AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.4635
RESEARCH ARTICLE

Patient-specific design and fabrication of a trapeziometacarpal joint orthosis using a computed tomography image-based finite element model

Chan Beom Park1 Ji Sup Hwang2 Hyun Sik Gong3* Hyung-Soon Park1*
Show Less
1 Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
2 Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, South Korea
3 Department of Orthopedic Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, South Korea
Submitted: 23 August 2024 | Accepted: 7 October 2024 | Published: 8 October 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Osteoarthritis (OA) of the trapeziometacarpal joint (TMCJ) can be caused by biomechanical wear on the articular cartilage due to high joint contact pressure, leading to severe pain in the thumb. Static orthoses have been applied for treatment in the early stages of OA to immobilize the TMCJ in a comfortable posture, but they do not account for contact pressure at the TMCJ. This oversight results in a high failure rate in pain relief during splinting. To ensure successful treatment, it is desirable to immobilize the TMCJ in an optimal posture that minimizes biomechanical joint contact pressure. This paper presents a patient-specific TMCJ orthosis design for the optimal posture, based on joint contact pressure obtained from a computed tomography image-based finite element (FE) TMCJ model. The estimated pressure at the subject-specific optimal posture averaged 2.8E-3 MPa, which was lower compared to the average pressure of 3.2E-2 MPa at the non-optimal but comfortable posture. To maintain this subject-specific optimal TMCJ posture, the orthosis was designed based on individual hand geometries with three-dimensional (3D) printing technology. The 3D-printed orthosis was preliminarily evaluated by patients with moderate to severe OA, and all patients reported pain relief. The visual analog scale and disabilities of arm, shoulder, and hand scores improved by 1.8 ± 1.7 and 13.1 ± 5.4, respectively. For orthotic treatment in clinics, the FE model-based TMCJ orthosis design for the subject-specific optimal posture can relieve pain caused by OA.

Graphical abstract
Keywords
3D printing
Computed tomography
Finite element model
Orthosis
Osteoarthritis
Patient-specific
Trapeziometacarpal joint
Funding
This work was supported in part by the Korea Research Institute for defense Technology planning and advancedment(KRIT) grant funded by the Korea government (DAPA(Defense Acquisition Program Administration)) (No. 21-107-E00-009-02, “Realtime complex battlefield situation awareness technology”) and in part by the funding from the Korea government Ministry of Science and ICT (grant number RS-2023-00209251).
Conflict of interest
The authors declare they have no competing interests.
References
  1. Gillis J, Calder K, Williams J. Review of thumb carpometacarpal arthritis classification, treatment and outcomes. Can J Plast Surg. 2011;19(4):134-138. doi: 10.1177/229255031101900409
  2. Koff MF, Ugwonali OF, Strauch RJ, Rosenwasser MP, Ateshian GA, Mow VC. Sequential wear patterns of the articular cartilage of the thumb carpometacarpal joint in osteoarthritis. J Hand Surg Am. 2003;28(4):597-604. doi: 10.1016/S0363-5023(03)00145-X
  3. Fontana L, Neel S, Claise J-M, Ughetto S, Catilina P. Osteoarthritis of the thumb carpometacarpal joint in women and occupational risk factors: a case–control study. J Hand Surg Am. 2007;32(4):459-465. doi: 10.1016/j.jhsa.2007.01.014
  4. Fergusson CM. The aetiology of osteoarthritis. Postgrad Med J. 1987;63(740):439. doi: 10.1136/pgmj.63.740.439
  5. Spierings J, Van Den Hengel M, Janssen RP, Van Rietbergen B, Ito K, Foolen J. Knee instability caused by altered graft mechanical properties after anterior cruciate ligament reconstruction: the early onset of osteoarthritis? Front Bioeng Biotechnol. 2023;11:1244954. doi: 10.3389/fbioe.2023.1244954
  6. Wang Y, Fan Y, Zhang M. Comparison of stress on knee cartilage during kneeling and standing using finite element models. Med Eng Phys. 2014;36(4):439-447. doi: 10.1016/j.medengphy.2014.01.004
  7. Esrafilian A, Stenroth L, Mononen M, Tanska P, Avela J, Korhonen R. EMG-assisted muscle force driven finite element model of the knee joint with fibril-reinforced poroelastic cartilages and menisci. Sci Rep. 2020;10(1):3026. doi: 10.1038/s41598-020-59602-2
  8. Zhang Z, Sui D, Qin H, Li H, Zhang Z. Contact pressure distribution of the hip joint during closed reduction of developmental dysplasia of the hip: a patient-specific finite element analysis. BMC Musculoskelet Disord. 2020;21(600):1-12. doi: 10.1186/s12891-020-03602-w
  9. Wajon A, Ada L. No difference between two splint and exercise regimens for people with osteoarthritis of the thumb: a randomised controlled trial. Aust J Physiother. 2005;51(4):245-249. doi: 10.1016/S0004-9514(05)70005-2
  10. Carreira ACG, Jones A, Natour J. Assessment of the effectiveness of a functional splint for osteoarthritis of the trapeziometacarpal joint on the dominant hand: a randomized controlled study. J Rehabil Med. 2010; 42(5):469-474. doi: 10.2340/16501977-0542
  11. Weiss S, Lastayo P, Mills A, Bramlet D. Prospective analysis of splinting the first carpometacarpal joint: an objective, subjective, and radiographic assessment. J Hand Surg. 2000;13(3):218-227. doi: 10.1016/S0894-1130(00)80005-8
  12. Colditz JC. The biomechanics of a thumb carpometacarpal immobilization splint: design and fitting. J Hand Ther. 2000;13(3):228-235. doi: 10.1016/S0894-1130(00)80006-X
  13. Cantero-Téllez R, Villafañe JH, Valdes K, Berjano P. Effect of immobilization of metacarpophalangeal joint in thumb carpometacarpal osteoarthritis on pain and function. A quasi-experimental trial. J Hand Ther. 2018;31(1):68-73. doi: 10.1016/j.jht.2016.11.005
  14. Bani MA, Arazpour M, Kashani RV, Mousavi ME, Maleki M, Hutchins SW. The effect of custom-made splints in patients with the first carpometacarpal joint osteoarthritis. Prosthet Orthot Int. 2013;37(2):139-144. doi: 10.1177/0309364612454047
  15. Eyiis E, Mathijssen NM, Kok P, Sluijter J, Kraan GA. Three-dimensional printed customized versus conventional plaster brace for trapeziometacarpal osteoarthritis: a randomized controlled crossover trial. J Hand Surg Eur Vol 2023;48(5):412-418. doi: 10.1177/17531934221146864
  16. Chu C-H, Wang I-J, Sun J-R, Liu C-H. Customized designs of short thumb orthoses using 3D hand parametric models. Assist Technol. 2022;34(1):104-111. doi: 10.1080/10400435.2019.1709917
  17. Hermann M, Nilsen T, Eriksen CS, Slatkowsky-Christensen B, Haugen IK, Kjeken I. Effects of a soft prefabricated thumb orthosis in carpometacarpal osteoarthritis. Scand J Occup Ther. 2014;21(1):31-39. doi: 10.3109/11038128.2013.851735
  18. Becker SJE, Bot AGJ, Curley SE, Jupiter JB, Ring D. A prospective randomized comparison of neoprene vs thermoplast hand-based thumb spica splinting for trapeziometacarpal arthrosis. Osteoarthr Cartil Open. 2013;21(5):668-675. doi: 10.1016/j.joca.2013.02.006
  19. Tsehaie J, Spekreijse KR, Wouters RM, et al. Predicting outcome after hand orthosis and hand therapy for thumb carpometacarpal osteoarthritis: a prospective study. Arch Phys Med Rehabil. 2019;100(5):844-850. doi: 10.1016/j.apmr.2018.08.192
  20. Berggren M, Joost-Davidsson A, Lindstrand J, Nylander G, Povlsen B. Reduction in the need for operation after conservative treatment of osteoarthritis of the first carpometacarpal joint: a seven year prospective study. Scand J Plast Reconstr Surg Hand Surg. 2001;35(4):415-417. doi: 10.1080/028443101317149381
  21. Suresh V, Frost CM, Lifchez SD. Selective thumb carpometacarpal joint denervation for painful arthritis: follow-up of long-term clinical outcomes. J Hand Surg Glob Online. 2023;5(1):108-111. doi: 10.1016/j.jhsg.2022.02.005
  22. Karacabay K, Savci A, Hergul FK. Investigating relationships between pain, comfort, anxiety and depression in surgical patients. Cyprus J Med Sci. 2022;7:40-47. doi: 10.4274/cjms.2020.1758
  23. Schloemann D, Hammert WC, Liu S, Bernstein DN, Calfee RP. Risk factors for failed nonsurgical treatment resulting in surgery on thumb carpometacarpal arthritis. J Hand Surg. 2021;46(6):471-477. doi: 10.1016/j.jhsa.2021.02.009
  24. Xiao YP, Xu HJ, Liao W, Li ZH. Clinical application of instant 3D printed cast versus polymer orthosis in the treatment of colles fracture: a randomized controlled trial. BMC Musculoskelet Disord. 2024;25(1):104. doi: 10.1186/s12891-024-07212-8
  25. Cho JE, Seo KJ, Ha S, Kim H. Effects of community ambulation training with 3D-printed ankle–foot orthosis on gait and functional improvements: a case series of three stroke survivors. Front Neurol. 2023;14:1138807. doi: 10.3389/fneur.2023.1138807
  26. Peng C, Tran P, Lalor S, Tirosh O, Rutz E. Tuning the mechanical responses of 3D-printed ankle-foot orthoses: a numerical study. Int J Bioprint. 2024; 10(3):3390. doi: 10.36922/ijb.3390
  27. Park CB, Park H-S. Portable 3D-printed hand orthosis with spatial stiffness distribution personalized for assisting grasping in daily living. Front Bioeng Biotechnol. 2023;11:895745. doi: 10.3389/fbioe.2023.895745
  28. Park CB, Hwang JS, Gong HS, Park H-S. A lightweight dynamic hand orthosis with sequential joint flexion movement for postoperative rehabilitation of flexor tendon repair surgery. IEEE Trans Neural Syst Rehabil Eng. 2024;32:994-1004. doi: 10.1109/TNSRE.2024.3367990
  29. Hollister A, Buford WL, Myers LM, Giurintano DJ, Novick A. The axes of rotation of the thumb carpometacarpal joint. J Orthop Res. 1992;10(3):454-460. doi: 10.1002/jor.1100100319
  30. D’Agostino P, Dourthe B, Kerkhof F, Stockmans F, Vereecke EE. In vivo kinematics of the thumb during flexion and adduction motion: evidence for a screw‐home mechanism. J. Orthop. Res. 2017;35(7):1556-1564. doi: 10.1002/jor.23421
  31. Santos VJ, Valero-Cuevas FJ. Reported anatomical variability naturally leads to multimodal distributions of Denavit- Hartenberg parameters for the human thumb. IEEE Trans Biomed Eng. 2006;53(2):155-163. doi: 10.1109/TBME.2005.862537
  32. O’Brien VH, Giveans MR. Effects of a dynamic stability approach in conservative intervention of the carpometacarpal joint of the thumb: a retrospective study. J Hand Ther. 2013;26(1):44-52. doi: 10.1016/j.jht.2012.10.005
  33. Akiyama K, Sakai T, Koyanagi J, Murase T, Yoshikawa H, Sugamoto K. Three-dimensional distribution of articular cartilage thickness in the elderly cadaveric acetabulum: a new method using three-dimensional digitizer and CT. Osteoarthr Cartil Open. 2010;18(6):795-802. doi: 10.1016/j.joca.2010.03.007
  34. Prionas ND, Ray S, Boone JM. Volume assessment accuracy in computed tomography: a phantom study. J Appl Clin Med Phys. 2010;11(2):168-180. doi: 10.1120/jacmp.v11i2.3037
  35. Miura T, Ohe T, Masuko T. Comparative in vivo kinematic analysis of normal and osteoarthritic trapeziometacarpal joints. J Hand Surg. 2004;29(2):252-257. doi: 10.1016/j.jhsa.2003.11.002
  36. Hamann N, Heidemann J, Heinrich K, et al. Effect of carpometacarpal joint osteoarthritis, sex, and handedness on thumb in vivo kinematics. J Hand Surg. 2014; 39(11):2161-2167. doi: 10.1016/j.jhsa.2014.08.012
  37. Butz KD, Merrell G, Nauman EA. A three-dimensional finite element analysis of finger joint stresses in the MCP joint while performing common tasks. Hand. 2012;7(3): 341-345. doi: 10.1007/s11552-012-9430-4
  38. Peters AE, Akhatar R, Comerford EJ, Bates KT. The effect of ageing and osteoarthritis on the mechanical properties of cartilage and bone in the human knee joint. Sci Rep. 2018;8(1):5931. doi: 10.1038/s41598-018-24258-6
  39. Guilak F. The slippery slope of arthritis. Arthritis Rheumatol. 2005;52(6):1632-1633. doi: 10.1002/art.21051
  40. Yuh C, Laurent MP, Espinosa-Marzal RM, Chubinskaya S, Wimmer MA. Transient stiffening of cartilage during joint articulation: a microindentation study. J Mech Behav Biomed Mater. 2021;113:104113. doi: 10.1016/j.jmbbm.2020.104113
  41. Lee J-Y, Lim J-Y, Oh JH, Ko Y-M. Cross-cultural adaptation and clinical evaluation of a Korean version of the disabilities of arm, shoulder, and hand outcome questionnaire (K-DASH). J Shoulder Elbow Surg. 2008;17(4):570-574. doi: 10.1016/j.jse.2007.12.005
  42. Myles P, Myles D, Galagher W, et al. Measuring acute postoperative pain using the visual analog scale: the minimal clinically important difference and patient acceptable symptom state. Br J Anaesth. 2017;118(3):424-429. doi: 10.1093/bja/aew466
  43. Günther C, Bürger A, Rickert M, Schulz, C. Key pinch in healthy adults: normative values. J Hand Surg Eur Vol. 2008;33(2):144-148. doi: 10.1177/1753193408087031
  44. Cheema T, Salas C, Morrell N, Lansing L, Taha MMR, Mercer D. Opening wedge trapezial osteotomy as possible treatment for early trapeziometacarpal osteoarthritis: a biomechanical investigation of radial subluxation, contact area, and contact pressure. J Hand Surg. 2012; 37(4):699-705. doi: 10.1016/j.jhsa.2012.01.013
  45. Ateshian GA, Ark JW, Rosenwasser MP, Pawluk RJ, Soslowsky LJ, Mow VC. Contact areas in the thumb carpometacarpal joint. J Orthop Res. 1995; 13(3):450-458. doi: 10.1002/jor.1100130320
  46. Momose T, Nakatsuchi Y, Saitoh S. Contact area of the trapeziometacarpal joint. J Hand Surg. 1999;24(3): 491-495. doi: 10.1053/jhsu.1999.0491
  47. Hwang JS, Li Q, Kim J. A quantitative measurement of trapeziometacarpal joint pressure using a cadaveric model of lateral pinch. J Orthop Res. 2022;40(7):1523-1528. doi: 10.1002/jor.25188
  48. Nishimura K, Uehara K, Miura T, Ohe T, Tanaka S, Morizaki Y. Factors associated with surgical intervention for osteoarthritis of the thumb carpometacarpal joint. J Hand Surg. 2021;46(9):817-e1. doi: 10.1016/j.jhsa.2021.01.009
  49. Spaans AJ, Van Minnen LP, Kon M, Schuurman AH, Schreuders AT, Vermeulen GM. Conservative treatment of thumb base osteoarthritis: a systematic review. J Hand Surg. 2015;40(1):16-21. doi: 10.1016/j.jhsa.2014.08.047
  50. Suetta C, Hvid LG, Justesen L, et al. Effects of aging on human skeletal muscle after immobilization and retraining. J Appl Physiol. 2009;107(4):1172-1180. doi: 10.1152/japplphysiol.00290.2009
  51. Vanneste M, Stockmans F, Vereecke EE. The effect of orthoses on the kinematics of the trapeziometacarpal, scaphotrapeziotrapezoidal, and radioscaphoid joints. J Orthop Res. 2021;39(1):196-203. doi: 10.1002/jor.24700
  52. Estell EG, Silverstein AM, Stefani RM, et al. Cartilage wear particles induce an inflammatory response similar to cytokines in human fibroblast‐Like Synoviocytes. J Orthop Res. 2019;37(9):1979-1987. doi: 10.1002/jor.24340
  53. Bae KJ, Jang HS, Gong HS, Kang Y, Kim J, Baek GH. Prevalence and distribution of MRI abnormalities in the articular cartilage and supporting ligaments in patients with early clinical stage first carpometacarpal joint osteoarthritis. Skeletal Radiol. 2020;49: 1089-1097. doi: 10.1007/s00256-020-03383-2
  54. Hwang JS, Lee HS, Gong HS. Three-dimensional analysis of the trapezium subchondral bone and its association with trapeziometacarpal joint osteoarthritis. Calcif Tissue Int. 2023;112(3):320-327. doi: 10.1007/s00223-022-01040-5
  55. Ledoux P, Lamblin D, Wuilbaut A, Schuind F. A finite-element analysis of Kienböck’s disease. J Hand Surg Eur Vol. 2008;33(3):286-291. doi: 10.1177/1753193408090757
  56. Camus EJ, Aimar A, Van Overstraeten L, Schuind F, Innocenti B. Lunate loads following different osteotomies used to treat Kienböck’s disease: a 3D finite element analysis. Clin Biomech. 2020;78:105090. doi: 10.1016/j.clinbiomech.2020.105090
  57. Van der Windt JW, Akkerman W, Hofstra M, Meussen P. Reduced pain and improved daily activities for individuals with hand osteoarthritis using a silicone wrist hand orthosis. J Hand Ther. 2023;36(3):669-677. doi: 10.1016/j.jht.2022.09.003
  58. Valdes K, Marik T. A systematic review of conservative interventions for osteoarthritis of the hand. J Hand Ther. 2010;23(4):334-351. doi: 10.1016/j.jht.2010.05.001

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing