AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.2583
Cite this article
164
Download
1982
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
RESEARCH ARTICLE

Comparison of 3D-printed poly-ether-ether-ketone and traditional implant materials in cranioplasty

Kuangyang Yu1,2 Yanwen Su3,4 Xiao Rao1,2 Hui Zhu3,4 Liang Liu1,5 Huanhao Pang3,4 Changquan Shi3,4 Dichen Li3,4 Yingchao Liu6 Jianhua Peng1,7* Jiankang He3,4* Yong Jiang1,2,8*
Show Less
1 Department of Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
2 Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
3 State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, China
4 National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi’an Jiaotong University, Xi’an, Shaanxi, China
5 Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
6 Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
7 Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
IJB 2024, 10(4), 2583 https://doi.org/10.36922/ijb.2583
Submitted: 29 December 2023 | Accepted: 5 March 2024 | Published: 5 April 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The advancement in material science and processing methods has led to the continuous development of novel biomaterial implants and bone flap manufacturing methods in cranioplasty. This retrospective study aimed to investigate the outcomes and clinical prognosis of patients undergoing skull repair using fused filament fabrication (FFF)-printed poly-ether-ether-ketone (PEEK) implants versus traditional implants (i.e., autologous bone and titanium mesh). We recruited patients who underwent cranioplasty (performed by senior surgeons) between January 2021 and March 2023. A total of 66 patients who underwent cranioplasty were included in this study and divided into three groups according to the material used for their respective implants: (i) three-dimensional (3D)-printed PEEK, (ii) autologous bone, and (iii) titanium mesh. Infection, epilepsy, and transplant failure did not occur in any of the three groups. Additionally, there were no statistically significant differences in terms of implant-related complications and patient neurological function among the three groups 6 months after discharge (P > 0.05). This study demonstrated the feasibility, safety, and aesthetics of 3D-printed PEEK implants for clinical application. Nonetheless, 3D printing may be a promising translational technology for the future of neurosurgery.

Keywords
Cranioplasty
Additive manufacturing
Three-dimensional printing
Fused filament fabrication
Poly-ether-ether-ketone
Autologous bone
Titanium mesh
Funding
This study was supported by the OPEN Project (Grant No. BHJ17C019), the National Natural Science Foundation of China (82371310, 82271306,81971132, 52125501, and 51835010), the Young Elite Scientist Sponsorship Program by the China Association for Science and Technology (YESS20200178), the Sichuan Science and Technology Program (2023YFH0069, 2023NSFSC0028, and 2022YFS0615), Scientific research Project of Sichuan Provincial Health Commission (23LCYJ040), Sichuan Provincial Cadre Health Project (ZH2024- 1501), and the Program for Innovation Team of Shaanxi Province (2023-CX-TD-17).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Siracusa V, Maimone G, Antonelli V. State-of-art of standard and innovative materials used in cranioplasty. Polymers. 2021;13(9):1452. doi: 10.3390/polym13091452
  2. Ma Z, Zhao X, Zhao J, Zhao Z, Wang Q, Zhang C. Biologically modified polyether ether ketone as dental implant material. Front Bioeng Biotechnol. 2020;8. doi: 10.3389/fbioe.2020.620537
  3. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28: 4845-4869. doi: 10.1016/j.biomaterials.2007.07.013
  4. Rinaldi M, Cecchini F, Pigliaru L, Ghidini T, Lumaca F, Nanni F. Additive manufacturing of polyether ether ketone (PEEK) for space applications: a nanosat polymeric structure. Polymers. 2020;13(1):11. doi: 10.3390/polym13010011
  5. Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28(32):4845-4869. doi: 10.1016/j.biomaterials.2007.07.013
  6. Rosenthal G, Ng I, Moscovici S, et al. Polyetheretherketone implants for the repair of large cranial defects: a 3-center experience. Neurosurgery. 2014;75(5):523-9; discussion 528-9. doi: 10.1227/NEU.0000000000000477
  7. Yao S, Zhang Q, Mai Y, et al. Outcome and risk factors of complications after cranioplasty with polyetheretherketone and titanium mesh: a single-center retrospective study. Front Neurol. 2022;13:926436. doi: 10.3389/fneur.2022.926436
  8. Zhang D, Qiu D, Gibson MA, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature. 2019;576(7785):91-95. doi: 10.1038/s41586-019-1783-1
  9. Alimi OA, Meijboom R. Current and future trends of additive manufacturing for chemistry applications: a review. J Mater Sci. 2021;56(30):16824-16850. doi: 10.1007/s10853-021-06362-7
  10. Guzzi EA, Tibbitt MW. Additive manufacturing of precision biomaterials. Adv Mater. 2020;32(13):e1901994. doi: 10.1002/adma.201901994
  11. Rendas P, Figueiredo L, Machado C, Mourão A, Vidal C, Soares B. Mechanical performance and bioactivation of 3D-printed PEEK for high-performance implant manufacture: a review. Prog Biomater. 2023;12(2):89-111. doi: 10.1007/s40204-022-00214-6
  12. Duarte LC, Chagas CLS, Ribeiro LEB, Coltro WKT. 3D printing of microfluidic devices with embedded sensing electrodes for generating and measuring the size of microdroplets based on contactless conductivity detection. Sens Actuators B Chem. 2017;251:427-432. doi: 10.1016/j.snb.2017.05.011
  13. Guvendiren M, Molde J, Soares RM, Kohn J. Designing biomaterials for 3D printing. ACS Biomater Sci Eng. 2016;2(10):1679-1693. doi: 10.1021/acsbiomaterials.6b00121
  14. Zhang J, Su Y, Rao X, et al. Additively manufactured polyether ether ketone (PEEK) skull implant as an alternative to titanium mesh in cranioplasty. Int J Bioprint. 2022;9(1):634. doi: 10.18063/ijb.v9i1.634
  15. Ozoner B. Cranioplasty following severe traumatic brain injury: role in neurorecovery. Curr Neurol Neurosci Rep. 2021;21(11):62. doi: 10.1007/s11910-021-01147-6
  16. Khader BA, Towler MR. Materials and techniques used in cranioplasty fixation: a review. Mater Sci Eng C. 2016;66: 315-322. doi: 10.1016/j.msec.2016.04.101
  17. Kang J, Zhang J, Zheng J, Wang L, Li D, Liu S. 3D-printed PEEK implant for mandibular defects repair - a new method. J Mech Behav Biomed Mater. 2021;116:104335. doi: 10.1016/j.jmbbm.2021.104335
  18. Li Y, Li Z, Tian L, et al. Clinical application of 3D-printed PEEK implants for repairing mandibular defects. J Craniomaxillofac Surg. 2022;50(8):621-626. doi: 10.1016/j.jcms.2022.06.002 
  19. Liu D, Fu J, Fan H, et al. Application of 3D-printed PEEK scapula prosthesis in the treatment of scapular benign fibrous histiocytoma: a case report. J Bone Oncol. 2018;12:78-82. doi: 10.1016/j.jbo.2018.07.012
  20. Wang L, Liu X, Jiang T, Huang L. Three-dimensional printed polyether-ether-ketone implant for extensive chest wall reconstruction: a case report. Thorac Cancer. 2020;11(9):2709-2712. doi: 10.1111/1759-7714.13560
  21. Mian SH, Moiduddin K, Elseufy SM, Alkhalefah H. Adaptive mechanism for designing a personalized cranial implant and its 3D printing using PEEK. Polymers. 2022;14(6):1266. doi: 10.3390/polym14061266
  22. Sharma N, Aghlmandi S, Dalcanale F, et al. Quantitative assessment of point-of-care 3D-printed patient-specific polyetheretherketone (PEEK) cranial implants. Int J Mol Sci. 2021;22(16):8521. doi: 10.3390/ijms22168521
  23. Thimukonda Jegadeesan J, Baldia M, Basu B. Next-generation personalized cranioplasty treatment. Acta Biomater. 2022;154:63-82. doi: 10.1016/j.actbio.2022.10.030
  24. Zhao M, An M, Wang Q, et al. Quantitative proteomic analysis of human osteoblast-like MG-63 cells in response to bioinert implant material titanium and polyetheretherketone. J Proteomics. 2012;75:3560-3573. doi: 10.1016/j.jprot.2012.03.033
  25. Lee D-W, Yun Y-P, Park K, Kim SE. Gentamicin and bone morphogenic protein-2 (BMP-2)-delivering heparinized-titanium implant with enhanced antibacterial activity and osteointegration. Bone. 2012;50:974-982. doi: 10.1016/j.bone.2012.01.007
  26. Abshagen K, Schrodi I, Gerber T, Vollmar B. In vivo analysis of biocompatibility and vascularization of the synthetic bone grafting substitute NanoBone. J Biomed Mater Res A. 2009;91:557-566. doi: 10.1002/jbm.a.32237
  27. Panayotov IV, Orti V, Cuisinier F, Yachouh J. Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med. 2016;27. doi: 10.1007/s10856-016-5731-4
  28. Wang Y, Wang J, Ji Z, et al. Application of bioprinting in ophthalmology. Int J Bioprint. 2022;8(2):552. doi: 10.18063/ijb.v8i2.552
  29. Pu F, Yu Y, Zhang Z, et al. Research and application of medical polyetheretherketone as bone repair material. Macromol Biosci. 2023;23(9):e2300032. doi: 10.1002/mabi.202300032
  30. Sun C, Kang J, Yang C, Zheng J. Additive manufactured polyether-ether-ketone implants for orthopaedic applications a narrative review. Biomater Transl. 2021;3(2):116-133. doi: 10.12336/biomatertransl.2022.02.001
  31. Lalama M, Rocha MG, O’Neill E, Zoidis P. Polyetheretherketone (PEEK) post and core restorations: a 3D accuracy analysis between heat-pressed and CAD-CAM fabrication methods. J Prosthodont. 2022;31(6):537-542. doi: 10.1111/jopr.13452
  32. Yang C, Tian X, Li D, Cao Y. Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. J Mater Process Technol. 2017;248:1-7. doi: 10.1016/j.jmatprotec.2017.04.027
  33. Wang Y, Shen J, Yan M, Tian X. Poly ether ether ketone and its composite powder prepared by thermally induced phase separation for high temperature selective laser sintering. Mater Des. 2021;201:109510. doi: 10.1016/j.matdes.2021.109510
  34. Feng P, Wu P, Gao C, et al. A multimaterial scaffold with tunable properties: toward bone tissue repair. Adv Sci. 2018;5(6):1700817. doi: 10.1002/advs.201700817
  35. Zhao F, Li D, Jin Z. Preliminary investigation of poly-ether-ether-ketone based on fused deposition modeling for medical applications. Materials. 2018;11(2):288. doi: 10.3390/ma11020288 
  36. Msallem B, Sharma N, Cao S, Halbeisen FS, Zeilhofer H-F, Thieringer FM. Evaluation of the dimensional accuracy of 3D-printed anatomical mandibular models using FFF, SLA, SLS, MJ, and BJ printing technology. J Clin Med. 2020;9(3):817. doi: 10.3390/jcm9030817
  37. Presciutti A, Gebennini E, Liberti F, Nanni F, Bragaglia M. Comparative life cycle assessment of SLS and mFFF additive manufacturing techniques for the production of a metal specimen. Materials. 2023;17(1):78. doi: 10.3390/ma17010078
  38. Kafle A, Luis E, Silwal R, Pan HM, Shrestha PL, Bastola AK. 3D/4D printing of polymers: fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA). Polymers. 2021;13(18):3101. doi: 10.3390/polym13183101
  39. Kang J, Wang L, Yang C, et al. Custom design and biomechanical analysis of 3D-printed PEEK rib prostheses. Biomech Model Mechanobiol. 2018;17(4):1083-1092. doi: 10.1007/s10237-018-1015-x
  40. Alkhaibary A, Alharbi A, Alnefaie N, Almubarak AO, Aloraidi A, Khairy S. Cranioplasty: a comprehensive review of the history, materials, surgical aspects, and complications. World Neurosurg. 2020;139:445-452. doi: 10.1016/j.wneu.2020.04.211
  41. Henry J, Amoo M, Taylor J, O’Brien DP. Complications of cranioplasty in relation to material: systematic review, network meta-analysis and meta-regression. Neurosurgery. 2021;89(3):E144. doi: 10.1093/neuros/nyab216
  42. Shah AM, Jung H, Skirboll S. Materials used in cranioplasty: a history and analysis. Neurosurg Focus. 2014;36(4):E19. doi: 10.3171/2014.2.FOCUS13561
  43. Lee C-H, Chung YS, Lee SH, Yang H-J, Son Y-J. Analyses of the factors influencing bone graft infection after delayed cranioplasty. J Trauma Acute Care Surg. 2012;73(1): 255-260. doi: 10.1097/TA.0b013e318256a150
  44. Kwarcinski J, Boughton P, Ruys A, Doolan A, Gelder JV. Cranioplasty and craniofacial reconstruction: a review of implant material, manufacturing method and infection risk. Appl Sci. 2017;7. doi: 10.3390/app7030276
  45. Yang J, Sun T, Yuan Y, Li X, Yu H, Guan J. Evaluation of titanium cranioplasty and polyetheretherketone cranioplasty after decompressive craniectomy for traumatic brain injury. Medicine. 2020;99(30):e21251. doi: 10.1097/MD.0000000000021251
  46. Roberts JC, Merkle AC, Carneal CM. Development of a human cranial bone surrogate for impact studies. Front Bioeng Biotechnol. 2013;1:13. doi: 10.3389/fbioe.2013.00013
  47. Delille R, Leseur P, Portier P, Drazetic P, Markiewicz E. Experimental study of the bone behaviour of the human skull bone for the development of a physical head model. Int J Crashworth. 2007;112(2):101-108. doi: 10.1080/13588260701433081
  48. Christophe D, Séverine B, Catherine M, Drazétic P. Identification des lois de comportement du crâne à partir d’essais de flexionIdentification of skull behavior laws starting from bending tests. Mech Ind. 2003;4(2):119-123. doi: 10.1016/S1296-2139(03)00029-0
  49. Falland-Cheung L, Waddell JN, Li KC, Tong D, Brunton P. Investigation of the elastic modulus, tensile and flexural strength of five skull simulant materials for impact testing of a forensic skin/skull/brain model. J Mech Behav Biomed Mater. 2017;68:303-307. doi: 10.1016/j.jmbbm.2017.02.023
  50. Haleem A, Javaid M. Polyether ether ketone (PEEK) and its 3D printed implants applications in medical field: an overview. Clin Epidemiol Glob Health. 2019;7:571-577. doi: 10.1016/j.cegh.2019.01.003
  51. Yap YL, Tan YSE, Tan HKJ, et al. 3D printed bio-models for medical applications. Rapid Prototyp J. 2017;23(2): 227-235. doi: 10.1108/RPJ-08-2015-0102 
  52. Haleem A, Javaid M. 3D scanning applications in medical field: a literature-based review. Clin Epidemiol Glob Health. 2018;7(2):199-210. doi: 10.1016/j.cegh.2018.05.006
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing