Comparison of 3D-printed poly-ether-ether-ketone and traditional implant materials in cranioplasty
The advancement in material science and processing methods has led to the continuous development of novel biomaterial implants and bone flap manufacturing methods in cranioplasty. This retrospective study aimed to investigate the outcomes and clinical prognosis of patients undergoing skull repair using fused filament fabrication (FFF)-printed poly-ether-ether-ketone (PEEK) implants versus traditional implants (i.e., autologous bone and titanium mesh). We recruited patients who underwent cranioplasty (performed by senior surgeons) between January 2021 and March 2023. A total of 66 patients who underwent cranioplasty were included in this study and divided into three groups according to the material used for their respective implants: (i) three-dimensional (3D)-printed PEEK, (ii) autologous bone, and (iii) titanium mesh. Infection, epilepsy, and transplant failure did not occur in any of the three groups. Additionally, there were no statistically significant differences in terms of implant-related complications and patient neurological function among the three groups 6 months after discharge (P > 0.05). This study demonstrated the feasibility, safety, and aesthetics of 3D-printed PEEK implants for clinical application. Nonetheless, 3D printing may be a promising translational technology for the future of neurosurgery.
- Siracusa V, Maimone G, Antonelli V. State-of-art of standard and innovative materials used in cranioplasty. Polymers. 2021;13(9):1452. doi: 10.3390/polym13091452
- Ma Z, Zhao X, Zhao J, Zhao Z, Wang Q, Zhang C. Biologically modified polyether ether ketone as dental implant material. Front Bioeng Biotechnol. 2020;8. doi: 10.3389/fbioe.2020.620537
- Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28: 4845-4869. doi: 10.1016/j.biomaterials.2007.07.013
- Rinaldi M, Cecchini F, Pigliaru L, Ghidini T, Lumaca F, Nanni F. Additive manufacturing of polyether ether ketone (PEEK) for space applications: a nanosat polymeric structure. Polymers. 2020;13(1):11. doi: 10.3390/polym13010011
- Kurtz SM, Devine JN. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials. 2007;28(32):4845-4869. doi: 10.1016/j.biomaterials.2007.07.013
- Rosenthal G, Ng I, Moscovici S, et al. Polyetheretherketone implants for the repair of large cranial defects: a 3-center experience. Neurosurgery. 2014;75(5):523-9; discussion 528-9. doi: 10.1227/NEU.0000000000000477
- Yao S, Zhang Q, Mai Y, et al. Outcome and risk factors of complications after cranioplasty with polyetheretherketone and titanium mesh: a single-center retrospective study. Front Neurol. 2022;13:926436. doi: 10.3389/fneur.2022.926436
- Zhang D, Qiu D, Gibson MA, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys. Nature. 2019;576(7785):91-95. doi: 10.1038/s41586-019-1783-1
- Alimi OA, Meijboom R. Current and future trends of additive manufacturing for chemistry applications: a review. J Mater Sci. 2021;56(30):16824-16850. doi: 10.1007/s10853-021-06362-7
- Guzzi EA, Tibbitt MW. Additive manufacturing of precision biomaterials. Adv Mater. 2020;32(13):e1901994. doi: 10.1002/adma.201901994
- Rendas P, Figueiredo L, Machado C, Mourão A, Vidal C, Soares B. Mechanical performance and bioactivation of 3D-printed PEEK for high-performance implant manufacture: a review. Prog Biomater. 2023;12(2):89-111. doi: 10.1007/s40204-022-00214-6
- Duarte LC, Chagas CLS, Ribeiro LEB, Coltro WKT. 3D printing of microfluidic devices with embedded sensing electrodes for generating and measuring the size of microdroplets based on contactless conductivity detection. Sens Actuators B Chem. 2017;251:427-432. doi: 10.1016/j.snb.2017.05.011
- Guvendiren M, Molde J, Soares RM, Kohn J. Designing biomaterials for 3D printing. ACS Biomater Sci Eng. 2016;2(10):1679-1693. doi: 10.1021/acsbiomaterials.6b00121
- Zhang J, Su Y, Rao X, et al. Additively manufactured polyether ether ketone (PEEK) skull implant as an alternative to titanium mesh in cranioplasty. Int J Bioprint. 2022;9(1):634. doi: 10.18063/ijb.v9i1.634
- Ozoner B. Cranioplasty following severe traumatic brain injury: role in neurorecovery. Curr Neurol Neurosci Rep. 2021;21(11):62. doi: 10.1007/s11910-021-01147-6
- Khader BA, Towler MR. Materials and techniques used in cranioplasty fixation: a review. Mater Sci Eng C. 2016;66: 315-322. doi: 10.1016/j.msec.2016.04.101
- Kang J, Zhang J, Zheng J, Wang L, Li D, Liu S. 3D-printed PEEK implant for mandibular defects repair - a new method. J Mech Behav Biomed Mater. 2021;116:104335. doi: 10.1016/j.jmbbm.2021.104335
- Li Y, Li Z, Tian L, et al. Clinical application of 3D-printed PEEK implants for repairing mandibular defects. J Craniomaxillofac Surg. 2022;50(8):621-626. doi: 10.1016/j.jcms.2022.06.002
- Liu D, Fu J, Fan H, et al. Application of 3D-printed PEEK scapula prosthesis in the treatment of scapular benign fibrous histiocytoma: a case report. J Bone Oncol. 2018;12:78-82. doi: 10.1016/j.jbo.2018.07.012
- Wang L, Liu X, Jiang T, Huang L. Three-dimensional printed polyether-ether-ketone implant for extensive chest wall reconstruction: a case report. Thorac Cancer. 2020;11(9):2709-2712. doi: 10.1111/1759-7714.13560
- Mian SH, Moiduddin K, Elseufy SM, Alkhalefah H. Adaptive mechanism for designing a personalized cranial implant and its 3D printing using PEEK. Polymers. 2022;14(6):1266. doi: 10.3390/polym14061266
- Sharma N, Aghlmandi S, Dalcanale F, et al. Quantitative assessment of point-of-care 3D-printed patient-specific polyetheretherketone (PEEK) cranial implants. Int J Mol Sci. 2021;22(16):8521. doi: 10.3390/ijms22168521
- Thimukonda Jegadeesan J, Baldia M, Basu B. Next-generation personalized cranioplasty treatment. Acta Biomater. 2022;154:63-82. doi: 10.1016/j.actbio.2022.10.030
- Zhao M, An M, Wang Q, et al. Quantitative proteomic analysis of human osteoblast-like MG-63 cells in response to bioinert implant material titanium and polyetheretherketone. J Proteomics. 2012;75:3560-3573. doi: 10.1016/j.jprot.2012.03.033
- Lee D-W, Yun Y-P, Park K, Kim SE. Gentamicin and bone morphogenic protein-2 (BMP-2)-delivering heparinized-titanium implant with enhanced antibacterial activity and osteointegration. Bone. 2012;50:974-982. doi: 10.1016/j.bone.2012.01.007
- Abshagen K, Schrodi I, Gerber T, Vollmar B. In vivo analysis of biocompatibility and vascularization of the synthetic bone grafting substitute NanoBone. J Biomed Mater Res A. 2009;91:557-566. doi: 10.1002/jbm.a.32237
- Panayotov IV, Orti V, Cuisinier F, Yachouh J. Polyetheretherketone (PEEK) for medical applications. J Mater Sci Mater Med. 2016;27. doi: 10.1007/s10856-016-5731-4
- Wang Y, Wang J, Ji Z, et al. Application of bioprinting in ophthalmology. Int J Bioprint. 2022;8(2):552. doi: 10.18063/ijb.v8i2.552
- Pu F, Yu Y, Zhang Z, et al. Research and application of medical polyetheretherketone as bone repair material. Macromol Biosci. 2023;23(9):e2300032. doi: 10.1002/mabi.202300032
- Sun C, Kang J, Yang C, Zheng J. Additive manufactured polyether-ether-ketone implants for orthopaedic applications a narrative review. Biomater Transl. 2021;3(2):116-133. doi: 10.12336/biomatertransl.2022.02.001
- Lalama M, Rocha MG, O’Neill E, Zoidis P. Polyetheretherketone (PEEK) post and core restorations: a 3D accuracy analysis between heat-pressed and CAD-CAM fabrication methods. J Prosthodont. 2022;31(6):537-542. doi: 10.1111/jopr.13452
- Yang C, Tian X, Li D, Cao Y. Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. J Mater Process Technol. 2017;248:1-7. doi: 10.1016/j.jmatprotec.2017.04.027
- Wang Y, Shen J, Yan M, Tian X. Poly ether ether ketone and its composite powder prepared by thermally induced phase separation for high temperature selective laser sintering. Mater Des. 2021;201:109510. doi: 10.1016/j.matdes.2021.109510
- Feng P, Wu P, Gao C, et al. A multimaterial scaffold with tunable properties: toward bone tissue repair. Adv Sci. 2018;5(6):1700817. doi: 10.1002/advs.201700817
- Zhao F, Li D, Jin Z. Preliminary investigation of poly-ether-ether-ketone based on fused deposition modeling for medical applications. Materials. 2018;11(2):288. doi: 10.3390/ma11020288
- Msallem B, Sharma N, Cao S, Halbeisen FS, Zeilhofer H-F, Thieringer FM. Evaluation of the dimensional accuracy of 3D-printed anatomical mandibular models using FFF, SLA, SLS, MJ, and BJ printing technology. J Clin Med. 2020;9(3):817. doi: 10.3390/jcm9030817
- Presciutti A, Gebennini E, Liberti F, Nanni F, Bragaglia M. Comparative life cycle assessment of SLS and mFFF additive manufacturing techniques for the production of a metal specimen. Materials. 2023;17(1):78. doi: 10.3390/ma17010078
- Kafle A, Luis E, Silwal R, Pan HM, Shrestha PL, Bastola AK. 3D/4D printing of polymers: fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA). Polymers. 2021;13(18):3101. doi: 10.3390/polym13183101
- Kang J, Wang L, Yang C, et al. Custom design and biomechanical analysis of 3D-printed PEEK rib prostheses. Biomech Model Mechanobiol. 2018;17(4):1083-1092. doi: 10.1007/s10237-018-1015-x
- Alkhaibary A, Alharbi A, Alnefaie N, Almubarak AO, Aloraidi A, Khairy S. Cranioplasty: a comprehensive review of the history, materials, surgical aspects, and complications. World Neurosurg. 2020;139:445-452. doi: 10.1016/j.wneu.2020.04.211
- Henry J, Amoo M, Taylor J, O’Brien DP. Complications of cranioplasty in relation to material: systematic review, network meta-analysis and meta-regression. Neurosurgery. 2021;89(3):E144. doi: 10.1093/neuros/nyab216
- Shah AM, Jung H, Skirboll S. Materials used in cranioplasty: a history and analysis. Neurosurg Focus. 2014;36(4):E19. doi: 10.3171/2014.2.FOCUS13561
- Lee C-H, Chung YS, Lee SH, Yang H-J, Son Y-J. Analyses of the factors influencing bone graft infection after delayed cranioplasty. J Trauma Acute Care Surg. 2012;73(1): 255-260. doi: 10.1097/TA.0b013e318256a150
- Kwarcinski J, Boughton P, Ruys A, Doolan A, Gelder JV. Cranioplasty and craniofacial reconstruction: a review of implant material, manufacturing method and infection risk. Appl Sci. 2017;7. doi: 10.3390/app7030276
- Yang J, Sun T, Yuan Y, Li X, Yu H, Guan J. Evaluation of titanium cranioplasty and polyetheretherketone cranioplasty after decompressive craniectomy for traumatic brain injury. Medicine. 2020;99(30):e21251. doi: 10.1097/MD.0000000000021251
- Roberts JC, Merkle AC, Carneal CM. Development of a human cranial bone surrogate for impact studies. Front Bioeng Biotechnol. 2013;1:13. doi: 10.3389/fbioe.2013.00013
- Delille R, Leseur P, Portier P, Drazetic P, Markiewicz E. Experimental study of the bone behaviour of the human skull bone for the development of a physical head model. Int J Crashworth. 2007;112(2):101-108. doi: 10.1080/13588260701433081
- Christophe D, Séverine B, Catherine M, Drazétic P. Identification des lois de comportement du crâne à partir d’essais de flexionIdentification of skull behavior laws starting from bending tests. Mech Ind. 2003;4(2):119-123. doi: 10.1016/S1296-2139(03)00029-0
- Falland-Cheung L, Waddell JN, Li KC, Tong D, Brunton P. Investigation of the elastic modulus, tensile and flexural strength of five skull simulant materials for impact testing of a forensic skin/skull/brain model. J Mech Behav Biomed Mater. 2017;68:303-307. doi: 10.1016/j.jmbbm.2017.02.023
- Haleem A, Javaid M. Polyether ether ketone (PEEK) and its 3D printed implants applications in medical field: an overview. Clin Epidemiol Glob Health. 2019;7:571-577. doi: 10.1016/j.cegh.2019.01.003
- Yap YL, Tan YSE, Tan HKJ, et al. 3D printed bio-models for medical applications. Rapid Prototyp J. 2017;23(2): 227-235. doi: 10.1108/RPJ-08-2015-0102
- Haleem A, Javaid M. 3D scanning applications in medical field: a literature-based review. Clin Epidemiol Glob Health. 2018;7(2):199-210. doi: 10.1016/j.cegh.2018.05.006