doi: 10.1016/j.ijpharm.2021.120854
  53. Bos GW, Poot AA, Beugeling T, van Aken WG, Feijen J. Small-diameter vascular graft prostheses: current status. Arch Physiol Biochem. 1998;106:100-115. doi: 10.1076/apab.106.2.100.4384
  54. Seifu DG, Purnama A, Mequanint K, Mantovani D. Small-diameter vascular tissue engineering. Nat Rev Cardiol. 2013;10:410-421. doi: 10.1038/nrcardio.2013.77
  55. Boison D, Yegutkin GG. Adenosine metabolism: emerging concepts for cancer therapy. Cancer Cell. 2019;36:582-596. doi: 10.1016/j.ccell.2019.10.007
  56. Wirth AN, Tsutsui K, Maltsev VA, Lakatta EG. Adenosine reduces sinoatrial node cell action potential firing rate by uncoupling its membrane and calcium clocks. Front Physiol. 2022;13;977807. doi: 10.3389/fphys.2022.977807
  57. Dall’Olmo L, Zanusso I, Di Liddo R, et al. Blood vessel-derived acellular matrix for vascular graft application. Biomed Res Int. 2014;2014:685426. doi: 10.1155/2014/685426
  58. L’Heureux N, Pâquet S, Labbé R, Germain L, Auger FA. A completely biological tissue-engineered human blood vessel. FASEB J. 1998;12:47-56. doi: 10.1096/fasebj.12.1.47
  59. McAllister TN, Maruszewski M, Garrido SA, et al. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet. 2009;373:1440-1446. doi: 10.1016/S0140-6736(09)60248-8
  60. Gao G, Lee JH, Jang J, et al. Tissue engineered bio-blood-vessels constructed using a tissue-specific bioink and 3d coaxial cell printing technique: a novel therapy for ischemic disease. Adv Funct Mater. 2017;27:1700798. doi: 10.1002/adfm.201700798
  61. Ju YM, Choi JS, Atala A, Yoo JJ, Lee SJ. Bilayered scaffold for engineering cellularized blood vessels. Biomaterials. 2010;31:4313-4321. doi: 10.1016/j.biomaterials.2010.02.002
  62. Assmann A, Delfs C, Munakata H, et al. Acceleration of autologous in vivo recellularization of decellularized aortic conduits by fibronectin surface coating. Biomaterials. 2013;34:6015-6026. doi: 10.1016/j.biomaterials.2013.04.037
  63. Jung Y, Ji H, Chen Z, et al. Scaffold-free, human mesenchymal stem cell-based tissue engineered blood vessels. Sci Rep. 2015;5:15116. doi: 10.1038/srep15116
  64. Bos S, Vos R, Van Raemdonck DE, Verleden GM. Survival in adult lung transplantation: where are we in 2020? Curr Opin Organ Transplant. 2020;25:268-273. doi: 10.1097/MOT.0000000000000753
  65. Kędzierska K, Sindrewicz K, Sporniak-Tutak K, et al. Does immunosuppressive therapy affect markers of kidney damage? Ann Transplant. 2016;21:137-144. doi: 10.12659/aot.895275
  66. Engels EA, Pfeiffer RM, Fraumeni JF, et al. Spectrum of cancer risk among US solid organ transplant recipients. JAMA. 2011;306;1891-1901. doi: 10.1001/jama.2011.1592
  67. Kirillova A, Bushev S, Abubakirov A, Sukikh G. Bioethical and Legal Issues in 3D Bioprinting. Int J Bioprint. 2020;6:272. doi: 10.18063/ijb.v6i3.272
  68. Ricci G, Gibelli F, Sirignano A. Three-dimensional bioprinting of human organs and tissues: bioethical and medico-legal implications examined through a scoping review. Bioengineering (Basel). 2023;10:1052. doi: 10.3390/bioengineering10091052
  69. Association WM. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013;310:2191-2194. doi: 10.1001/jama.2013.281053
  70. van Delden JJ, van der Graaf R. Revised CIOMS International ethical guidelines for health-related research involving humans. JAMA. 2017;317:135-136. doi: 10.1001/jama.2016.18977
  71. Directive 2004/23/EC of the European Parliament and of the Council of 31 March 2004 on Setting Standards of Quality and Safety for the Donation, Procurement, Testing, Processing, Preservation, Storage and Distribution of Human Tissues and Cells; 2004.
  72. Human Tissue Act; 2004.
  73. Code of Federal Regulations. Part 1271: Human Cells, Tissues, and Cellular and Tissue-Based Products; 2024.
  74. National Health and Medical Research Council. Australian Research Council and Universities Australia (2007, Updated 2018) National Statement on Ethical Conduct in Human Research; 2018.
  75. Garielchyk T. Biotech Boost without Extra Money, Vol. 23, Summer ed.; 2024.
  76. Kritikos M. 3D Bio-Printing for Medical and Enhancement Purposes: Legal and Ethical Aspects; 2018. doi: 10.2861/923327
  77. Li Y, Verter F, Wang B, Gu N. Regulations on cell therapy products in China: a brief history and current status. Regen Med. 2019;14:791-803. doi: 10.2217/rme-2019-0069
  78. Kovacs T, Csongei V, Feller D, et al. Alteration in the Wnt microenvironment directly regulates molecular events leading to pulmonary senescence. Aging Cell. 2014;13:838-849. doi: 10.1111/acel.12240
  79. Foty RA, Pfleger CM, Forgacs G, Steinberg MS. Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development. 1996;122:1611-1620. doi: 10.1242/dev.122.5.1611
  80. Forgacs G. Surface tension and viscoelastic properties of embryonic tissues depend on the cytoskeleton. Biol Bull. 1998;194:328-329; discussion 329-330. doi: 10.2307/1543103
  81. JE, Pongracz, 2009. Unpublished observations
  82. JE, Pongracz, 2016. Unpublished observations
  83. Vesel M, Rapp J, Feller D, et al. ABCB1 and ABCG2 drug transporters are differentially expressed in non-small cell lung cancers (NSCLC) and expression is modified by cisplatin treatment via altered Wnt signaling. Respir Res. 2017;18:52. doi: 10.1186/s12931-017-0537-6
  84. Rapp J, Kiss E, Meggyes M, et al. Increased Wnt5a in squamous cell lung carcinoma inhibits endothelial cell motility. BMC Cancer. 2016;16:915. doi: 10.1186/s12885-016-2943-4
  85. Kilic O, Yoon A, Shah SR, et al. A microphysiological model of the bronchial airways reveals the interplay of mechanical and biochemical signals in bronchospasm. Nat Biomed Eng. 2019;3:532-544. doi: 10.1038/s41551-019-0366-7
  86. Sayed N, Liu C, Wu JC. Translation of human-induced pluripotent stem cells: from clinical trial in a dish to precision medicine. J Am Coll Cardiol. 2016;67: 2161-2176. doi: 10.1016/j.jacc.2016.01.083
  87. Baxter A, Thain S, Banerjee A, et al. Targeted omics analyses, and metabolic enzyme activity assays demonstrate maintenance of key mucociliary characteristics in long term cultures of reconstituted human airway epithelia. Toxicol In Vitro. 2015;29:864-875. doi: 10.1016/j.tiv.2015.03.004
  88. Shafiee A, Norotte C, Elham G. Cellular bioink surface tension: a tunable biophysical parameter for faster maturation of bioprinted tissue. Bioprinting. 2017;8:13-21. doi: 10.1016/j.bprint.2017.10.001
  89. Nizamoglu M, Joglekar MM, Almeida CR, et al. Innovative three-dimensional models for understanding mechanisms underlying lung diseases: powerful tools for translational research. Eur Respir Rev. 2023;32(169):230042. doi: 10.1183/16000617.0042-2023.
  90. Felix K, Tobias S, Jan H, Nicolas S, Michael M. Measurements of transepithelial electrical resistance (TEER) are affected by junctional length in immature epithelial monolayers. Histochem Cell Biol. 2021;156:609-616. doi: 10.1007/s00418-021-02026-4
  91. Golding H, Khurana S, Zaitseva M. What is the predictive value of animal models for vaccine efficacy in humans? The importance of bridging studies and species-independent correlates of protection. Cold Spring Harb Perspect Biol. 2018;10(4):a028902. doi: 10.1101/cshperspect.a028902
  92. Franco R, Cedazo-Minguez A. Successful therapies for Alzheimer’s disease: why so many in animal models and none in humans? Front Pharmacol. 2014;5:146. doi: 10.3389/fphar.2014.00146
  93. Si L, Bai H, Rodas M, et al. A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat Biomed Eng. 2021;5:815-829. doi: 10.1038/s41551-021-00718-9
  94. Iakovlev AP, Erofeev AS, Gorelkin PV. Novel pumping methods for microfluidic devices: a comprehensive review. Biosensors (Basel). 2022;12(11):956. doi: 10.3390/bios12110956.
  95. Xia Y, Whitesides GM. Soft lithography. Angew Chem Int Ed Engl. 1998;37:550-575. doi: 10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
  96. Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32:760-772. doi: 10.1038/nbt.2989
  97. Miranda I, Souza A, Sousa P, et al. Properties and applications of pdms for biomedical engineering: a review. J Funct Biomater. 2021;13(1):2. doi: 10.3390/jfb13010002
  98. Huh D, Matthews BD, Mammoto A, et al. Reconstituting organ-level lung functions on a chip. Science. 2010;328:1662-1668. doi: 10.1126/science.1188302
  99. Saldin LT, Cramer MC, Velankar SS, White LJ, Badylak SF. Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater. 2017;49:1-15. doi: 10.1016/j.actbio.2016.11.068
  100. Pouliot RA, Link PA, Mikhaiel NS, et al. Development and characterization of a naturally derived lung extracellular matrix hydrogel. J Biomed Mater Res A. 2016;104:1922-1935. doi: 10.1002/jbm.a.35726
  101. Zhang M, Wang P, Luo R, et al. Biomimetic human disease model of SARS-CoV-2-induced lung injury and immune responses on organ chip system. Adv Sci (Weinh). 2021;8:2002928. doi: 10.1002/advs.202002928
  102. Katsura H, Sontake V, Tata A, et al. Human lung stem cell-based alveolospheres provide insights into SARS-CoV-2-mediated interferon responses and pneumocyte dysfunction. Cell Stem Cell. 2020;27(6):890-904.e898. doi: 10.1016/j.stem.2020.10.005
  103. Lamers MM, van der Vaart J, Knoops K, et al. An organoid-derived bronchioalveolar model for SARS-CoV-2 infection of human alveolar type II-like cells. EMBO J. 2021;40:e105912. doi: 10.15252/embj.2020105912
  104. Thacker VV, Sharma K, Dhar N, Mancini GF, Sordet- Dessimoz J, McKinney JD. Rapid endotheliitis and vascular damage characterize SARS-CoV-2 infection in a human lung-on-chip model. EMBO Rep. 2021;22:e52744. doi: 10.15252/embr.202152744
  105. Ramani A, Müller L, Ostermann PN, et al. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J. 2020;39:e106230. doi: 10.15252/embj.2020106230
  106. Nawroth JC, Lucchesi C, Cheng D, et al. A microengineered airway lung chip models key features of viral-induced exacerbation of asthma. Am J Respir Cell Mol Biol. 2020;63:591-600. doi: 10.1165/rcmb.2020-0010MA
  107. Bai H, Si L, Jiang A, et al. Mechanical control of innate immune responses against viral infection revealed in a human lung alveolus chip. Nat Commun. 2022;13:1928. doi: 10.1038/s41467-022-29562-4
  108. Herpers B, Eppink B, James MI, et al. Functional patient-derived organoid screenings identify MCLA-158 as a therapeutic EGFR × LGR5 bispecific antibody with efficacy in epithelial tumors. Nat Cancer. 2022;3:418-436. doi: 10.1038/s43018-022-00359-0
  109. Yun J, Lee SH, Kim SY, et al. Antitumor activity of amivantamab (JNJ-61186372), an EGFR-MET bispecific antibody, in diverse models of. Cancer Discov. 2020;10:1194-1209. doi: 10.1158/2159-8290.CD-20-0116
  110. Hubrecht RC, Carter E. The 3Rs and humane experimental technique: implementing change. Animals (Basel). 2019;9(10):754. doi: 10.3390/ani9100754
  111. Russel WMS, Burch RL. The Principles of Human Experimental Technique; 1992.
  112. Tameris MD, Hatherill M, Landry BS, et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet. 2013;381:1021-1028. doi: 10.1016/S0140-6736(13)60177-4
  113. Arpinati M, Chirumbolo G, Rondelli D. Enhancement of T cell activation by immobilized hu5C8 (anti- CD40L) monoclonal antibody. Eur J Haematol. 2008;80: 322-330. doi: 10.1111/j.1600-0609.2007.01015.x
  114. Shock A, Burkly L, Wakefield I, et al. CDP7657, an anti-CD40L antibody lacking an Fc domain, inhibits CD40L-dependent immune responses without thrombotic complications: an in vivo study. Arthritis Res Ther. 2015;17:234. doi: 10.1186/s13075-015-0757-4
  115. Breslin S, O’Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today. 2013;18:240-249. doi: 10.1016/j.drudis.2012.10.003
  116. Han JJ. FDA Modernization Act 2.0 allows for alternatives to animal testing. Artif Organs. 2023;47(3):449-450. doi: 10.1111/aor.14503
  117. Administration F.a.D. HR-1744 Human Research and Testing Act of 2021 117th Congress; 2021–2022.
  118. Wadman M. FDA no longer has to require animal testing for new drugs. Science. 2023;379:127-128. doi: 10.1126/science.adg6276
  119. Kimura H, Sakai Y, Fujii T. Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metab Pharmacokinet. 2018;33:43-48. doi: 10.1016/j.dmpk.2017.11.003
  120. Huh D, Leslie DC, Matthews BD, et al. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med. 2012;4:159ra147. doi: 10.1126/scitranslmed.3004249
  121. Palasantzas VEJM, Tamargo-Rubio I, Le K, et al. iPSC-derived organ-on-a-chip models for personalized human genetics and pharmacogenomics studies. Trends Genet. 2023;39:268-284. doi: 10.1016/j.tig.2023.01.002
  122. Ma C, Peng Y, Li H, Chen W. Organ-on-a-chip: a new paradigm for drug development. Trends Pharmacol Sci. 2021;42:119-133. doi: 10.1016/j.tips.2020.11.009
  123. Chen ML. Ethnic or racial differences revisited: impact of dosage regimen and dosage form on pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2006;45:957-964. doi: 10.2165/00003088-200645100-00001
  124. Driehuis E, Kretzschmar K, Clevers H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protoc. 2020;15:3380-3409. doi: 10.1038/s41596-020-0379-4.
  125. Papp E, Steib A, Abdelwahab EM, et al. Feasibility study of in vitro drug sensitivity assay of advanced non-small cell lung adenocarcinomas. BMJ Open Respir Res. 2020;7(1):e000505. doi: 10.1136/bmjresp-2019-000505
  126. Holmes AH, Moore LS, Sundsfjord A, et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016;387:176-187. doi: 10.1016/S0140-6736(15)00473-0
  127. Weng WH, Wang CY, Yan ZY, Lee HT, Kao CY, Chang CW. Isolation and characterizations of multidrug-resistant human cancer cells by a biodegradable nano-sensor. Biosens Bioelectron. 2024;249:115985. doi: 10.1016/j.bios.2023.115985
  128. Gridelli C, Rossi A, Carbone DP, et al. Non-small-cell lung cancer. Nat Rev Dis Primers. 2015;1:15009. doi: 10.1038/nrdp.2015.9
  129. Yang X, Yang K, Kuang K. The efficacy and safety of EGFR inhibitor monotherapy in non-small cell lung cancer: a systematic review. Curr Oncol Rep. 2014;16:390. doi: 10.1007/s11912-014-0390-4
  130. Tajarernmuang P, Aliaga F, Alwakeel AJ, et al. Accuracy of cytologic vs histologic specimens for assessment of programmed cell death Ligand-1 expression in non-small cell lung cancer: a systematic review and meta-analysis. Chest. 2024;165:461-474. doi: 10.1016/j.chest.2023.09.013
  131. Bremnes RM, Camps C, Sirera R. Angiogenesis in non-small cell lung cancer: the prognostic impact of neoangiogenesis and the cytokines VEGF and bFGF in tumours and blood. Lung Cancer. 2006;51:143-158. doi: 10.1016/j.lungcan.2005.09.005
  132. Xue C, Zheng S, Dong H, et al. Association between efficacy of immune checkpoint inhibitors and sex: an updated meta-analysis on 21 trials and 12,675 non-small cell lung cancer patients. Front Oncol. 2021;11:627016. doi: 10.3389/fonc.2021.627016
  133. Boni C, Tiseo M, Boni L, et al. Triplets versus doublets, with or without cisplatin, in the first-line treatment of stage IIIB-IV non-small cell lung cancer (NSCLC) patients: a multicenter randomised factorial trial (FAST). Br J Cancer. 2012;106:658-665. doi: 10.1038/bjc.2011.606
  134. Griesinger F, Korol EE, Kayaniyil S, et al. Efficacy and safety of first-line carboplatin-versus cisplatin-based chemotherapy for non-small cell lung cancer: a meta-analysis. Lung Cancer. 2019;135:196-204. doi: 10.1016/j.lungcan.2019.07.010
  135. Rajeswaran A, Trojan A, Burnand B, Giannelli M. Efficacy and side effects of cisplatin- and carboplatin-based doublet chemotherapeutic regimens versus non-platinum-based doublet chemotherapeutic regimens as first line treatment of metastatic non-small cell lung carcinoma: a systematic review of randomized controlled trials. Lung Cancer. 2008;59:1-11. doi: 10.1016/j.lungcan.2007.07.012
  136. Tsvetkova D, Ivanova S. Application of approved cisplatin derivatives in combination therapy against different cancer diseases. Molecules. 2022;27(8):2466. doi: 10.3390/molecules27082466
  137. van der Wekken AJ, Saber A, Hiltermann TJ, Kok K, van den Berg A, Groen HJ. Resistance mechanisms after tyrosine kinase inhibitors afatinib and crizotinib in non-small cell lung cancer, a review of the literature. Crit Rev Oncol Hematol. 2016;100:107-116. doi: 10.1016/j.critrevonc.2016.01.024
  138. Li J, Knoll S, Bocharova I, Tang W, Signorovitch J. Comparative efficacy of first-line ceritinib and crizotinib in advanced or metastatic anaplastic lymphoma kinase-positive non-small cell lung cancer: an adjusted indirect comparison with external controls. Curr Med Res Opin. 2019;35:105-111. doi: 10.1080/03007995.2018.1541443
  139. Socinski MA, Nishio M, Jotte RM, et al. IMpower150 final overall survival analyses for atezolizumab plus bevacizumab and chemotherapy in first-line metastatic nonsquamous NSCLC. J Thorac Oncol. 2021; 16:1909-1924. doi: 10.1016/j.jtho.2021.07.009
  140. Vacchelli E, Pol J, Bloy N, et al. Trial watch: tumor-targeting monoclonal antibodies for oncological indications. Oncoimmunology. 2015;4:e985940. doi: 10.4161/2162402X.2014.985940
  141. Stoff R, Grynberg S, Asher N, et al. Efficacy and toxicity of Ipilimumab-Nivolumab combination therapy in elderly metastatic melanoma patients. Front Oncol. 2022;12:1020058. doi: 10.3389/fonc.2022.1020058
  142. Tan AC, Tan DSW. Targeted therapies for lung cancer patients with oncogenic driver molecular alterations. J Clin Oncol. 2022;40:611-625. doi: 10.1200/JCO.21.01626
  143. Harrison PT, Vyse S, Huang PH. Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer. Semin Cancer Biol. 2020;61:167-179. doi: 10.1016/j.semcancer.2019.09.015
  144. Lim TKH, Skoulidis F, Kerr KM, et al. KRAS G12C in advanced NSCLC: prevalence, co-mutations, and testing. Lung Cancer. 2023;184:107293. doi: 10.1016/j.lungcan.2023.107293
  145. Wu J, Lin Z. Non-small cell lung cancer targeted therapy: drugs and mechanisms of drug resistance. Int J Mol Sci. 2022;23:15056. doi: 10.3390/ijms232315056
  146. Daniels MG, Bowman RV, Yang IA, Govindan R, Fong KM. An emerging place for lung cancer genomics in 2013. J Thorac Dis. 2013;5(Suppl 5):S491-497. doi: 10.3978/j.issn.2072-1439.2013.10.06
  147. Merlotti A, Sadacca B, Arribas YA, et al. Noncanonical splicing junctions between exons and transposable elements represent a source of immunogenic recurrent neo-antigens in patients with lung cancer. Sci Immunol. 2023;8:eabm6359. doi: 10.1126/sciimmunol.abm6359
  148. Vokes NI, Galan Cobo A, Fernandez-Chas M, et al. ATM mutations associate with distinct co-mutational patterns and therapeutic vulnerabilities in NSCLC. Clin Cancer Res. 2023;29:4958-4972. doi: 10.1158/1078-0432.CCR-23-1122
  149. Bartfeld S, Clevers H. Stem cell-derived organoids and their application for medical research and patient treatment. J Mol Med (Berl). 2017;95:729-738. doi: 10.1007/s00109-017-1531-7

 

 

 

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing