AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.3006
REVIEW

3D bioprinting in otorhinolaryngology: from bench to clinical application

Yuming Zhang1 Qian Yang1 Hua Wan2 Gangcai Zhu1 Zian Xiao1 Ying Zhang1 Lanjie Lei3* Shisheng Li1*
Show Less
1 Department of Otorhinolaryngology-Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
2 Department of Otorhinolaryngology-Head and Neck Surgery, Zhuzhou 331 Hospital, Zhuzhou, Hunan, China
3 Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, China
IJB 2024, 10(4), 3006 https://doi.org/10.36922/ijb.3006
Submitted: 24 February 2024 | Accepted: 14 March 2024 | Published: 29 April 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Three-dimensional (3D) bioprinting is a promising additive manufacturing technology that uses imaging data and computer-assisted deposition of biological materials or cells to reconstruct complex 3D structures accurately. This technology has progressed rapidly, in part because of its integration across multiple disciplines and combination with other technologies for clinical applications. Advances in experimental research and clinical applications related to otorhinolaryngology have led to the development of diagnostic and treatment methods based on 3D bioprinting, including the development of tissue engineering scaffolds, biosensors, organ chips, and organoids, surgical planning, graft construction, and medical education. Additionally, otorhinolaryngologists will be better equipped to treat tissue function defects with personalized printed graft implants. It is also expected that 3D printing can be used to build ideal in vitro models in the future to help solve existing research challenges. This article briefly introduces the relevant 3D bioprinting technologies and bioinks that can be used by otorhinolaryngologists and discusses their potential applications in otorhinolaryngology.

Keywords
3D bioprinting
Otorhinolaryngology
Tissue engineering
Experimental research
Clinical application
Funding
This work was supported by the National Natural Science Foundation of China (No. 82173341) and the Natural Science Foundation of the Hunan province (No. 2021JJ40845).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Lott DG, Janus JR. Tissue engineering for otorhinolaryngology–head and neck surgery. Mayo Clin Proc. 2014;89(12):1722-1733. doi: 10.1016/j.mayocp.2014.09.007
  2. McMillan A, McMillan N, Gupta N, Kanotra SP, Salem AK. 3D bioprinting in otolaryngology: a review. Adv Healthc Mater. 2023;12(19):e2203268. doi: 10.1002/adhm.202203268
  3. Sun Y, Wang EH, Yu JT, et al. A novel surgery classification for endoscopic approaches to middle ear cholesteatoma. Curr Med Sci. 2020;40(1):9-17. doi: 10.1007/s11596-020-2141-0
  4. Kuru I, Maier H, Müller M, Lenarz T, Lueth TC. A 3D-printed functioning anatomical human middle ear model. Hear Res. 2016;340:204-213. doi: 10.1016/j.heares.2015.12.025
  5. MacDonald E, Wicker R. Multiprocess 3D printing for increasing component functionality. Science. 2016;353(6307):aaf2093. doi: 10.1126/science.aaf2093
  6. Zhang Y, Dong Z, Li C, et al. Continuous 3D printing from one single droplet. Nat Commun. 2020;11(1):4685. doi: 10.1038/s41467-020-18518-1
  7. Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34(3): 312-319. doi: 10.1038/nbt.3413
  8. Jia MS, Rao RR, Elsaadany M. Early introduction of 3D modeling modules promotes the development of simulation skills in downstream biomedical engineering curricula. J Biol Eng. 2023;17(1):26. doi: 10.1186/s13036-023-00339-7
  9. Truby RL, Lewis JA. Printing soft matter in three dimensions. Nature. 2016;540(7633):371-378. doi: 10.1038/nature21003
  10. Wüst S, Müller R, Hofmann S. Controlled positioning of cells in biomaterials-approaches towards 3D tissue printing. J Funct Biomater. 2011;2(3):119-154. doi: 10.3390/jfb2030119
  11. Miller JS, Stevens KR, Yang MT, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 2012;11(9):768-774. doi: 10.1038/nmat3357
  12. Whitaker M. The history of 3D printing in healthcare. Bulletin. 2014;96(7):228-229. doi: 10.1308/147363514X13990346756481
  13. Thayer P, Martinez H, Gatenholm E. History and trends of 3D bioprinting. Methods Mol Biol. 2020;2140:3-18. doi: 10.1007/978-1-0716-0520-2_1
  14. Bhatia SN, Ingber DE. Microfluidic organs-on-chips. Nat Biotechnol. 2014;32(8):760-772. doi: 10.1038/nbt.2989
  15. Cohen J, Reyes SA. Creation of a 3D printed temporal bone model from clinical CT data. Am J Otolaryngol. 2015;36(5):619-624. doi: 10.1016/j.amjoto.2015.02.012
  16. Kozin ED, Remenschneider AK, Cheng S, Nakajima HH, Lee DJ. Three-dimensional printed prosthesis for repair of superior canal dehiscence. Otolaryngol Head Neck Surg. 2015;153(4):616-619. doi: 10.1177/0194599815592602
  17. AlReefi MA, Nguyen LHP, Mongeau LG, et al. Development and validation of a septoplasty training model using 3-dimensional printing technology. Int Forum Allergy Rhinol. 2017;7(4):399-404. doi: 10.1002/alr.21887
  18. Nuseir A, Hatamleh M, Watson J, Al-Wahadni AM, Alzoubi F, Murad M. Improved construction of auricular prosthesis by digital technologies. J Craniofac Surg. 2015;26(6):e502-e505. doi: 10.1097/SCS.0000000000002012 
  19. Chan HHL, Siewerdsen JH, Vescan A, Daly MJ, Prisman E, Irish JC. 3D rapid prototyping for otolaryngology—head and neck surgery: applications in image-guidance, surgical simulation and patient-specific modeling. PLoS One. 2015;10(9):e0136370. doi: 10.1371/journal.pone.0136370
  20. Mocanu H, Mocanu AI, Dascălu I, Schipor MA, Rădulescu M. Materials for ossicular chain reconstruction: history and evolution. Med Int. 2023;3(2):13. doi: 10.3892/mi.2023.73
  21. Ferris CJ, Gilmore KG, Wallace GG, In het Panhuis M. Biofabrication: an overview of the approaches used for printing of living cells. Appl Microbiol Biotechnol. 2013;97(10):4243-4258. doi: 10.1007/s00253-013-4853-6
  22. Miller JS, Burdick JA. Editorial: special issue on 3D printing of biomaterials. ACS Biomater Sci Eng. 2016;2(10): 1658-1661. doi: 10.1021/acsbiomaterials.6b00566
  23. Ning L, Chen X. A brief review of extrusion-based tissue scaffold bio-printing. Biotechnol J. 2017;12(8):1600671. doi: 10.1002/biot.201600671
  24. Chen DXB. Extrusion bioprinting of scaffolds. In: Extrusion Bioprinting of Scaffolds for Tissue Engineering Applications. Cham: Springer International Publishing; 2019:117-145. doi: 10.1007/978-3-030-03460-3_6
  25. Knowlton S, Onal S, Yu CH, Zhao JJ, Tasoglu S. Bioprinting for cancer research. Trends Biotechnol. 2015;33(9):504-513. doi: 10.1016/j.tibtech.2015.06.007
  26. Pati F, Jang J, Ha DH, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935. doi: 10.1038/ncomms4935
  27. Nakamura M, Kobayashi A, Takagi F, et al. Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng. 2005;11(11-12):1658-1666. doi: 10.1089/ten.2005.11.1658
  28. Dey M, Ozbolat IT. 3D bioprinting of cells, tissues and organs. Sci Rep. 2020;10(1). doi: 10.1038/s41598-020-70086-y
  29. Ovsianikov A, Gruene M, Pflaum M, et al. Laser printing of cells into 3D scaffolds. Biofabrication. 2010;2(1):014104. doi: 10.1088/1758-5082/2/1/014104
  30. Wang J, Xu C, Yang S, Wang L, Xu M. Continuous and highly accurate multi-material extrusion-based bioprinting with optical coherence tomography imaging. Int J Bioprint. 2023;9(3):707. doi: 10.18063/ijb.707
  31. Brion DAJ, Pattinson SW. Generalisable 3D printing error detection and correction via multi-head neural networks. Nat Commun. 2022;13(1):4654. doi: 10.1038/s41467-022-31985-y
  32. Bagnol R, Sprecher C, Peroglio M, et al. Coaxial micro-extrusion of a calcium phosphate ink with aqueous solvents improves printing stability, structure fidelity and mechanical properties. Acta Biomater. 2021;125:322-332. doi: 10.1016/j.actbio.2021.02.022
  33. Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. 2016;102:20-42. doi: 10.1016/j.biomaterials.2016.06.012
  34. Demirci U. Acoustic picoliter droplets for emerging applications in semiconductor industry and biotechnology. J Microelectromech Syst. 2006;15(4):957-966. doi: 10.1109/JMEMS.2006.878879
  35. Chen H, Wu Z, Gong Z, et al. Acoustic bioprinting of patient-derived organoids for predicting cancer therapy responses. Adv Healthc Mater. 2022;11(13). doi: 10.1002/adhm.202102784
  36. Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials. Chem Rev. 2020;120(19):10793-10833. doi: 10.1021/acs.chemrev.0c00008 
  37. Ji Y, Yang Q, Huang G, et al. Improved resolution and fidelity of droplet-based bioprinting by upward ejection. ACS Biomater Sci Eng. 2019;5(8):4112-4121. doi: 10.1021/acsbiomaterials.9b00400
  38. Roth EA, Xu T, Das M, Gregory C, Hickman JJ, Boland T. Inkjet printing for high-throughput cell patterning. Biomaterials. 2004;25(17):3707-3715. doi: 10.1016/j.biomaterials.2003.10.052
  39. Graham AD, Olof SN, Burke MJ, et al. High-resolution patterned cellular constructs by droplet-based 3D printing. Sci Rep. 2017;7(1):7004. doi: 10.1038/s41598-017-06358-x
  40. Moon S, Hasan SK, Song YS, et al. Layer by layer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng Part C: Methods. 2010;16(1):157-166. doi: 10.1089/ten.tec.2009.0179
  41. Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321-343. doi: 10.1016/j.biomaterials.2015.10.076
  42. Lee W, Pinckney J, Lee V, et al. Three-dimensional bioprinting of rat embryonic neural cells. Neuroreport. 2009;20(8): 798-803. doi: 10.1097/WNR.0b013e32832b8be4
  43. Zhang H, Hong E, Chen X, Liu Z. Machine learning enables process optimization of aerosol jet 3D printing based on the droplet morphology. ACS Appl Mater Interfaces. 2023. doi: 10.1021/acsami.2c21476
  44. Xu T, Binder KW, Albanna MZ, et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication. 2012;5(1):015001. doi: 10.1088/1758-5082/5/1/015001
  45. Ebrahimi Orimi H, Hosseini Kolkooh SS, Hooker E, Narayanswamy S, Larrivée B, Boutopoulos C. Drop-on-demand cell bioprinting via laser induced side transfer (LIST). Sci Rep. 2020;10(1):9730. doi: 10.1038/s41598-020-66565-x
  46. Roversi K, Ebrahimi Orimi H, Erfanian M, Talbot S, Boutopoulos C. LIST: a newly developed laser-assisted cell bioprinting technology. Bio Protoc. 2022;12(19). doi: 10.21769/BioProtoc.4527
  47. Guillotin B, Souquet A, Catros S, et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials. 2010;31(28):7250-7256. doi: 10.1016/j.biomaterials.2010.05.055
  48. Kim SH, Yeon YK, Lee JM, et al. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun. 2018;9(1):1620. doi: 10.1038/s41467-018-03759-y
  49. Zhang J, Wehrle E, Rubert M, Müller R. 3D bioprinting of human tissues: biofabrication, bioinks, and bioreactors. IJMS. 2021;22(8):3971. doi: 10.3390/ijms22083971
  50. Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34(4): 422-434. doi: 10.1016/j.biotechadv.2015.12.011
  51. Xiong R, Zhang Z, Chai W, Huang Y, Chrisey DB. Freeform drop-on-demand laser printing of 3D alginate and cellular constructs. Biofabrication. 2015;7(4):045011. doi: 10.1088/1758-5090/7/4/045011
  52. Serien D, Sugioka K. Three-dimensional printing of pure proteinaceous microstructures by femtosecond laser multiphoton cross-linking. ACS Biomater Sci Eng. 2020;6(2):1279-1287. doi: 10.1021/acsbiomaterials.9b01619
  53. Kingsley DM, Roberge CL, Rudkouskaya A, et al. Laser-based 3D bioprinting for spatial and size control of tumor spheroids and embryoid bodies. Acta Biomater. 2019;95: 357-370. doi: 10.1016/j.actbio.2019.02.014
  54. Gugulothu SB, Asthana S, Homer-Vanniasinkam S, Chatterjee K. Trends in photopolymerizable bioinks for 3D bioprinting of tumor models. JACS Au. 2023;3(8): 2086-2106. doi: 10.1021/jacsau.3c00281 Eng C. 2021;130:112423. doi: 10.1016/j.msec.2021.112423
  55. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-785. doi: 10.1038/nbt.2958
  56. Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv. 2016;34(4): 422-434. doi: 10.1016/j.biotechadv.2015.12.011
  57. Alhnan MA, Okwuosa TC, Sadia M, Wan KW, Ahmed W, Arafat B. Emergence of 3D printed dosage forms: opportunities and challenges. Pharm Res. 2016;33(8): 1817-1832. doi: 10.1007/s11095-016-1933-1
  58. Groll J, Burdick JA, Cho DW, et al. A definition of bioinks and their distinction from biomaterial inks. Biofabrication. 2018;11(1):013001. doi: 10.1088/1758-5090/aaec52
  59. Heid S, Boccaccini AR. Advancing bioinks for 3D bioprinting using reactive fillers: a review. Acta Biomater. 2020;113:1-22. doi: 10.1016/j.actbio.2020.06.040
  60. DeForest CA, Anseth KS. Advances in bioactive hydrogels to probe and direct cell fate. Annu Rev Chem Biomol Eng. 2012;3(1):421-444. doi: 10.1146/annurev-chembioeng-062011-080945
  61. Bertassoni LE, Cardoso JC, Manoharan V, et al. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication. 2014;6(2):024105. doi: 10.1088/1758-5082/6/2/024105
  62. Li W, Mille LS, Robledo JA, Uribe T, Huerta V, Zhang YS. Recent advances in formulating and processing biomaterial inks for vat polymerization‐based 3D printing. Adv Healthc Mater. 2020;9(15):2000156. doi: 10.1002/adhm.202000156
  63. Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science. 2012;336(6085): 1124-1128. doi: 10.1126/science.1214804
  64. Guvendiren M, Burdick JA. Engineering synthetic hydrogel microenvironments to instruct stem cells. Curr Opin Biotechnol. 2013;24(5):841-846. doi: 10.1016/j.copbio.2013.03.009
  65. Lee V, Singh G, Trasatti JP, et al. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C: Methods. 2014;20(6):473-484. doi: 10.1089/ten.tec.2013.0335
  66. Xu T, Gregory C, Molnar P, et al. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials. 2006;27(19): 3580-3588. doi: 10.1016/j.biomaterials.2006.01.048
  67. Ilkhanizadeh S, Teixeira A, Hermanson O. Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Biomaterials. 2007;28(27):3936-3943. doi: 10.1016/j.biomaterials.2007.05.018
  68. Beketov EE, Isaeva VE, Yakovleva ND, et al. Bioprinting of cartilage with bioink based on high-concentration collagen and chondrocytes. Int J Mol Sci. 2021;22(21). doi: 10.3390/ijms222111351
  69. Zhu J, Marchant RE. Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices. 2011;8(5):607-626. doi: 10.1586/erd.11.27
  70. Schuurman W, Levett PA, Pot MW, et al. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs: gelatin-methacrylamide hydrogels as potential biomaterials for fabrication. Macromol Biosci. 2013;13(5):551-561. doi: 10.1002/mabi.201200471
  71. Bedell ML, Torres AL, Hogan KJ, et al. Human gelatin-based composite hydrogels for osteochondral tissue engineering and their adaptation into bioinks for extrusion, inkjet, and digital light processing bioprinting. Biofabrication. 2022;14(4). doi: 10.1088/1758-5090/ac8768
  72. Tang P, Song P, Peng Z, et al. Chondrocyte-laden GelMA hydrogel combined with 3D printed PLA scaffolds for auricle regeneration. Mater Sci Eng C. 2021;130:112423. doi: 10.1016/j.msec.2021.112423
  73. Sun T, Feng Z, He W, et al. Novel 3D-printing bilayer GelMA-based hydrogel containing BP,β-TCP and exosomes for cartilage-bone integrated repair. Biofabrication. 2023;16(1). doi: 10.1088/1758-5090/ad04fe
  74. Humenik M, Winkler A, Scheibel T. Patterning of protein‐based materials. Biopolymers. 2021;112(2). doi: 10.1002/bip.23412
  75. Singh YP, Bandyopadhyay A, Mandal BB. 3D bioprinting using cross-linker-free silk–gelatin bioink for cartilage tissue engineering. ACS Appl Mater Interfaces. 2019;11(37): 33684-33696. doi: 10.1021/acsami.9b11644
  76. Hong H, Seo YB, Kim DY, et al. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials. 2020;232:119679. doi: 10.1016/j.biomaterials.2019.119679
  77. Gao Q, Kim BS, Gao G. Advanced strategies for 3D bioprinting of tissue and organ analogs using alginate hydrogel bioinks. Marine Drugs. 2021;19(12):708. doi: 10.3390/md19120708
  78. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337-4351. doi: 10.1016/S0142-9612(03)00340-5
  79. Sarker B, Zehnder T, Rath SN, et al. Oxidized alginate-gelatin hydrogel: a favorable matrix for growth and osteogenic differentiation of adipose-derived stem cells in 3D. ACS Biomater Sci Eng. 2017;3(8):1730-1737. doi: 10.1021/acsbiomaterials.7b00188
  80. Ilhan E, Ulag S, Sahin A, et al. Fabrication of tissue-engineered tympanic membrane patches using 3D-Printing technology. J Mech Behav Biomed Mater. 2021;114:104219. doi: 10.1016/j.jmbbm.2020.104219
  81. Schwarz S, Kuth S, Distler T, et al. 3D printing and characterization of human nasoseptal chondrocytes laden dual crosslinked oxidized alginate-gelatin hydrogels for cartilage repair approaches. Mater Sci Eng C. 2020;116:111189. doi: 10.1016/j.msec.2020.111189
  82. Olate-Moya F, Arens L, Wilhelm M, Mateos-Timoneda MA, Engel E, Palza H. Chondroinductive alginate-based hydrogels having graphene oxide for 3D printed scaffold fabrication. ACS Appl Mater Interfaces. 2020;12(4):4343-4357. doi: 10.1021/acsami.9b22062
  83. Moon D, Lee M, Sun J, Song KH, Doh J. Jammed microgel‐based inks for 3D printing of complex structures transformable via pH/temperature variations. Macromol Rapid Commun. 2022;43(19):2200271. doi: 10.1002/marc.202200271
  84. Hinton TJ, Jallerat Q, Palchesko RN, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1(9):e1500758. doi: 10.1126/sciadv.1500758
  85. Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915. doi: 10.1039/c7bm00765e
  86. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell. 2009;5(1):17-26. doi: 10.1016/j.stem.2009.06.016
  87. Derby B. Printing and prototyping of tissues and scaffolds. Science. 2012;338(6109):921-926. doi: 10.1126/science.1226340
  88. Shanto PC, Park S, Park M, Lee BT. Physico-biological evaluation of 3D printed dECM/TOCN/alginate hydrogel based scaffolds for cartilage tissue regeneration. Biomater Adv. 2023;145:213239. doi: 10.1016/j.bioadv.2022.213239
  89. Yeleswarapu S, Chameettachal S, Pati F. Integrated 3D printing-based framework—a strategy to fabricate tubular structures with mechanocompromised hydrogels. ACS Appl Biomater. 2021;4(9):6982-6992. doi: 10.1021/acsabm.1c00644 
  90. Brown M, Zhu S, Taylor L, Tabrizian M, Li-Jessen NYK. Unraveling the relevance of tissue‐specific decellularized extracellular matrix hydrogels for vocal fold regenerative biomaterials: a comprehensive proteomic and in vitro study. Adv Nanobiomed Res. 2023;3(4):2200095. doi: 10.1002/anbr.202200095
  91. Bichara DA, O’Sullivan NA, Pomerantseva I, et al. The tissue-engineered auricle: past, present, and future. Tissue Eng Part B Rev. 2012;18(1):51-61. doi: 10.1089/ten.teb.2011.0326
  92. Jang CH, Koo Y, Kim G. ASC/chondrocyte-laden alginate hydrogel/PCL hybrid scaffold fabricated using 3D printing for auricle regeneration. Carbohydr Polym. 2020;248:116776. doi: 10.1016/j.carbpol.2020.116776
  93. Cooke ME, Ramirez-GarciaLuna JL, Rangel-Berridi K, et al. 3D printed polyurethane scaffolds for the repair of bone defects. Front Bioeng Biotechnol. 2020;8:557215. doi: 10.3389/fbioe.2020.557215
  94. Wen YT, Dai NT, Hsu S hui. Biodegradable water-based polyurethane scaffolds with a sequential release function for cell-free cartilage tissue engineering. Acta Biomater. 2019;88:301-313. doi: 10.1016/j.actbio.2019.02.044
  95. Li S, Tallia F, Mohammed AA, Stevens MM, Jones JR. Scaffold channel size influences stem cell differentiation pathway in 3-D printed silica hybrid scaffolds for cartilage regeneration. Biomater Sci. 2020;8(16):4458-4466. doi: 10.1039/C9BM01829H
  96. Park JH, Ahn M, Park SH, et al. 3D bioprinting of a trachea-mimetic cellular construct of a clinically relevant size. Biomaterials. 2021;279:121246. doi: 10.1016/j.biomaterials.2021.121246
  97. Heuer RA, Nella KT, Chang HT, et al. Three-dimensional otic neuronal progenitor spheroids derived from human embryonic stem cells. Tissue Eng Part A. 2021;27(3-4): 256-269. doi: 10.1089/ten.tea.2020.0078
  98. Kurihara S, Fujioka M, Hirabayashi M, et al. Otic organoids containing spiral ganglion neuron-like cells derived from human-induced pluripotent stem cells as a model of drug-induced neuropathy. Stem Cells Transl Med. 2022;11(3): 282-296. doi: 10.1093/stcltm/szab023
  99. Das S, Pati F, Choi YJ, et al. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater. 2015;11: 233-246. doi: 10.1016/j.actbio.2014.09.023
  100. Zhang C, Wang G, Lin H, et al. Cartilage 3D bioprinting for rhinoplasty using adipose-derived stem cells as seed cells: review and recent advances. Cell Prolif. 2023;56(4):e13417. doi: 10.1111/cpr.13417
  101. Lee J, Hong J, Kim W, Kim GH. Bone-derived dECM/ alginate bioink for fabricating a 3D cell-laden mesh structure for bone tissue engineering. Carbohydr Polym. 2020;250:116914. doi: 10.1016/j.carbpol.2020.116914
  102. Bae SW, Lee KW, Park JH, et al. 3D bioprinted artificial trachea with epithelial cells and chondrogenic-differentiated bone marrow-derived mesenchymal stem cells. IJMS. 2018;19(6):1624. doi: 10.3390/ijms19061624
  103. Csobonyeiova M, Polak S, Zamborsky R, Danisovic L. iPS cell technologies and their prospect for bone regeneration and disease modeling: a mini review. J Adv Res. 2017;8(4):321-327. doi: 10.1016/j.jare.2017.02.004
  104. Liang L, Li Z, Yao B, et al. Extrusion bioprinting of cellular aggregates improves mesenchymal stem cell proliferation and differentiation. Biomater Adv. 2023;149:213369. doi: 10.1016/j.bioadv.2023.213369
  105. Gantumur E, Nakahata M, Kojima M, Sakai S. Extrusion-based bioprinting through glucose-mediated enzymatic hydrogelation. Int J Bioprint. 2020;6(1):250. doi: 10.18063/ijb.v6i1.250
  106. Lee HJ, Kim YB, Ahn SH, et al. A new approach for fabricating collagen/ECM-based bioinks using preosteoblasts and human adipose stem cells. Adv Healthc Mater. 2015;4(9):1359-1368. doi: 10.1002/adhm.201500193 
  107. Faramarzi N, Yazdi IK, Nabavinia M, et al. Patient-specific bioinks for 3D bioprinting of tissue engineering scaffolds. Adv Healthc Mater. 2018;7(11):1701347. doi: 10.1002/adhm.201701347
  108. Yu K, Zhang X, Sun Y, et al. Printability during projection-based 3D bioprinting. Bioact Mater. 2022;11:254-267. doi: 10.1016/j.bioactmat.2021.09.021
  109. He Y, Yang F, Zhao H, Gao Q, Xia B, Fu J. Research on the printability of hydrogels in 3D bioprinting. Sci Rep. 2016;6(1):29977. doi: 10.1038/srep29977
  110. Kryou C, Theodorakos I, Karakaidos P, Klinakis A, Hatziapostolou A, Zergioti I. Parametric study of jet/droplet formation process during LIFT printing of living cell-laden bioink. Micromachines. 2021;12(11). doi: 10.3390/mi12111408
  111. Gopinathan J, Noh I. Recent trends in bioinks for 3D printing. Biomater Res. 2018;22(1):11. doi: 10.1186/s40824-018-0122-1
  112. Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016;8(3):032002. doi: 10.1088/1758-5090/8/3/032002
  113. Ozbolat IT, Peng W, Ozbolat V. Application areas of 3D bioprinting. Drug Discov Today. 2016;21(8):1257-1271. doi: 10.1016/j.drudis.2016.04.006
  114. Lee JS, Kim BS, Seo D, Park JH, Cho DW. Three-dimensional cell printing of large-volume tissues: application to ear regeneration. Tissue Eng Part C Methods. 2017;23(3):136-145. doi: 10.1089/ten.tec.2016.0362
  115. Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8(3):035020. doi: 10.1088/1758-5090/8/3/035020
  116. Chanlalit C, Shukla DR, Fitzsimmons JS, An KN, O’Driscoll SW. Stress shielding around radial head prostheses. J Hand Surg Am. 2012;37(10):2118-2125. doi: 10.1016/j.jhsa.2012.06.020
  117. Kim UJ, Park J, Joo Kim H, Wada M, Kaplan DL. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials. 2005;26(15):2775-2785. doi: 10.1016/j.biomaterials.2004.07.044
  118. Wenk E, Merkle HP, Meinel L. Silk fibroin as a vehicle for drug delivery applications. J Control Release. 2011;150(2): 128-141. doi: 10.1016/j.jconrel.2010.11.007
  119. Bradner SA, Galaiya D, Raol N, Kaplan DL, Hartnick CJ. Silk protein bioresorbable, drug-eluting ear tubes: proof-of-concept. Adv Healthc Mater. 2019;8(3):1801409. doi: 10.1002/adhm.201801409
  120. Williams DF. The language of biomaterials-based technologies. Regen Eng Transl Med. 2019;5(1):53-60. doi: 10.1007/s40883-018-0088-5
  121. Winkler S, Meyer KV, Heuer C, Kortmann C, Dehne M, Bahnemann J. In vitro biocompatibility evaluation of a heat‐resistant 3D printing material for use in customized cell culture devices. Eng Life Sci. 2022;22(11):699-708. doi: 10.1002/elsc.202100104
  122. Bernard M, Jubeli E, Pungente MD, Yagoubi N. Biocompatibility of polymer-based biomaterials and medical devices – regulations, in vitro screening and risk-management. Biomater Sci. 2018;6(8):2025-2053. doi: 10.1039/C8BM00518D 
  123. Yan Y, Chen H, Zhang H, et al. Vascularized 3D printed scaffolds for promoting bone regeneration. Biomaterials. 2019;190-191:97-110. doi: 10.1016/j.biomaterials.2018.10.033   
  124. Heikkinen AK, Lähde S, Rissanen V, et al. Feasibility of 3D-printed middle ear prostheses in partial ossicular chain reconstruction. Int J Bioprint. 2023;9(4):727. doi: 10.18063/ijb.727
  125. Ueda Y, Nakamura T, Nie J, et al. Defining developmental trajectories of prosensory cells in human inner ear organoids at single-cell resolution. Development. 2023;150(12):dev201071. doi: 10.1242/dev.201071
  126. Osaki D, Ouji Y, Sakagami M, et al. Culture of organoids with vestibular cell-derived factors promotes differentiation of embryonic stem cells into inner ear vestibular hair cells. J Biosci Bioeng. 2023;135(2):143-150. doi: 10.1016/j.jbiosc.2022.11.005
  127. Dong Q, Su X, Li X, et al. In vitro construction of lung cancer organoids by 3D bioprinting for drug evaluation. Colloids Surf A. 2023;666. doi: 10.1016/j.colsurfa.2023.131288
  128. Salmon I, Grebenyuk S, Abdel Fattah AR, et al. Engineering neurovascular organoids with 3D printed microfluidic chips. Lab Chip. 2022;22(8):1615-1629. doi: 10.1039/d1lc00535a
  129. Ungar OJ. Letter to the Editor regarding “Single-sided deafness after sudden hearing loss: late effect on cochlear nerve size” by Islamoglu et al. European Archives of Oto- Rhino-Laryngology (2020) 277:2423-2426. Eur Arch Otorhinolaryngol. 2020;277(11). doi: 10.1007/s00405-020-06304-0
  130. Kim T, Yi Q, Hoang E, Esfandyarpour R. A 3D printed wearable bioelectronic patch for multi-sensing and in situ sweat electrolyte monitoring. Adv Mater Technol. 2021;6(4). doi: 10.1002/admt.202001021
  131. Sandstrom CG. The non-disruptive emergence of an ecosystem for 3D printing - insights from the hearing aid industry’s transition 1989-2008. Technol Forecast Soc Change. 2016;102:160-168. doi: 10.1016/j.techfore.2015.09.006
  132. Fu F, Luximon Y. Fit and comfort perception on hearing aids: a pilot study. In: Ahram T, Karwowski W, Pickl S, Taiar R, eds. Human Systems Engineering and Design II. Cham: Springer International Publishing; 2020:360-364. doi: 10.1007/978-3-030-27928-8_55
  133. Vivero-Lopez M, Xu X, Muras A, et al. Anti-biofilm multi drug-loaded 3D printed hearing aids. Mater Sci Eng C Mater Biol Appl. 2021;119:111606. doi: 10.1016/j.msec.2020.111606
  134. Famm K, Litt B, Tracey KJ, Boyden ES, Slaoui M. Drug discovery: a jump-start for electroceuticals. Nature. 2013;496(7444):159-161. doi: 10.1038/496159a
  135. Birmingham K, Gradinaru V, Anikeeva P, et al. Bioelectronic medicines: a research roadmap. Nat Rev Drug Discov. 2014;13(6):399-400. doi: 10.1038/nrd4351
  136. Sarreal RR, Bhatti P. Characterization and miniaturization of silver-nanoparticle microcoil via aerosol jet printing techniques for micromagnetic cochlear stimulation. Sensors (Basel). 2020;20(21):6087. doi: 10.3390/s20216087
  137. Lei IM, Jiang C, Lei CL, et al. 3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients. Nat Commun. 2021;12(1):6260. doi: 10.1038/s41467-021-26491-6
  138. Lan X, Liang Y, Vyhlidal M, et al. In vitro maturation and in vivo stability of bioprinted human nasal cartilage. J Tissue Eng. 2022;13:20417314221086368. doi: 10.1177/20417314221086368
  139. Nuseir A, Hatamleh MM, Alnazzawi A, Al-Rabab’ah M, Kamel B, Jaradat E. Direct 3D printing of flexible nasal prosthesis: optimized digital workflow from scan to fit. J Prosthodont. 2019;28(1):10-14. doi: 10.1111/jopr.13001
  140. Chiesa-Estomba CM, González-García J, Sistiaga-Suarez JA, González Fernández I. A novel computer-aided design/computer-aided manufacturing (CAD/CAM) 3D printing method for nasal framework reconstruction using microvascular free flaps. Cureus. 2022;14(9): e28971. doi: 10.7759/cureus.28971 
  141. Heikkinen AK, Lähde S, Rissanen V, et al. Feasibility of 3D-printed middle ear prostheses in partial ossicular chain reconstruction. Int J Bioprint. 2023;9(4):727. doi: 10.18063/ijb.727
  142. Ueda Y, Nakamura T, Nie J, et al. Defining developmental trajectories of prosensory cells in human inner ear organoids at single-cell resolution. Development. 2023;150(12):dev201071. doi: 10.1242/dev.201071
  143. Osaki D, Ouji Y, Sakagami M, et al. Culture of organoids with vestibular cell-derived factors promotes differentiation of embryonic stem cells into inner ear vestibular hair cells. J Biosci Bioeng. 2023;135(2):143-150. doi: 10.1016/j.jbiosc.2022.11.005
  144. Dong Q, Su X, Li X, et al. In vitro construction of lung cancer organoids by 3D bioprinting for drug evaluation. Colloids Surf A. 2023;666. doi: 10.1016/j.colsurfa.2023.131288
  145. Salmon I, Grebenyuk S, Abdel Fattah AR, et al. Engineering neurovascular organoids with 3D printed microfluidic chips. Lab Chip. 2022;22(8):1615-1629. doi: 10.1039/d1lc00535a
  146. Ungar OJ. Letter to the Editor regarding “Single-sided deafness after sudden hearing loss: late effect on cochlear nerve size” by Islamoglu et al. European Archives of Oto- Rhino-Laryngology (2020) 277:2423-2426. Eur Arch Otorhinolaryngol. 2020;277(11). doi: 10.1007/s00405-020-06304-0
  147. Kim T, Yi Q, Hoang E, Esfandyarpour R. A 3D printed wearable bioelectronic patch for multi-sensing and in situ sweat electrolyte monitoring. Adv Mater Technol. 2021;6(4). doi: 10.1002/admt.202001021
  148. Sandstrom CG. The non-disruptive emergence of an ecosystem for 3D printing - insights from the hearing aid industry’s transition 1989-2008. Technol Forecast Soc Change. 2016;102:160-168. doi: 10.1016/j.techfore.2015.09.006
  149. Fu F, Luximon Y. Fit and comfort perception on hearing aids: a pilot study. In: Ahram T, Karwowski W, Pickl S, Taiar R, eds. Human Systems Engineering and Design II. Cham: Springer International Publishing; 2020:360-364. doi: 10.1007/978-3-030-27928-8_55
  150. Vivero-Lopez M, Xu X, Muras A, et al. Anti-biofilm multi drug-loaded 3D printed hearing aids. Mater Sci Eng C Mater Biol Appl. 2021;119:111606. doi: 10.1016/j.msec.2020.111606
  151. Famm K, Litt B, Tracey KJ, Boyden ES, Slaoui M. Drug discovery: a jump-start for electroceuticals. Nature. 2013;496(7444):159-161. doi: 10.1038/496159a
  152. Birmingham K, Gradinaru V, Anikeeva P, et al. Bioelectronic medicines: a research roadmap. Nat Rev Drug Discov. 2014;13(6):399-400. doi: 10.1038/nrd4351
  153. Sarreal RR, Bhatti P. Characterization and miniaturization of silver-nanoparticle microcoil via aerosol jet printing techniques for micromagnetic cochlear stimulation. Sensors (Basel). 2020;20(21):6087. doi: 10.3390/s20216087
  154. Lei IM, Jiang C, Lei CL, et al. 3D printed biomimetic cochleae and machine learning co-modelling provides clinical informatics for cochlear implant patients. Nat Commun. 2021;12(1):6260. doi: 10.1038/s41467-021-26491-6
  155. Lan X, Liang Y, Vyhlidal M, et al. In vitro maturation and in vivo stability of bioprinted human nasal cartilage. J Tissue Eng. 2022;13:20417314221086368. doi: 10.1177/20417314221086368
  156. Nuseir A, Hatamleh MM, Alnazzawi A, Al-Rabab’ah M, Kamel B, Jaradat E. Direct 3D printing of flexible nasal prosthesis: optimized digital workflow from scan to fit. J Prosthodont. 2019;28(1):10-14. doi: 10.1111/jopr.13001
  157. Chiesa-Estomba CM, González-García J, Sistiaga-Suarez JA, González Fernández I. A novel computer-aided design/computer-aided manufacturing (CAD/CAM) 3D printing method for nasal framework reconstruction using microvascular free flaps. Cureus. 2022;14(9): e28971. doi: 10.7759/cureus.28971 
  158. Yi HG, Choi YJ, Jung JW, et al. Three-dimensional printing of a patient-specific engineered nasal cartilage for augmentative rhinoplasty. J Tissue Eng. 2019;10:2041731418824797. doi: 10.1177/2041731418824797
  159. Luo D, Li T, Wang H, Chen Y. Three-dimensional printing of personalized nasal stents for patients with cleft lip. Cleft Palate Craniofac J. 2019;56(4):521-524. doi: 10.1177/1055665618782804
  160. Jung JW, Ha DH, Kim BY, et al. Nasal reconstruction using a customized three-dimensional-printed stent for congenital arhinia: three-year follow-up: nasal reconstruction using a 3D-printed stent. Laryngoscope. 2019;129(3):582-585. doi: 10.1002/lary.27335
  161. Lee AWM, Ma BBY, Ng WT, Chan ATC. Management of nasopharyngeal carcinoma: current practice and future perspective. J Clin Oncol. 2015;33(29):3356-3364. doi: 10.1200/JCO.2015.60.9347
  162. Ding RB, Chen P, Rajendran BK, et al. Molecular landscape and subtype-specific therapeutic response of nasopharyngeal carcinoma revealed by integrative pharmacogenomics. Nat Commun. 2021;12(1):3046. doi: 10.1038/s41467-021-23379-3
  163. Lucky SS, Law M, Lui MH, et al. Patient-derived nasopharyngeal cancer organoids for disease modeling and radiation dose optimization. Front Oncol. 2021;11:622244. doi: 10.3389/fonc.2021.622244
  164. Wang XW, Xia TL, Tang HC, et al. Establishment of a patient-derived organoid model and living biobank for nasopharyngeal carcinoma. Ann Transl Med. 2022;10(9):526. doi: 10.21037/atm-22-1076
  165. Park W, Bae M, Hwang M, Jang J, Cho DW, Yi HG. 3D cell-printed hypoxic cancer-on-a-chip for recapitulating pathologic progression of solid cancer. J Vis Exp. 2021;(167). doi: 10.3791/61945
  166. Kankala RK, Wang SB, Chen AZ. Microengineered organ-on-a-chip platforms towards personalized medicine. Curr Pharm Des. 2018;24(45):5354-5366. doi: 10.2174/1381612825666190222143542
  167. Liu Z, Zhang W, Pang SW. Migration of immortalized nasopharyngeal epithelia and carcinoma cells through porous membrane in 3D platforms. Biosci Rep. 2020;40(6):BSR20194113. doi: 10.1042/BSR20194113
  168. Zhang WG, Liu ZY, Pang SW. Separation of nasopharyngeal epithelial cells from carcinoma cells on 3D scaffold platforms. Biotechnol Bioeng. 2021;118(4):1444-1455. doi: 10.1002/bit.27640
  169. Shen Z, Xie Y, Shang X, et al. The manufacturing procedure of 3D printed models for endoscopic endonasal transsphenoidal pituitary surgery. Technol Health Care. 2020;28(S1):131-150. doi: 10.3233/THC-209014
  170. Huang X, Fan N, Wang HJ, Zhou Y, Li X, Jiang XB. Application of 3D printed model for planning the endoscopic endonasal transsphenoidal surgery. Sci Rep. 2021;11(1):5333. doi: 10.1038/s41598-021-84779-5
  171. Moon JH, Kim EH, Kim SH. Various modifications of a vascularized nasoseptal flap for repair of extensive skull base dural defects. J Neurosurg. 2019;132(2):371-379. doi: 10.3171/2018.10.JNS181556
  172. Kayastha D, Wiznia D, Manes RP, Omay SB, Khoury T, Rimmer R. 3D printing for virtual surgical planning of nasoseptal flap skull-base reconstruction: a proof-of-concept study. Int Forum Allergy Rhinol. 2023;13(11):2073-2075. doi: 10.1002/alr.23165
  173. Deruyver L, Rigaut C, Lambert P, Haut B, Goole J. The importance of pre-formulation studies and of 3D-printed nasal casts in the success of a pharmaceutical product intended for nose-to-brain delivery. Adv Drug Deliv Rev. 2021;175:113826. doi: 10.1016/j.addr.2021.113826 16/j.celrep.2018.12.090  
  174. Goyanes A, Det-Amornrat U, Wang J, Basit AW, Gaisford S. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems. J Control Release. 2016;234:41-48. doi: 10.1016/j.jconrel.2016.05.034
  175. Djupesland PG, Messina JC, Palmer JN. Deposition of drugs in the nose and sinuses with an exhalation delivery system vs conventional nasal spray or high-volume irrigation in Draf II/ III post-surgical anatomy. Rhinology. 2020;58(2):175-183. doi: 10.4193/Rhin18.304
  176. Ciavarella D, Campobasso A, Conte E, et al. Correlation between dental arch form and OSA severity in adult patients: an observational study. Prog Orthod. 2023;24(1):19. doi: 10.1186/s40510-023-00464-5
  177. Kecik D. Three-dimensional analyses of palatal morphology and its relation to upper airway area in obstructive sleep apnea. Angle Orthod. 2017;87(2):300-306. doi: 10.2319/051116-377.1
  178. Chi AC, Day TA, Neville BW. Oral cavity and oropharyngeal squamous cell carcinoma--an update. CA Cancer J Clin. 2015;65(5):401-421. doi: 10.3322/caac.21293
  179. Xu J, Lai F, Liu Y, et al. Novel computer-aided reconstruction of soft tissue defects following resection of oral and oropharyngeal squamous cell carcinoma. World J Surg Oncol. 2022;20(1):196. doi: 10.1186/s12957-022-02654-7
  180. Bhattacharyya A, Janarthanan G, Kim T, et al. Modulation of bioactive calcium phosphate micro/nanoparticle size and shape during in situ synthesis of photo-crosslinkable gelatin methacryloyl based nanocomposite hydrogels for 3D bioprinting and tissue engineering. Biomater Res. 2022;26(1):54. doi: 10.1186/s40824-022-00301-6
  181. Macielak RJ, Ziebarth MT, Price DL. 3D printed fistula plug: a novel bridge to definitive reconstruction. Laryngoscope. 2021;131(1):111-114. doi: 10.1002/lary.28563
  182. Hu Q, Cui J, Zhang H, Liu S, Ramalingam M. A 5 + 1-axis 3D printing platform for producing customized intestinal fistula stents. 3D Print Addit Manuf. 2023;10(5):955-970. doi: 10.1089/3dp.2021.0044
  183. Nyirjesy SC, Judd RT, Alfayez Y, et al. Use of 3-dimensional printing at the point-of-care to manage a complex wound in hemifacial necrotizing fasciitis: a case report. 3D Print Med. 2023;9(1):4. doi: 10.1186/s41205-022-00166-4
  184. Arens C, Schwemmle C, Voigt-Zimmermann S. Surgical reconstruction in laryngeal carcinoma. HNO. 2020;68(9):666-677. doi: 10.1007/s00106-020-00916-y
  185. Kahmke R, Sajisevi M. Larynx cancer: reconstructive options. Otolaryngol Clin North Am. 2023;56(2):333-343. doi: 10.1016/j.otc.2022.11.002
  186. Tian H, Gao S, Yu J, et al. Application of digital modeling and three-dimensional printing of titanium mesh for reconstruction of thyroid cartilage in partial laryngectomy. Acta Otolaryngol. 2022;142(3-4):363-368. doi: 10.1080/00016489.2022.2055138
  187. Celik H, Krug E, Zhang CR, et al. A humanized animal model predicts clonal evolution and therapeutic vulnerabilities in myeloproliferative neoplasms. Cancer Discov. 2021;11(12):3126-3141. doi: 10.1158/2159-8290.CD-20-1652
  188. Fan H, Demirci U, Chen P. Emerging organoid models: leaping forward in cancer research. J Hematol Oncol. 2019;12(1):142. doi: 10.1186/s13045-019-0832-4
  189. Almela T, Tayebi L, Moharamzadeh K. 3D bioprinting for in vitro models of oral cancer: toward development and validation. Bioprinting. 2021;22:e00132. doi: 10.1016/j.bprint.2021.e00132
  190. Langer EM, Allen-Petersen BL, King SM, et al. Modeling tumor phenotypes in vitro with three-dimensional bioprinting. Cell Rep. 2019;26(3):608-623.e6. doi: 10.1016/j.celrep.2018.12.090
  191. Vimawala S, Gao T, Goldfarb J, et al. Initial experience using 3-dimensional printed models for head and neck reconstruction in Haiti. Ear Nose Throat J. 2022;101(3): NP89-NP91. doi: 10.1177/0145561320938920
  192. Richard Z, Jackson E, Jung JP, Kanotra SP. Feasibility and potential of three-dimensional printing in laryngotracheal stenosis. J Laryngol Otol. 2019;133(6):530-534. doi: 10.1017/S0022215119001208
  193. Furlow PW, Mathisen DJ. Surgical anatomy of the trachea. Ann Cardiothorac Surg. 2018;7(2):255-260. doi: 10.21037/acs.2018.03.01
  194. Sun Y, Huo Y, Ran X, et al. Instant trachea reconstruction using 3D-bioprinted C-shape biomimetic trachea based on tissue-specific matrix hydrogels. Bioact Mater. 2024;32: 52-65. doi: 10.1016/j.bioactmat.2023.09.011
  195. Huo Y, Xu Y, Wu X, et al. Functional trachea reconstruction using 3D-bioprinted native-like tissue architecture based on designable tissue-specific bioinks. Adv Sci (Weinh). 2022;9(29):e2202181. doi: 10.1002/advs.202202181
  196. Gao B, Jing H, Gao M, et al. Long-segmental tracheal reconstruction in rabbits with pedicled tissue-engineered trachea based on a 3D-printed scaffold. Acta Biomater. 2019;97:177-186. doi: 10.1016/j.actbio.2019.07.043
  197. Weber JF, Rehmani SS, Baig MZ, et al. Novel composite trachea grafts using 3-dimensional printing. JTCVS Open. 2021;5:152-160. doi: 10.1016/j.xjon.2020.11.001
  198. Tsai AY, Moroi MK, Les AS, et al. Tracheal agenesis: esophageal airway support with a 3-dimensional-printed bioresorbable splint. JTCVS Tech. 2021;10:563-568. doi: 10.1016/j.xjtc.2021.08.037
  199. Yu D, Peng W, Mo X, Zhang Y, Zhang X, He J. Personalized 3D-printed bioresorbable airway external splint for tracheomalacia combined with congenital heart disease. Front Bioeng Biotechnol. 2022;10:859777. doi: 10.3389/fbioe.2022.859777
  200. Greenwood TE, Thomson SL. Embedded 3D printing of multi-layer, self-oscillating vocal fold models. J Biomech. 2021;121:110388. doi: 10.1016/j.jbiomech.2021.110388
  201. Romero RGT, Colton MB, Thomson SL. 3D-printed synthetic vocal fold models. J Voice. 2021;35(5):685-694. doi: 10.1016/j.jvoice.2020.01.030
  202. Tiwari D, Vobilisetty RK, Heer B. Current application and future prospects of 3D printing in otorhinolaryngology-a narrative review. Indian J Otolaryngol Head Neck Surg. 2022;74(1):123-126. doi: 10.1007/s12070-021-02634-5
  203. Gao Q, Niu X, Shao L, et al. 3D printing of complex GelMA-based scaffolds with nanoclay. Biofabrication. 2019;11(3):035006. doi: 10.1088/1758-5090/ab0cf6
  204. Mihankhah P, Azdast T, Mohammadzadeh H, Hasanzadeh R, Aghaiee S. Fused filament fabrication of biodegradable polylactic acid reinforced by nanoclay as a potential biomedical material. J Thermoplast Compos Mater. 2023;36(3):961-983. doi: 10.1177/08927057211044185
  205. Zheng F, Xiao Y, Liu H, Fan Y, Dao M. Patient-specific organoid and organ-on-a-chip: 3D cell-culture meets 3D printing and numerical simulation. Adv Biol (Weinh). 2021;5(6):e2000024. doi: 10.1002/adbi.202000024
  206. Velasco V, Shariati SA, Esfandyarpour R. Microtechnology-based methods for organoid models. Microsyst Nanoeng. 2020;6:76. doi: 10.1038/s41378-020-00185-3
  207. Morrison RJ, Sengupta S, Flanangan CL, Ohye RG, Hollister SJ, Green GE. Treatment of severe acquired tracheomalacia with a patient-specific, 3D-printed, permanent tracheal splint. JAMA Otolaryngol Head Neck Surg. 2017;143(5):523-525. doi: 10.1001/jamaoto.2016.3932
  208. Goyanes A, Robles Martinez P, Buanz A, Basit AW, Gaisford S. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015;494(2):657-663. doi: 10.1016/j.ijpharm.2015.04.069
  209. Norman J, Madurawe RD, Moore CMV, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev. 2017;108:39-50. doi: 10.1016/j.addr.2016.03.001
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing