AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.4450
REVIEW

The application prospects of 4D printing tissue engineering materials in oral bone regeneration

Wenlu Song1, 2, 3, 4 Weihua Huang2,4,5,6 Junzhuo Qu1,3 Chujie Xiao7 Huinan Yin6 Xiangzhen Liu1,3* Weikang Xu2,4,8*
Show Less
1 Department of Stomatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
2 Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
3 Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
4 Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Guangzhou, Guangdong, China
5 Department of Orthopaedic Surgery, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, Guangdong, China
6 Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
7 School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
8 Guangdong Chinese Medicine Intelligent Diagnosis and Treatment Engineering Technology Research Center, Guangzhou, Guangdong, China
Submitted: 6 August 2024 | Accepted: 1 October 2024 | Published: 4 October 2024
(This article belongs to the Special Issue Bioprinting of Dental Tissues and Materials)
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Researchers have developed smart shape-memory materials that adapt their structure or function to external stimuli. The demand for dynamic oral bone tissue repair is driven by continuous changes in bone and surrounding tissues during the repair process, such as tooth growth, movement, reconstruction of oral soft tissues, and skeletal differences in alveolar and craniofacial bones. These changes challenge the mechanical stability of bone implants and the precision of printing. Consequently, 4D printing technology introduces “time,” allowing pre-programmed changes in material shape or functionality, which enables scaffolds to respond to complex oral environments intelligently, achieving dynamic repair of bone and surrounding tissues. Despite its theoretical benefits in oral bone tissue engineering, the study and use of 4D printing technology is still in its infancy. This review explores the recent advances in 4D printing in dentistry, discussing skeletal structure, etiology of bone defects, and bone repair mechanisms. It also provides an overview of the materials, cells, and growth factors used in 4D printing bone tissue engineering. Thus, by reviewing existing studies, this review provides valuable insights for the future development of 4D printing technology in oral bone tissue engineering.

Keywords
4D printing
Smart responsive materials
Bone tissue engineering
Bone regeneration
Dentistry
Funding
This research was supported by the National Natural Science Foundation of China (32000964), the Guangdong Province Science and Technology Plan Project (2024A1515012265, 2020B1111560001, and 2022A1515140193), the Construction of Hainan Academician Innovation Centre of Guangdong Academy of Sciences (2022GDASZH-2022020402-01).
Conflict of interest
The authors declare no financial and personal relationships with other people or organizations that can inappropriately influence our work; there is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.
References
  1. Florencio-Silva R, Sasso GRDS, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed Res Int. 2015;2015:1-17. doi: 10.1155/2015/421746
  2. Deng L, Yan Y. [Research status and progress of biomaterials for bone repair and reconstruction]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi Zhongguo Xiufu Chongjian Waike Zazhi Chin J Reparative Reconstr Surg. 2018;32(7):815-820. doi: 10.7507/1002-1892.201806028
  3. Freeman FE, Pitacco P, Van Dommelen LHA, et al. 3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration. Sci Adv. 2020;6(33):eabb5093. doi: 10.1126/sciadv.abb5093
  4. Collins MN, Ren G, Young K, Pina S, Reis RL, Oliveira JM. Scaffold fabrication technologies and structure/function properties in bone tissue engineering. Adv Funct Mater. 2021;31(21):2010609. doi: 10.1002/adfm.202010609
  5. Moroni L, Burdick JA, Highley C, et al. Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat Rev Mater. 2018;3(5):21-37. doi: 10.1038/s41578-018-0006-y
  6. Guo Y, Chi X, Wang Y, et al. Mitochondria transfer enhances proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cell and promotes bone defect healing. Stem Cell Res Ther. 2020;11(1):245. doi: 10.1186/s13287-020-01704-9
  7. Kuang X, Roach DJ, Wu J, et al. Advances in 4D printing: materials and applications. Adv Funct Mater. 2019;29(2):1805290. doi: 10.1002/adfm.201805290
  8. Wu JJ, Huang LM, Zhao Q, Xie T. 4D printing: history and recent progress. Chin J Polym Sci. 2018;36(5):563-575. doi: 10.1007/s10118-018-2089-8
  9. Haleem A, Javaid M, Vaishya R. 4D printing and its applications in orthopaedics. J Clin Orthop Trauma. 2018;9(3):275-276. doi: 10.1016/j.jcot.2018.08.016
  10. Gao B, Yang Q, Zhao X, Jin G, Ma Y, Xu F. 4D bioprinting for biomedical applications. Trends Biotechnol. 2016;34(9):746-756. doi: 10.1016/j.tibtech.2016.03.004
  11. Zolfagharian A, Kaynak A, Bodaghi M, Kouzani AZ, Gharaie S, Nahavandi S. Control-based 4D printing: adaptive 4D-printed systems. Appl Sci. 2020;10(9):3020. doi: 10.3390/app10093020
  12. Ge Q, Dunn CK, Qi HJ, Dunn ML. Active origami by 4D printing. Smart Mater Struct. 2014;23(9):094007. doi: 10.1088/0964-1726/23/9/094007
  13. Miao S, Zhu W, Castro NJ, et al. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Sci Rep. 2016;6(1):27226. doi: 10.1038/srep27226
  14. Bodaghi M, Damanpack AR, Liao WH. Triple shape memory polymers by 4D printing. Smart Mater Struct. 2018;27(6):065010. doi: 10.1088/1361-665X/aabc2a
  15. Zhang F, Wang L, Zheng Z, Liu Y, Leng J. Magnetic programming of 4D printed shape memory composite structures. Compos Part Appl Sci Manuf. 2019;125:105571. doi: 10.1016/j.compositesa.2019.105571
  16. Nakielski P, Rybak D, Jezierska-Woźniak K, et al. Minimally invasive intradiscal delivery of BM-MSCs via fibrous microscaffold carriers. ACS Appl Mater Interfaces. 2023;15(50):58103-58118. doi: 10.1021/acsami.3c11710
  17. Lin C, Liu L, Liu Y, Leng J. 4D printing of bioinspired absorbable left atrial appendage occluders: a proof-of-concept study. ACS Appl Mater Interfaces. 2021;13(11):12668-12678. doi: 10.1021/acsami.0c17192
  18. Kitana W, Apsite I, Hazur J, Boccaccini AR, Ionov L. 4D biofabrication of T-shaped vascular bifurcation. Adv Mater Technol. 2023;8(1):2200429. doi: 10.1002/admt.202200429
  19. del Barrio J, Sánchez-Somolinos C. Light to shape the future: from photolithography to 4D printing. Adv Opt Mater. 2019;7(16):1900598. doi: 10.1002/adom.201900598
  20. Xie H, Yang KK, Wang YZ. Photo-cross-linking: a powerful and versatile strategy to develop shape-memory polymers. Prog Polym Sci. 2019;95:32-64. doi: 10.1016/j.progpolymsci.2019.05.001
  21. Wan X, Luo L, Liu Y, Leng J. Direct ink writing based 4D printing of materials and their applications. Adv Sci. 2020;7(16):2001000. doi: 10.1002/advs.202001000
  22. Castro NJ, Meinert C, Levett P, Hutmacher DW. Current developments in multifunctional smart materials for 3D/4D bioprinting. Curr Opin Biomed Eng. 2017;2:67-75. doi: 10.1016/j.cobme.2017.04.002
  23. Li X, Shang J, Wang Z. Intelligent materials: a review of applications in 4D printing. Assem Autom. 2017;37(2):170-185. doi: 10.1108/AA-11-2015-093
  24. Shin DG, Kim TH, Kim DE. Review of 4D printing materials and their properties. Int J Precis Eng Manuf-Green Technol. 2017;4(3):349-357. doi: 10.1007/s40684-017-0040-z
  25. Ashammakhi N, Ahadian S, Zengjie F, et al. Advances and future perspectives in 4D bioprinting. Biotechnol J. 2018;13(12):e1800148. doi: 10.1002/biot.201800148
  26. Liu T, Liu L, Zeng C, Liu Y, Leng J. 4D printed anisotropic structures with tailored mechanical behaviors and shape memory effects. Compos Sci Technol. 2020;186:107935. doi: 10.1016/j.compscitech.2019.107935
  27. Weerasinghe DK, Hodge JM, Pasco JA, Samarasinghe RM, Azimi Manavi B, Williams LJ. Antipsychotic-induced bone loss: the role of dopamine, serotonin and adrenergic receptor signalling. Front Cell Dev Biol. 2023;11:1184550. doi: 10.3389/fcell.2023.1184550
  28. Kenkre J, Bassett J. The bone remodelling cycle. Ann Clin Biochem. 2018;55(3):308-327. doi: 10.1177/0004563218759371
  29. Langdahl B, Ferrari S, Dempster DW. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis. Ther Adv Musculoskelet Dis. 2016;8(6):225-235. doi: 10.1177/1759720X16670154
  30. Shaheen MY, Basudan AM, de Vries RB, van den Beucken JJ, Jansen JA, Alghamdi H. S. Bone regeneration using antiosteoporotic drugs in adjunction with bone grafting: a meta-analysis. Tissue Eng Part B Rev. 2019;25(6): 500-509. doi: 10.1089/ten.teb.2019.0132
  31. Gosset A, Pouillès, JM, Trémollieres F. Menopausal hormone therapy for the management of osteoporosis. Best Pract Res Clin Endocrinol Metab. 2021;35(6):101551. doi: 10.1016/j.beem.2021.101551
  32. Fillingham Y, Jacobs J. Bone grafts and their substitutes. Bone Jt J. 2016;98-B(1_Supple_A):6-9. doi: 10.1302/0301-620X.98B.36350
  33. Qasim M, Chae DS, Lee NY. Advancements and frontiers in nano-based 3D and 4D scaffolds for bone and cartilage tissue engineering. Int J Nanomedicine. 2019;14:4333-4351. doi: 10.2147/IJN.S209431
  34. Haleem A, Javaid M, Vaishya R. 5D printing and its expected applications in orthopaedics. J Clin Orthop Trauma. 2019;10(4):809-810. doi: 10.1016/j.jcot.2018.11.014
  35. Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev. 2018;132:296-332. doi: 10.1016/j.addr.2018.07.004
  36. Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater. 2017;2(4):224-247. doi: 10.1016/j.bioactmat.2017.05.007
  37. Henkel J, Woodruff MA, Epari DR, et al. Bone regeneration based on tissue engineering conceptions – a 21st century perspective. Bone Res. 2013;1(1):216-248. doi: 10.4248/BR201303002
  38. Guo Y, Lv Z, Huo Y, et al. A biodegradable functional water-responsive shape memory polymer for biomedical applications. J Mater Chem B. 2019;7(1):123-132. doi: 10.1039/C8TB02462F
  39. Christy PN, Basha SK, Kumari VS, et al. Biopolymeric nanocomposite scaffolds for bone tissue engineering applications – a review. J Drug Deliv Sci Technol. 2020;55:101452. doi: 10.1016/j.jddst.2019.101452
  40. Lin X, Patil S, Gao YG, Qian A. The bone extracellular matrix in bone formation and regeneration. Front Pharmacol. 2020;11:757. doi: 10.3389/fphar.2020.00757
  41. Fraile-Martínez O, García-Montero C, Coca A, et al. Applications of polymeric composites in bone tissue engineering and jawbone regeneration. Polymers. 2021;13(19):3429. doi: 10.3390/polym13193429
  42. Gopal S, Multhaupt HAB, Couchman JR. Calcium in cell-extracellular matrix interactions. In: Islam MS, ed. Calcium Signaling. Cham: Springer International Publishing;2020:1079-1102. doi: 10.1007/978-3-030-12457-1_43
  43. Ciosek Ż, Kot K, Kosik-Bogacka D, Łanocha-Arendarczyk N, Rotter I. The effects of calcium, magnesium, phosphorus, fluoride, and lead on bone tissue. Biomolecules. 2021;11(4):506. doi: 10.3390/biom11040506
  44. Fakhry M, Hamade E, Badran B, Buchet R, Magne D. Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World J Stem Cells. 2013;5(4):136-148. doi: 10.4252/wjsc.v5.i4.136
  45. Gu Q, Yang H, Shi Q. Macrophages and bone inflammation. J Orthop Transl. 2017;10:86-93. doi: 10.1016/j.jot.2017.05.002
  46. Wang JS, Mazur CM, Wein MN. Sclerostin and osteocalcin: candidate bone-produced hormones. Front Endocrinol. 2021;12:584147. doi: 10.3389/fendo.2021.584147
  47. Amarasekara DS, Kim S, Rho J. Regulation of osteoblast differentiation by cytokine networks. Int J Mol Sci. 2021;22(6):2851. doi: 10.3390/ijms22062851
  48. Hadjidakis DJ, Androulakis II. Bone remodeling. Ann NY Acad Sci. 2006;1092(1):385-396. doi: 10.1196/annals.1365.035
  49. Fuller K, Lawrence KM, Ross JL, et al. Cathepsin K inhibitors prevent matrix-derived growth factor degradation by human osteoclasts. Bone. 2008;42(1):200-211. doi: 10.1016/j.bone.2007.09.044
  50. Schemitsch EH. Size matters: defining critical in bone defect size!. J Orthop Trauma. 2017;31:S20. doi: 10.1097/BOT.0000000000000978
  51. Rowe P, Koller A, Sharma S. Physiology, bone remodeling. In: StatPearls. Treasure Island, FL:StatPearls Publishing;2024.
  52. You D, Chen G, Liu C, et al. 4D printing of multi-responsive membrane for accelerated in vivo bone healing via remote regulation of stem cell fate. Adv Funct Mater. 2021;31(40):2103920. doi: 10.1002/adfm.202103920
  53. Fang Z, Song H, Zhang Y, et al. Modular 4D printing via interfacial welding of digital light-controllable dynamic covalent polymer networks. Matter. 2020;2(5):1187-1197. doi: 10.1016/j.matt.2020.01.014
  54. Özcan M, Hotza D, Fredel MC, Cruz A, Volpato CAM. Materials and manufacturing techniques for polymeric and ceramic scaffolds used in implant dentistry. J Compos Sci. 2021;5(3):78. doi: 10.3390/jcs5030078
  55. Leist SK, Zhou J. Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials. Virtual Phys Prototyp. 2016;11(4):249-262. doi: 10.1080/17452759.2016.1198630
  56. Sordi MB, Cruz A, Fredel MC, Magini R, Sharpe PT. Three-dimensional bioactive hydrogel-based scaffolds for bone regeneration in implant dentistry. Mater Sci Eng C. 2021;124:112055. doi: 10.1016/j.msec.2021.112055
  57. Lim HK, Hong SJ, Byeon SJ, et al. 3D-printed ceramic bone scaffolds with variable pore architectures. Int J Mol Sci. 2020;21(18):6942. doi: 10.3390/ijms21186942
  58. Huang J, Xia S, Li Z, Wu X, Ren J. Applications of four-dimensional printing in emerging directions: review and prospects. J Mater Sci Technol. 2021;91:105-120. doi: 10.1016/j.jmst.2021.02.040
  59. Mallakpour S, Tabesh F, Hussain CM. 3D and 4D printing: from innovation to evolution. Adv Colloid Interface Sci. 2021;294:102482. doi: 10.1016/j.cis.2021.102482
  60. Saska S, Pilatti L, Blay A, Shibli JA. Bioresorbable polymers: advanced materials and 4D printing for tissue engineering. Polymers. 2021;13(4):563. doi: 10.3390/polym13040563
  61. Li YC, Zhang YS, Akpek A, Shin SR, Khademhosseini A. 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials. Biofabrication. 2016;9(1):012001. doi: 10.1088/1758-5090/9/1/012001
  62. Mandon CA, Blum LJ, Marquette CA. 3D–4D printed objects: new bioactive material opportunities. Micromachines. 2017;8(4):102. doi: 10.3390/mi8040102
  63. Zhang Z, Demir KG, Gu GX. Developments in 4D-printing: a review on current smart materials, technologies, and applications. Int J Smart Nano Mater. 2019;10(3): 205-224. doi: 10.1080/19475411.2019.1591541
  64. Chu H, Yang W, Sun L, et al. 4D printing: a review on recent progresses. Micromachines. 2020;11(9):796. doi: 10.3390/mi11090796
  65. Melly SK, Liu L, Liu Y, Leng J. On 4D printing as a revolutionary fabrication technique for smart structures. Smart Mater Struct. 2020;29(8):083001. doi: 10.1088/1361-665X/ab9989
  66. Zhou W, Qiao Z, Nazarzadeh Zare E, et al. 4D-printed dynamic materials in biomedical applications: chemistry, challenges, and their future perspectives in the clinical sector. J Med Chem. 2020;63(15):8003-8024. doi: 10.1021/acs.jmedchem.9b02115
  67. Javaid M, Haleem A. Significant advancements of 4D printing in the field of orthopaedics. J Clin Orthop Trauma. 2020;11:S485-S490. doi: 10.1016/j.jcot.2020.04.021
  68. Momeni F, Mehdi Hassani MNS, Liu X, Ni J. A review of 4D printing. Mater Des. 2017;122:42-79. doi: 10.1016/j.matdes.2017.02.068
  69. Hoa SV, Cai X. Twisted composite structures made by 4D printing method. Compos Struct. 2020;238:111883. doi: 10.1016/j.compstruct.2020.111883
  70. Jeong HY, An SC, Lim Y, Jeong MJ, Kim N, Jun YC. 3D and 4D printing of multistable structures. Appl Sci. 2020;10(20):7254. doi: 10.3390/app10207254
  71. Bodaghi M, Damanpack AR, Liao WH. Self-expanding/ shrinking structures by 4D printing. Smart Mater Struct. 2016;25(10):105034. doi: 10.1088/0964-1726/25/10/105034
  72. Bhanushali H, Amrutkar S, Mestry S, Mhaske ST. Shape memory polymer nanocomposite: a review on structure-property relationship. Polym Bull. 2022;79(6):3437-3493. doi: 10.1007/s00289-021-03686-x
  73. Alshahrani HA. Review of 4D printing materials and reinforced composites: behaviors, applications and challenges. J Sci Adv Mater Devices. 2021;6(2):167-185. doi: 10.1016/j.jsamd.2021.03.006
  74. Sobacchi C, Erreni M, Strina D, Palagano E, Villa A, Menale C. 3D bone biomimetic scaffolds for basic and translational studies with mesenchymal stem cells. Int J Mol Sci. 2018;19(10):3150. doi: 10.3390/ijms19103150
  75. Park J, Park SY, Lee D, Song YS. Shape memory polymer composites embedded with hybrid ceramic microparticles. Smart Mater Struct. 2020;29(5):055037. doi: 10.1088/1361-665X/ab5e53
  76. Subash A, Kandasubramanian B. 4D Printing of shape memory polymers. Eur Polym J. 2020;134:109771. doi: 10.1016/j.eurpolymj.2020.109771
  77. Hendrikson WJ, Rouwkema J, Clementi F, Blitterswijk CA van, Farè S, Moroni L. Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells. Biofabrication. 2017;9(3):031001. doi: 10.1088/1758-5090/aa8114
  78. Stroganov V, Pant J, Stoychev G, et al. 4D biofabrication: 3D cell patterning using shape-changing films. Adv Funct Mater. 2018;28(11):1706248. doi: 10.1002/adfm.201706248
  79. Erndt-Marino JD, Munoz-Pinto DJ, Samavedi S, et al. Evaluation of the osteoinductive capacity of polydopamine-coated poly(ε-caprolactone) diacrylate shape memory foams. ACS Biomater Sci Eng. 2015;1(12):1220-1230. doi: 10.1021/acsbiomaterials.5b00445
  80. Buffington SL, Paul JE, Ali MM, Macios MM, Mather PT, Henderson JH. Enzymatically triggered shape memory polymers. Acta Biomater. 2019;84:88-97. doi: 10.1016/j.actbio.2018.11.031
  81. Rajeshkumar G, Arvindh Seshadri S, Devnani GL, et al. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – a comprehensive review. J Clean Prod. 2021;310:127483. doi: 10.1016/j.jclepro.2021.127483
  82. Langford T, Mohammed A, Essa K, Elshaer A, Hassanin H. 4D printing of origami structures for minimally invasive surgeries using functional scaffold. Appl Sci. 2021;11(1):332. doi: 10.3390/app11010332
  83. Li Y, Zhang F, Liu Y, Leng J. 4D printed shape memory polymers and their structures for biomedical applications. Sci China Technol Sci. 2020;63(4):545-560. doi: 10.1007/s11431-019-1494-0
  84. Shuai L, Jun Z, Jianjun C, Ming Y, Xuepeng L, Zhiguo J. Biodegradable body temperature-responsive shape memory polyurethanes with self-healing behavior. Polym Eng Sci. 2019;59(s2):E310-E316. doi: 10.1002/pen.25061
  85. Yang W, Guan D, Liu J, Luo Y, Wang Y. Synthesis and characterization of biodegradable linear shape memory polyurethanes with high mechanical performance by incorporating novel long chain diisocyanates. New J Chem. 2020;44(8):3493-3503. doi: 10.1039/C9NJ06017K
  86. Zhang Y, Hu J, Xie R, et al. A programmable, fast-fixing, osteo-regenerative, biomechanically robust bone screw. Acta Biomater. 2020;103:293-305. doi: 10.1016/j.actbio.2019.12.017
  87. Zhang C, Cai D, Liao P, et al. 4D printing of shape-memory polymeric scaffolds for adaptive biomedical implantation. Acta Biomater. 2021;122:101-110. doi: 10.1016/j.actbio.2020.12.042
  88. Le Fer G, Becker ML. 4D printing of resorbable complex shape-memory poly(propylene fumarate) star scaffolds. ACS Appl Mater Interfaces. 2020;12(20):22444-22452. doi: 10.1021/acsami.0c01444
  89. Cemali G, Okutan B, Şafak EC, Köse GT. In vitro investigation of poly(propylene fumarate) cured with phosphonic acid based monomers as scaffolds for bone tissue engineering. J Polym Res. 2023;30(9):347. doi: 10.1007/s10965-023-03713-7
  90. Joshi S, Rawat K, Karunakaran C, et al. 4D printing of materials for the future: opportunities and challenges. Appl Mater Today. 2020;18:100490. doi: 10.1016/j.apmt.2019.100490
  91. Ahmed K, Shiblee MNI, Khosla A, Nagahara L, Thundat T, Furukawa H. Review – recent progresses in 4D printing of gel materials. J Electrochem Soc. 2020;167(3):037563. doi: 10.1149/1945-7111/ab6e60
  92. Kirillova A, Maxson R, Stoychev G, Gomillion CT, Ionov L. 4D biofabrication using shape-morphing hydrogels. Adv Mater. 2017;29(46):1703443. doi: 10.1002/adma.201703443
  93. Torbati AH, Mather PT. A hydrogel-forming liquid crystalline elastomer exhibiting soft shape memory. J Polym Sci Part B Polym Phys. 2016;54(1):38-52. doi: 10.1002/polb.23892
  94. Zhang Y, Wang Q, Yi S, et al. 4D printing of magnetoactive soft materials for on-demand magnetic actuation transformation. ACS Appl Mater Interfaces. 2021;13(3):4174-4184. doi: 10.1021/acsami.0c19280
  95. Ying Y, Li B, Liu C, Xiong Z, Bai W, Ma P. Shape-memory ECM-mimicking heparin-modified nanofibrous gelatin scaffold for enhanced bone regeneration in sinus augmentation. ACS Biomater Sci Eng. 2022;8(1):218-231. doi: 10.1021/acsbiomaterials.1c01365
  96. Diba M, Koons GL, Bedell ML, Mikos AG. 3D printed colloidal biomaterials based on photo-reactive gelatin nanoparticles. Biomaterials. 2021;274:120871. doi: 10.1016/j.biomaterials.2021.120871
  97. Yuan Z, Yuan X, Zhao Y, et al. Injectable GelMA cryogel microspheres for modularized cell delivery and potential vascularized bone regeneration. Small. 2021;17(11): 2006596. doi: 10.1002/smll.202006596
  98. Jiang LB, Su DH, Liu P, Ma YQ, Shao ZZ, Dong J. Shape-memory collagen scaffold for enhanced cartilage regeneration: native collagen versus denatured collagen. Osteoarthritis Cartilage. 2018;26(10):1389-1399. doi: 10.1016/j.joca.2018.06.004
  99. Luo Y, Lin X, Chen B, Wei X. Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks. Biofabrication. 2019;11(4):045019. doi: 10.1088/1758-5090/ab39c5
  100. Hamann I, Gebhardt F, Eisenhut M, et al. Investigation into the hybrid production of a superelastic shape memory alloy with additively manufactured structures for medical implants. Materials. 2021;14(11):3098. doi: 10.3390/ma14113098
  101. Liu J, Lin Y, Bian D, et al. In vitro and in vivo studies of mg- 30sc alloys with different phase structure for potential usage within bone. Acta Biomater. 2019;98:50-66. doi: 10.1016/j.actbio.2019.03.009
  102. Werner M, Hammer N, Rotsch C, Berthold I, Leimert M. Experimental validation of adaptive pedicle screws – a novel implant concept using shape memory alloys. Med Biol Eng Comput. 2020;58(1):55-65. doi: 10.1007/s11517-019-02059-x
  103. Hou Z, Liu Z, Zhu X, et al. Contactless treatment for scoliosis by electromagnetically controlled shape-memory alloy rods: a preliminary study in rabbits. Eur Spine J. 2020;29(5):1147-1158. doi: 10.1007/s00586-019-06207-7
  104. Zhang Y, Li J, Soleimani M, et al. Biodegradable elastic sponge from nanofibrous biphasic calcium phosphate ceramic as an advanced material for regenerative medicine. Adv Funct Mater. 2021;31(40):2102911. doi: 10.1002/adfm.202102911
  105. Holman H, Kavarana MN, Rajab TK. Smart materials in cardiovascular implants: shape memory alloys and shape memory polymers. Artif Organs. 2021;45(5):454-463. doi: 10.1111/aor.13851
  106. Tamay DG, Dursun Usal T, Alagoz AS, Yucel D, Hasirci N, Hasirci V. 3D and 4D printing of polymers for tissue engineering applications. Front Bioeng Biotechnol. 2019;7:164. doi: 10.3389/fbioe.2019.00164
  107. Dessì M, Borzacchiello A, Mohamed THA, Abdel-Fattah WI, Ambrosio L. Novel biomimetic thermosensitive β-tricalcium phosphate/chitosan-based hydrogels for bone tissue engineering. J Biomed Mater Res A. 2013;101(10):2984-2993. doi: 10.1002/jbm.a.34592
  108. Wei H, Cheng SX, Zhang XZ, Zhuo RX. Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Prog Polym Sci. 2009;34(9):893-910. doi: 10.1016/j.progpolymsci.2009.05.002
  109. Ozturk N, Girotti A, Kose GT, Rodríguez-Cabello JC, Hasirci V. Dynamic cell culturing and its application to micropatterned, elastin-like protein-modified poly(N-isopropylacrylamide) scaffolds. Biomaterials. 2009;30(29):5417-5426. doi: 10.1016/j.biomaterials.2009.06.044
  110. Wang R, Wang X, Mu X, et al. Reducing thermal damage to adjacent normal tissue with dual thermo-responsive polymer via thermo-induced phase transition for precise photothermal theranosis. Acta Biomater. 2022;148:142-151. doi: 10.1016/j.actbio.2022.06.007
  111. Zu S, Zhang Z, Liu Q, et al. 4D printing of core-shell hydrogel capsules for smart controlled drug release. Bio-Des Manuf. 2022;5(2):294-304. doi: 10.1007/s42242-021-00175-y
  112. Adedoyin AA, Ekenseair AK. Biomedical applications of magneto-responsive scaffolds. Nano Res. 2018;11(10): 5049-5064. doi: 10.1007/s12274-018-2198-2
  113. Lucarini S, Hossain M, Garcia-Gonzalez D. Recent advances in hard-magnetic soft composites: synthesis, characterisation, computational modelling, and applications. Compos Struct. 2022;279:114800. doi: 10.1016/j.compstruct.2021.114800
  114. Zhang J, Zhao S, Zhu M, et al. 3D-printed magnetic Fe3O4/ MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J Mater Chem B. 2014;2(43): 7583-7595. doi: 10.1039/C4TB01063A
  115. Meng J, Xiao B, Zhang Y, et al. Super-paramagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Sci Rep. 2013;3(1):2655. doi: 10.1038/srep02655
  116. Betsch M, Cristian C, Lin YY, et al. Incorporating 4D into bioprinting: real-time magnetically directed collagen fiber alignment for generating complex multilayered tissues. Adv Healthc Mater. 2018;7(21):1800894. doi: 10.1002/adhm.201800894
  117. Fuhrer R, Hofmann S, Hild N, et al. Pressureless mechanical induction of stem cell differentiation is dose and frequency dependent. Plos One. 2013;8(11):e81362. doi: 10.1371/journal.pone.0081362
  118. Zhang Q, Liu J, Yuan K, Zhang Z, Zhang X, Fang X. A multi-controlled drug delivery system based on magnetic mesoporous Fe3O4 nanopaticles and a phase change material for cancer thermo-chemotherapy. Nanotechnology. 2017;28(40):405101. doi: 10.1088/1361-6528/aa883f
  119. Kim C, Kim H, Park H, Lee KY. Controlling the porous structure of alginate ferrogel for anticancer drug delivery under magnetic stimulation. Carbohydr Polym. 2019;223:115045. doi: 10.1016/j.carbpol.2019.115045
  120. Alam Ansari MA, Dash M, Camci-Unal G, et al. Engineered stimuli-responsive smart grafts for bone regeneration. Curr Opin Biomed Eng. 2023;28:100493. doi: 10.1016/j.cobme.2023.100493
  121. Pourmasoumi P, Moghaddam A, Nemati Mahand S, et al. A review on the recent progress, opportunities, and challenges of 4D printing and bioprinting in regenerative medicine. J Biomater Sci Polym Ed. 2023;34(1):108-146. doi: 10.1080/09205063.2022.2110480
  122. Yang GH, Kim W, Kim J, Kim G. A skeleton muscle model using GelMA-based cell-aligned bioink processed with an electric-field assisted 3D/4D bioprinting. Theranostics. 2021;11(1):48-63. doi: 10.7150/thno.50794
  123. Lu H, Liu Y, Gou J, Leng J, Du S. Electrical properties and shape-memory behavior of self-assembled carbon nanofiber nanopaper incorporated with shape-memory polymer. Smart Mater Struct. 2010;19(7):075021. doi: 10.1088/0964-1726/19/7/075021
  124. Huang Y, Zhang L, Ji Y, et al. A non-invasive smart scaffold for bone repair and monitoring. Bioact Mater. 2023;19:499-510. doi: 10.1016/j.bioactmat.2022.04.034
  125. Municoy S, Álvarez Echazú MI, Antezana PE, et al. Stimuli-responsive materials for tissue engineering and drug delivery. Int J Mol Sci. 2020;21(13):4724. doi: 10.3390/ijms21134724
  126. Bedell ML, Navara AM, Du Y, Zhang S, Mikos AG. Polymeric systems for bioprinting. Chem Rev. 2020;120(19):10744-10792. doi: 10.1021/acs.chemrev.9b00834
  127. Ding A, Lee SJ, Ayyagari S, Tang R, Huynh CT, Alsberg E. 4D biofabrication via instantly generated graded hydrogel scaffolds. Bioact Mater. 2022;7:324-332. doi: 10.1016/j.bioactmat.2021.05.021
  128. Bagheri A, Arandiyan H, Boyer C, Lim M. Lanthanide-doped upconversion nanoparticles: emerging intelligent light-activated drug delivery systems. Adv Sci. 2016;3(7):1500437. doi: 10.1002/advs.201500437
  129. Zhang Y, Li C, Zhang W, et al. 3D-printed NIR-responsive shape memory polyurethane/magnesium scaffolds with tight-contact for robust bone regeneration. Bioact Mater. 2022;16:218-231. doi: 10.1016/j.bioactmat.2021.12.032
  130. Dong Q, Wan Z, Li Q, et al. 3D-printed near-infrared-light-responsive on-demand drug-delivery scaffold for bone regeneration. 2023. doi: 10.21203/rs.3.rs-2702534/v1
  131. Sydney Gladman A, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA. Biomimetic 4D printing. Nat Mater. 2016;15(4):413-418. doi: 10.1038/nmat4544
  132. Morouço, P, Azimi B, Milazzo M, et al. Four-dimensional (bio-)printing: a review on stimuli-responsive mechanisms and their biomedical suitability. Appl Sci. 2020;10(24):9143. doi: 10.3390/app10249143
  133. Liu Y, Li Y, Yang G, Zheng X, Zhou S. Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals. ACS Appl Mater Interfaces. 2015;7(7):4118-4126. doi: 10.1021/am5081056
  134. Zhou X, Guo L, Shi D, Duan S, Li J. Biocompatible chitosan nanobubbles for ultrasound-mediated targeted delivery of doxorubicin. Nanoscale Res Lett. 2019;14(1):24. doi: 10.1186/s11671-019-2853-x
  135. Cao Y, Chen Y, Yu T, et al. Drug release from phase-changeable nanodroplets triggered by low-intensity focused ultrasound. Theranostics. 2018;8(5):1327-1339. doi: 10.7150/thno.21492
  136. Yang P, Li D, Jin S, et al. Stimuli-responsive biodegradable poly(methacrylic acid) based nanocapsules for ultrasound traced and triggered drug delivery system. Biomaterials. 2014;35(6):2079-2088. doi: 10.1016/j.biomaterials.2013.11.057
  137. Li B, Zhang C, Peng F, Wang W, Vogt BD, Tan KT. 4D printed shape memory metamaterial for vibration bandgap switching and active elastic-wave guiding. J Mater Chem C. 2021;9(4):1164-1173. doi: 10.1039/D0TC04999A
  138. Kocak G, Tuncer C, Bütün V. pH-responsive polymers. Polym Chem. 2017;8(1):144-176. doi: 10.1039/C6PY01872F
  139. Xu Y, Han J, Chai Y, Yuan S, Lin H, Zhang X. Development of porous chitosan/tripolyphosphate scaffolds with tunable uncross-linking primary amine content for bone tissue engineering. Mater Sci Eng C. 2018;85:182-190. doi: 10.1016/j.msec.2017.12.032
  140. Qu J, Zhao X, Ma PX, Guo B. pH-responsive self-healing injectable hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy. Acta Biomater. 2017;58:168-180. doi: 10.1016/j.actbio.2017.06.001
  141. Mohy Eldin MS, Kamoun EA, Sofan MA, Elbayomi SM. L-arginine grafted alginate hydrogel beads: a novel pH-sensitive system for specific protein delivery. Arab J Chem. 2015;8(3):355-365. doi: 10.1016/j.arabjc.2014.01.007
  142. Bai T, Han Y, Zhang P, Wang W, Liu W. Zinc ion-triggered two-way macro-/microscopic shape changing and memory effects in high strength hydrogels with pre-programmed unilateral patterned surfaces. Soft Matter. 2012;8(25):6846-6852. doi: 10.1039/C2SM07364A
  143. Nan W, Wang W, Gao H, Liu W. Fabrication of a shape memory hydrogel based on imidazole – zinc ion coordination for potential cell-encapsulating tubular scaffold application. Soft Matter. 2013;9(1):132-137. doi: 10.1039/C2SM26918J
  144. Lai J, Ye X, Liu J, et al. 4D printing of highly printable and shape morphing hydrogels composed of alginate and methylcellulose. Mater Des. 2021;205:109699. doi: 10.1016/j.matdes.2021.109699
  145. Wells CM, Harris M, Choi L, Murali VP, Guerra FD, Jennings JA. Stimuli-responsive drug release from smart polymers. J Funct Biomater. 2019;10(3):34. doi: 10.3390/jfb10030034
  146. Kim J, Park Y, Tae G, et al. Synthesis and characterization of matrix metalloprotease sensitive-low molecular weight hyaluronic acid based hydrogels. J Mater Sci Mater Med. 2008;19(11):3311-3318. doi: 10.1007/s10856-008-3469-3
  147. Zhang C, Pan D, Li J, et al. Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy. Acta Biomater. 2017;55:153-162. doi: 10.1016/j.actbio.2017.02.047
  148. Wang B, Liu H, Sun L, et al. Construction of high drug loading and enzymatic degradable multilayer films for self-defense drug release and long-term biofilm inhibition. Biomacromolecules. 2018;19(1):85-93. doi: 10.1021/acs.biomac.7b01268
  149. Davaran S, Ghamkhari A, Alizadeh E, Massoumi B, Jaymand M. Novel dual stimuli-responsive ABC triblock copolymer: RAFT synthesis, “Schizophrenic” micellization, and its performance as an anticancer drug delivery nanosystem. J Colloid Interface Sci. 2017;488:282-293. doi: 10.1016/j.jcis.2016.11.002
  150. Li Z, Fan Z, Xu Y, et al. pH-sensitive and thermosensitive hydrogels as stem-cell carriers for cardiac therapy. ACS Appl Mater Interfaces. 2016;8(17):10752-10760. doi: 10.1021/acsami.6b01374
  151. Xu X, Huang Z, Huang Z, et al. Injectable, NIR/pH-responsive nanocomposite hydrogel as long-acting implant for chemophotothermal synergistic cancer therapy. ACS Appl Mater Interfaces. 2017;9(24):20361-20375. doi: 10.1021/acsami.7b02307
  152. IO de Solorzano, T Alejo, M Abad, et al. Cleavable and thermo-responsive hybrid nanoparticles for on-demand drug delivery. J Colloid Interface Sci. 2019;533: 171-181. doi: 10.1016/j.jcis.2018.08.069
  153. Bozuyuk U, Yasa O, Yasa IC, Ceylan H, Kizilel S, Sitti M. Light-triggered drug release from 3D-printed magnetic chitosan microswimmers. ACS Nano. 2018;12(9): 9617-9625. doi: 10.1021/acsnano.8b05997
  154. Collado-González M, García-Bernal D, Oñate-Sánchez RE, et al. Cytotoxicity and bioactivity of various pulpotomy materials on stem cells from human exfoliated primary teeth. Int Endod J. 2017;50(S2):e19-e30. doi: 10.1111/iej.12751
  155. Leberfinger AN, Dinda S, Wu Y, et al. Bioprinting functional tissues. Acta Biomater. 2019;95:32-49. doi: 10.1016/j.actbio.2019.01.009
  156. Unagolla JM, Jayasuriya AC. Hydrogel-based 3D bioprinting: a comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Appl Mater Today. 2020;18:100479. doi: 10.1016/j.apmt.2019.100479
  157. Haleem A, Javaid M, Singh RP, Suman R. Significant roles of 4D printing using smart materials in the field of manufacturing. Adv Ind Eng Polym Res. 2021;4(4):301-311. doi: 10.1016/j.aiepr.2021.05.001
  158. Li J, Wu C, Chu P, Gelinsky M. 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Mater Sci Eng R Rep. 2020;140:100543. doi: 10.1016/j.mser.2020.100543
  159. Ng WL, An J, Chua CK. Process, material, and regulatory considerations for 3D printed medical devices and tissue constructs. Engineering. 2024;36:146-166. doi: 10.1016/j.eng.2024.01.028
  160. Basak S. Is 4D printing at the forefront of transformations in tissue engineering and beyond? Biomed Mater Devices. 2024;2(2):587-600. doi: 10.1007/s44174-024-00161-9
  161. Ghosh S, Chaudhuri S, Roy P, Lahiri D. 4D printing in biomedical engineering: a state-of-the-art review of technologies, biomaterials, and application. Regen Eng Transl Med. 2023;9(3):339-365. doi: 10.1007/s40883-022-00288-5
  162. Miao S, Zhu W, Castro NJ, Leng J, Zhang LG. Four-dimensional printing hierarchy scaffolds with highly biocompatible smart polymers for tissue engineering applications. Tissue Eng Part C Methods. 2016;22(10):952-963. doi: 10.1089/ten.tec.2015.0542
  163. Zhao T, Yu R, Li X, et al. 4D printing of shape memory polyurethane via stereolithography. Eur Polym J. 2018;101:120-126. doi: 10.1016/j.eurpolymj.2018.02.021
  164. González-Henríquez CM, Sarabia-Vallejos MA, Rodriguez- Hernandez J. Polymers for additive manufacturing and 4D-printing: materials, methodologies, and biomedical applications. Prog Polym Sci. 2019;94:57-116. doi: 10.1016/j.progpolymsci.2019.03.001
  165. Ali MH, Abilgaziyev A, Adair D. 4D printing: a critical review of current developments, and future prospects. Int J Adv Manuf Technol. 2019;105(1):701-717. doi: 10.1007/s00170-019-04258-0
  166. Senatov FS, Niaza KV, Zadorozhnyy MY, Maksimkin AV, Kaloshkin SD, Estrin YZ. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J Mech Behav Biomed Mater. 2016;57:139-148. doi: 10.1016/j.jmbbm.2015.11.036
  167. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-785. doi: 10.1038/nbt.2958
  168. Mu Q, Wang L, Dunn CK, et al. Digital light processing 3D printing of conductive complex structures. Addit Manuf. 2017;18:74-83. doi: 10.1016/j.addma.2017.08.011
  169. Gou M, Qu X, Zhu W, et al. Bio-inspired detoxification using 3D-printed hydrogel nanocomposites. Nat Commun. 2014;5(1):3774. doi: 10.1038/ncomms4774
  170. DuRaine GD, Brown WE, Hu JC, Athanasiou KA. Emergence of scaffold-free approaches for tissue engineering musculoskeletal cartilages. Ann Biomed Eng. 2015;43(3):543-554. doi: 10.1007/s10439-014-1161-y
  171. Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells. 2019;8(8):886. doi: 10.3390/cells8080886
  172. Zhai Q, Dong Z, Wang W, Li B, Jin Y. Dental stem cell and dental tissue regeneration. Front Med. 2019;13(2):152-159. doi: 10.1007/s11684-018-0628-x
  173. Hernández-Monjaraz B, Santiago-Osorio E, Monroy- García A, Ledesma-Martínez E, Mendoza-Núñez VM. Mesenchymal stem cells of dental origin for inducing tissue regeneration in periodontitis: a mini-review. Int J Mol Sci. 2018;19(4):944. doi: 10.3390/ijms19040944
  174. Ono N, Kronenberg HM. Bone repair and stem cells. Curr Opin Genet Dev. 2016;40:103-107. doi: 10.1016/j.gde.2016.06.012
  175. Shen C, Yang C, Xu S, Zhao H. Comparison of osteogenic differentiation capacity in mesenchymal stem cells derived from human amniotic membrane (AM), umbilical cord (UC), chorionic membrane (CM), and decidua (DC). Cell Biosci. 2019;9(1):17. doi: 10.1186/s13578-019-0281-3
  176. Friedenstein AJ, Chailakhyan RK, Gerasimov UV. Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Prolif. 1987;20(3):263-272. doi: 10.1111/j.1365-2184.1987.tb01309.x
  177. Moncal KK, Tigli Aydın RS, Godzik KP, et al. Controlled co-delivery of pPDGF-B and pBMP-2 from intraoperatively bioprinted bone constructs improves the repair of calvarial defects in rats. Biomaterials. 2022;281:121333. doi: 10.1016/j.biomaterials.2021.121333
  178. Zhang Z, Yang X, Cao X, Qin A, Zhao J. Current applications of adipose-derived mesenchymal stem cells in bone repair and regeneration: a review of cell experiments, animal models, and clinical trials. Front Bioeng Biotechnol. 2022;10:942128. doi: 10.3389/fbioe.2022.942128
  179. Xu T, Yu X, Yang Q, Liu X, Fang J, Dai X. Autologous micro-fragmented adipose tissue as stem cell-based natural scaffold for cartilage defect repair. Cell Transplant. 2019;28(12):1709-1720. doi: 10.1177/0963689719880527
  180. Wang Z, Han L, Sun T, Wang W, Li X, Wu B. Osteogenic and angiogenic lineage differentiated adipose-derived stem cells for bone regeneration of calvarial defects in rabbits. J Biomed Mater Res A. 2021;109(4):538-550. doi: 10.1002/jbm.a.37036
  181. Conejero JA, Lee JA, Parrett BM, et al. Repair of palatal bone defects using osteogenically differentiated fat-derived stem cells. Plast Reconstr Surg. 2006; 117(3):857. doi: 10.1097/01.prs.0000204566.13979.c1
  182. Roberts SJ, van Gastel N, Carmeliet G, Luyten FP. Uncovering the periosteum for skeletal regeneration: the stem cell that lies beneath. Bone. 2015;70:10-18. doi: 10.1016/j.bone.2014.08.007
  183. Bahney CS, Zondervan RL, Allison P, et al. Cellular biology of fracture healing. J Orthop Res. 2019;37(1):35-50. doi: 10.1002/jor.24170
  184. Radtke CL, Nino-Fong R, Gonzalez BPE, Stryhn H, McDuffee LA. Characterization and osteogenic potential of equine muscle tissue- and periosteal tissue-derived mesenchymal stem cells in comparison with bone marrow-and adipose tissue-derived mesenchymal stem cells. Am J Vet Res. 2013;74(5):790-800. doi: 10.2460/ajvr.74.5.790
  185. Roberts SJ, Geris L, Kerckhofs G, Desmet E, Schrooten J, Luyten FP. The combined bone forming capacity of human periosteal derived cells and calcium phosphates. Biomaterials. 2011;32(19):4393-4405. doi: 10.1016/j.biomaterials.2011.02.047
  186. Nuti N, Corallo C, Chan BMF, Ferrari M, Gerami-Naini B. Multipotent differentiation of human dental pulp stem cells: a literature review. Stem Cell Rev Rep. 2016;12(5): 511-523. doi: 10.1007/s12015-016-9661-9
  187. Nada OA, El Backly RM. Stem cells from the apical papilla (SCAP) as a tool for endogenous tissue regeneration. Front Bioeng Biotechnol. 2018;6:103. doi: 10.3389/fbioe.2018.00103
  188. Huang GTJ, Garcia-Godoy F. 13 – stem cells and dental tissue reconstruction. In: Spencer P, Misra A, eds. Material-Tissue Interfacial Phenomena. Sawston, Cambridge: Woodhead Publishing; 2017:325-353. doi: 10.1016/B978-0-08-100330-5.00013-3
  189. Kang J, Fan W, Deng Q, He H, Huang F. Stem cells from the apical papilla: a promising source for stem cell-based therapy. BioMed Res Int. 2019;2019:e6104738. doi: 10.1155/2019/6104738
  190. Kérourédan O, Bourget JM, Rémy M, et al. Micropatterning of endothelial cells to create a capillary-like network with defined architecture by laser-assisted bioprinting. J Mater Sci Mater Med. 2019;30(2):28. doi: 10.1007/s10856-019-6230-1
  191. Gao H, Li B, Zhao L, Jin Y. Influence of nanotopography on periodontal ligament stem cell functions and cell sheet based periodontal regeneration. Int J Nanomedicine. 2015;10:4009-4027. doi: 10.2147/IJN.S83357
  192. Salar Amoli M, EzEldeen M, Jacobs R, Bloemen V. Materials for dentoalveolar bioprinting: current state of the art. Biomedicines. 2022;10(1):71. doi: 10.3390/biomedicines10010071
  193. Zhou T, Pan J, Wu P, et al. Dental follicle cells: roles in development and beyond. Stem Cells Int. 2019;2019:e9159605. doi: 10.1155/2019/9159605
  194. Dave JR, Chandekar SS, Behera S, et al. Human gingival mesenchymal stem cells retain their growth and immunomodulatory characteristics independent of donor age. Sci Adv. 2022;8(25):eabm6504. doi: 10.1126/sciadv.abm6504
  195. Zhang Q, Nguyen PD, Shi S, Burrell JC, Cullen DK, Le AD. 3D bio-printed scaffold-free nerve constructs with human gingiva-derived mesenchymal stem cells promote rat facial nerve regeneration. Sci Rep. 2018;8(1):6634. doi: 10.1038/s41598-018-24888-w
  196. Pore-forming bioinks to enable spatio-temporally defined gene delivery in bioprinted tissues. J Control Release. 2019;301:13-27. doi: 10.1016/j.jconrel.2019.03.006
  197. Pizzicannella J, Diomede F, Gugliandolo A, et al. 3D printing PLA/gingival stem cells/EVs upregulate miR-2861 and -210 during osteoangiogenesis commitment. Int J Mol Sci. 2019;20(13):3256. doi: 10.3390/ijms20133256
  198. Attalla R, Puersten E, Jain N, Selvaganapathy PR. 3D bioprinting of heterogeneous bi- and tri-layered hollow channels within gel scaffolds using scalable multi-axial microfluidic extrusion nozzle. Biofabrication. 2018;11(1):015012. doi: 10.1088/1758-5090/aaf7c7
  199. Liu X, Gaihre B, George MN, et al. 3D bioprinting of oligo(poly[ethylene glycol] fumarate) for bone and nerve tissue engineering. J Biomed Mater Res A. 2021;109(1):6-17. doi: 10.1002/jbm.a.37002
  200. Pierdomenico L, Bonsi L, Calvitti M, et al. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation. 2005;80(6):836. doi: 10.1097/01.tp.0000173794.72151.88
  201. La Noce M, Paino F, Spina A, et al. Dental pulp stem cells: state of the art and suggestions for a true translation of research into therapy. J Dent. 2014;42(7):761-768. doi: 10.1016/j.jdent.2014.02.018
  202. Jin R, Song G, Chai J, Gou X, Yuan G, Chen Z. Effects of concentrated growth factor on proliferation, migration, and differentiation of human dental pulp stem cells in vitro. J Tissue Eng. 2018;9:2041731418817505. doi: 10.1177/2041731418817505
  203. Park JH, Gillispie GJ, Copus JS, et al. The effect of BMP-mimetic peptide tethering bioinks on the differentiation of dental pulp stem cells (DPSCs) in 3D bioprinted dental constructs. Biofabrication. 2020;12(3):035029. doi: 10.1088/1758-5090/ab9492
  204. Karbanová J, Soukup T, Suchánek J, Pytlík R, Corbeil D, Mokrý, J. Characterization of dental pulp stem cells from impacted third molars cultured in low serum-containing medium. Cells Tissues Organs. 2010;193(6):344-365. doi: 10.1159/000321160
  205. Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Arch Oral Biol. 2011;56(7):709-721. doi: 10.1016/j.archoralbio.2010.12.008
  206. Thattaruparambil Raveendran N, Vaquette C, Meinert C, Samuel Ipe D, Ivanovski S. Optimization of 3D bioprinting of periodontal ligament cells. Dent Mater. 2019;35(12):1683-1694. doi: 10.1016/j.dental.2019.08.114
  207. Rombouts C, Giraud T, Jeanneau C, About I. Pulp vascularization during tooth development, regeneration, and therapy. J Dent Res. 2017;96(2):137-144. doi: 10.1177/0022034516671688

 

  1. Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci. 2003;100(10):5807-5812. doi: 10.1073/pnas.0937635100
  2. Yao S, Pan F, Prpic V, Wise GE. Differentiation of stem cells in the dental follicle. J Dent Res. 2008;87(8):767-771. doi: 10.1177/154405910808700801
  3. Handa K, Saito M, Tsunoda A, et al. Progenitor cells from dental follicle are able to form cementum matrix in vivo. Connect Tissue Res. 2002;43(2-3):406-408. doi: 10.1080/03008200290001023
  4. Abdal-Wahab M, Abdel Ghaffar KA, Ezzatt OM, Hassan AAA, El Ansary MMS, Gamal AY. Regenerative potential of cultured gingival fibroblasts in treatment of periodontal intrabony defects (randomized clinical and biochemical trial). J Periodontal Res. 2020;55(3):441-452. doi: 10.1111/jre.12728
  5. Yasui T, Mabuchi Y, Toriumi H, et al. Purified human dental pulp stem cells promote osteogenic regeneration. J Dent Res. 2016;95(2):206-214. doi: 10.1177/0022034515610748
  6. d’Aquino R, Papaccio G, Laino G, Graziano A. Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Rev. 2008;4(1):21-26. doi: 10.1007/s12015-008-9013-5
  7. Sonoyama W, Liu Y, Yamaza T, et al. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod. 2008;34(2):166-171. doi: 10.1016/j.joen.2007.11.021
  8. Cheng H, Huang Y, Yue H, Fan Y. Electrical stimulation promotes stem cell neural differentiation in tissue engineering. Stem Cells Int. 2021;2021:e6697574. doi: 10.1155/2021/6697574
  9. Iwasa SN, Babona-Pilipos R, Morshead CM. Environmental factors that influence stem cell migration: an “Electric Field.” Stem Cells Int. 2017;2017:e4276927. doi: 10.1155/2017/4276927
  10. Kusuyama J, Bandow K, Shamoto M, Kakimoto K, Ohnishi T, Matsuguchi T. Low intensity pulsed ultrasound (LIPUS) influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-Cot/ Tpl2-MEK-ERK signaling pathway*. J Biol Chem. 2014;289(15):10330-10344. doi: 10.1074/jbc.M113.546382
  11. Lew WZ, Huang YC, Huang KY, Lin CT, Tsai MT, Huang HM. Static magnetic fields enhance dental pulp stem cell proliferation by activating the p38 mitogen-activated protein kinase pathway as its putative mechanism. J Tissue Eng Regen Med. 2018;12(1):19-29. doi: 10.1002/term.2333
  12. Galli C, Pedrazzi G, Mattioli-Belmonte M, Guizzardi S. The use of pulsed electromagnetic fields to promote bone responses to biomaterials in vitro and in vivo. Int J Biomater. 2018;2018:e8935750. doi: 10.1155/2018/8935750
  13. Hwang NS, Varghese S, Elisseeff J. Controlled differentiation of stem cells. Adv Drug Deliv Rev. 2008;60(2):199-214. doi: 10.1016/j.addr.2007.08.036
  14. Orciani M, Fini M, Di Primio R, Mattioli-Belmonte M. Biofabrication and bone tissue regeneration: cell source, approaches, and challenges. Front Bioeng Biotechnol. 2017;5:17. doi: 10.3389/fbioe.2017.00017
  15. Wang Z, Wang Z, Lu WW, Zhen W, Yang D, Peng S. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater. 2017;9(10):e435. doi: 10.1038/am.2017.171
  16. Mahmoudi Z, Sedighi M, Jafari A, et al. In situ 3D bioprinting: a promising technique in advanced biofabrication strategies. Bioprinting. 2023;31:e00260. doi: 10.1016/j.bprint.2023.e00260
  17. Kim J, Choi HS, Kim YM, Song SC. Thermo-responsive nanocomposite bioink with growth-factor holding and its application to bone regeneration. Small. 2023;19(9):2203464. doi: 10.1002/smll.202203464
  18. Nyberg E, Holmes C, Witham T, Grayson WL. Growth factor-eluting technologies for bone tissue engineering. Drug Deliv Transl Res. 2016;6(2):184-194. doi: 10.1007/s13346-015-0233-3
  19. De Witte TM, Wagner AM, Fratila-Apachitei LE, Zadpoor AA, Peppas NA. Immobilization of nanocarriers within a porous chitosan scaffold for the sustained delivery of growth factors in bone tissue engineering applications. J Biomed Mater Res A. 2020;108(5):1122-1135. doi: 10.1002/jbm.a.36887
  20. Cheng M, Qin G. Chapter 11 – progenitor cell mobilization and recruitment: SDF-1, CXCR4, Α4-Integrin, and c-Kit. In: Tang Y, ed. Progress in Molecular Biology and Translational Science, Genetics of Stem Cells, Part A. Cambridge, Massachusetts: Academic Press; 2012;111:243-264. doi: 10.1016/B978-0-12-398459-3.00011-3
  21. Lauer A, Wolf P, Mehler D, et al. Biofabrication of SDF-1 functionalized 3D-printed cell-free scaffolds for bone tissue regeneration. Int J Mol Sci. 2020;21(6):2175. doi: 10.3390/ijms21062175
  22. Tan J, Zhang M, Hai Z, et al. Sustained release of two bioactive factors from supramolecular hydrogel promotes periodontal bone regeneration. ACS Nano. 2019;13(5):5616-5622. doi: 10.1021/acsnano.9b00788
  23. Lopez CD, Diaz-Siso JR, Witek L, et al. Three dimensionally printed bioactive ceramic scaffold osseoconduction across critical-sized mandibular defects. J Surg Res. 2018;223:115-122. doi: 10.1016/j.jss.2017.10.027
  24. Dhavalikar P, Robinson A, Lan Z, et al. Review of integrin-targeting biomaterials in tissue engineering. Adv Healthc Mater. 2020;9(23):2000795. doi: 10.1002/adhm.202000795
  25. Alvarez P, Hee CK, Solchaga L, et al. Growth factors and craniofacial surgery. J Craniofac Surg. 2012;23(1):20. doi: 10.1097/SCS.0b013e318240c6a8
  26. Wang MM, Flores RL, Witek L, et al. Dipyridamole-loaded 3D-printed bioceramic scaffolds stimulate pediatric bone regeneration in vivo without disruption of craniofacial growth through facial maturity. Sci Rep. 2019;9(1):18439. doi: 10.1038/s41598-019-54726-6
  27. Maliha SG, Lopez CD, Coelho PG, et al. Bone tissue engineering in the growing calvaria using dipyridamole-coated, three-dimensionally-printed bioceramic scaffolds: construct optimization and effects on cranial suture patency. Plast Reconstr Surg. 2020;145(2):337e. doi: 10.1097/PRS.0000000000006483
  28. Nagayasu-Tanaka T, Anzai J, Takedachi M, Kitamura M, Harada T, Murakami S. Effects of combined application of fibroblast growth factor (FGF)-2 and carbonate apatite for tissue regeneration in a beagle dog model of one-wall periodontal defect. Regen Ther. 2023;23:84-93. doi: 10.1016/j.reth.2023.04.002
  29. Qu M, Jiang X, Zhou X, et al. Stimuli-responsive delivery of growth factors for tissue engineering. Adv Healthc Mater. 2020;9(7):1901714. doi: 10.1002/adhm.201901714
  30. Amler AK, Thomas A, Tüzüner S, et al. 3D bioprinting of tissue-specific osteoblasts and endothelial cells to model the human jawbone. Sci Rep. 2021;11(1):4876. doi: 10.1038/s41598-021-84483-4
  31. Kim D, Lee H, Lee GH, Hoang TH, Kim HR, Kim GH. Fabrication of bone-derived decellularized extracellular matrix/ceramic-based biocomposites and their osteo/ odontogenic differentiation ability for dentin regeneration. Bioeng Transl Med. 2022;7(3):e10317. doi: 10.1002/btm2.10317
  32. Lee UL, Yun S, Cao HL, et al. Bioprinting on 3D printed titanium scaffolds for periodontal ligament regeneration. Cells. 2021;10(6):1337. doi: 10.3390/cells10061337
  33. Lin YT, Hsu TT, Liu YW, Kao CT, Huang TH. Bidirectional differentiation of human-derived stem cells induced by biomimetic calcium silicate-reinforced gelatin methacrylate bioink for odontogenic regeneration. Biomedicines. 2021;9(8):929. doi: 10.3390/biomedicines9080929
  34. Kort-Mascort J, Bao G, Elkashty O, et al. Decellularized extracellular matrix composite hydrogel bioinks for the development of 3D bioprinted head and neck in vitro tumor models. ACS Biomater Sci Eng. 2021;7(11):5288-5300. doi: 10.1021/acsbiomaterials.1c00812
  35. Aguilar IN, Smith LJ, Olivos DJ, Chu TMG, Kacena MA, Wagner DR. Scaffold-free bioprinting of mesenchymal stem cells with the regenova printer: optimization of printing parameters. Bioprinting. 2019;15:e00048. doi: 10.1016/j.bprint.2019.e00048
  36. Aguilar IN, Olivos DJ, Brinker A, et al. Scaffold-free bioprinting of mesenchymal stem cells using the regenova printer: spheroid characterization and osteogenic differentiation. Bioprinting. 2019;15:e00050. doi: 10.1016/j.bprint.2019.e00050
  37. Hamza H. Dental 4D printing: an innovative approach. 2018;1(9):e17. doi: 10.30771/2018.4
  38. Javaid M, Haleem A, Singh RP, Rab S, Suman R, Kumar L. Significance of 4D printing for dentistry: materials, process, and potentials. J Oral Biol Craniofacial Res. 2022;12(3):388-395. doi: 10.1016/j.jobcr.2022.05.002
  39. Datta S, Rameshbabu AP, Bankoti K, et al. Decellularized bone matrix/oleoyl chitosan derived supramolecular injectable hydrogel promotes efficient bone integration. Mater Sci Eng C. 2021;119:111604. doi: 10.1016/j.msec.2020.111604
  40. Akbarinia S, Sadrnezhaad SK, Hosseini SA. Porous shape memory dental implant by reactive sintering of TiH2-Ni-urea mixture. Mater Sci Eng C. 2020;107:110213. doi: 10.1016/j.msec.2019.110213
  41. do Nascimento RO, Chirani N. 13 – shape-memory polymers for dental applications. In: Yahia L, ed. Shape Memory Polymers for Biomedical Applications. Woodhead Publishing Series in Biomaterials. Woodhead Publishing;2015:267-280. doi: 10.1016/B978-0-85709-698-2.00013-1
  42. Pfau MR, Beltran FO, Woodard LN, et al. Evaluation of a self-fitting, shape memory polymer scaffold in a rabbit calvarial defect model. Acta Biomater. 2021;136:233-242. doi: 10.1016/j.actbio.2021.09.041
  43. Uijlenbroek H, Liu Y, Wismeijer D. Soft tissue expansion: principles and inferred intraoral hydrogel tissue expanders. Dent Oral Craniofacial Res. 2016;1(6):178–185. doi: 10.15761/DOCR.1000140
  44. Malekmohammadi S, Sedghi Aminabad N, Sabzi A, et al. Smart and biomimetic 3D and 4D printed composite hydrogels: opportunities for different biomedical applications. Biomedicines. 2021;9(11):1537. doi: 10.3390/biomedicines9111537
  45. Naniz MA, Askari M, Zolfagharian A, Naniz MA, Bodaghi M. 4D printing: a cutting-edge platform for biomedical applications. Biomed Mater. 2022;17(6):062001. doi: 10.1088/1748-605X/ac8e42
  46. Hwangbo H, Lee H, Roh EJ, et al. Bone tissue engineering via application of a collagen/hydroxyapatite 4D-printed biomimetic scaffold for spinal fusion. Appl Phys Rev. 2021;8(2):021403. doi: 10.1063/5.0035601
  47. Liu S, Wang YN, Ma B, Shao J, Liu H, Ge S. Gingipain-responsive thermosensitive hydrogel loaded with SDF-1 facilitates in situ periodontal tissue regeneration. ACS Appl Mater Interfaces. 2021;13(31):36880-36893. doi: 10.1021/acsami.1c08855
  48. Wang B, Booij-Vrieling HE, Bronkhorst EM, et al. Antimicrobial and anti-inflammatory thermo-reversible hydrogel for periodontal delivery. Acta Biomater. 2020;116:259-267. doi: 10.1016/j.actbio.2020.09.018
  49. Wu D, Wang P, Wu Q, et al. Preparation and characterization of bomidin-loaded thermosensitive hydrogel for periodontal application. J Mater Res. 2022;37(18):3021-3032. doi: 10.1557/s43578-022-00706-y
  50. Ma S, Lu X, Yu X, et al. An injectable multifunctional thermo-sensitive chitosan-based hydrogel for periodontitis therapy. Biomater Adv. 2022;142:213158. doi: 10.1016/j.bioadv.2022.213158
  51. Irvine SA, Venkatraman SS. Bioprinting and differentiation of stem cells. Molecules. 2016;21(9):1188. doi: 10.3390/molecules21091188
  52. Son C, Choi MS, Park JC. Different responsiveness of alveolar bone and long bone to epithelial mesenchymal interaction related factor. JBMR Plus. 2020;4(8):e10382. doi: 10.1002/jbm4.10382
  53. Liu X, Zhao K, Gong T, et al. Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect. Biomacromolecules. 2014;15(3):1019-1030. doi: 10.1021/bm401911p
  54. Mohd N, Razali M, Ghazali MJ, Abu Kasim NH. Current advances of three-dimensional bioprinting application in dentistry: a scoping review. Materials. 2022;15(18):6398. doi: 10.3390/ma15186398
  55. Filipowska J, Tomaszewski KA, Niedźwiedzki Ł, Walocha JA, Niedźwiedzki T. The role of vasculature in bone development, regeneration and proper systemic functioning. Angiogenesis. 2017;20(3):291-302. doi: 10.1007/s10456-017-9541-1
  56. Qu H, Fu H, Han Z, Sun Y. Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv. 2019;9(45):26252-26262. doi: 10.1039/C9RA05214C
  57. Burdis R, Kelly DJ. Biofabrication and bioprinting using cellular aggregates, microtissues and organoids for the engineering of musculoskeletal tissues. Acta Biomater. 2021;126:1-14. doi: 10.1016/j.actbio.2021.03.016
  58. Miao Y, Chen Y, Luo J, et al. Black phosphorus nanosheets-enabled DNA hydrogel integrating 3D-printed scaffold for promoting vascularized bone regeneration. Bioact Mater. 2023;21:97-109. doi: 10.1016/j.bioactmat.2022.08.005
  59. Zhao X, Xu Z, Xiao L, et al. Review on the vascularization of organoids and organoids-on-a-chip. Front Bioeng Biotechnol. 2021;9:637048. doi: 10.3389/fbioe.2021.637048
  60. Miri AK, Khalilpour A, Cecen B, Maharjan S, Shin SR, Khademhosseini A. Multiscale bioprinting of vascularized models. Biomaterials. 2019;198:204-216. doi: 10.1016/j.biomaterials.2018.08.006
  61. Dong Y, Wang S, Ke Y, et al. 4D printed hydrogels: fabrication, materials, and applications. Adv Mater Technol. 2020;5(6):2000034. doi: 10.1002/admt.202000034
  62. Champeau M, Heinze DA, Viana TN, de Souza ER, Chinellato AC, Titotto S. 4D printing of hydrogels: a review. Adv Funct Mater. 2020;30(31):1910606. doi: 10.1002/adfm.201910606
  63. Yang X, Ma Y, Wang X, et al. A 3D-bioprinted functional module based on dec
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing