AccScience Publishing / IJB / Online First / DOI: 10.36922/ijb.2874
RESEARCH ARTICLE

Effect of tunable stiffness on immune responses in 3D-bioprinted alginate–gelatin scaffolds

Qinghua Liu1 Yu Feng1 Bin Yao1 Zhao Li1 Yi Kong1 Chao Zhang1 Yaxin Tan1 Wei Song1 Jirigala Enhe2 Xiaohe Li2* Sha Huang1*
Show Less
1 Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, China
2 Department of Anatomy the Basic Medicine College, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
IJB 2024, 10(4), 2874 https://doi.org/10.36922/ijb.2874
Submitted: 2 February 2024 | Accepted: 27 February 2024 | Published: 3 April 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Tissue engineering is an approach used to restore damaged tissues and organs using biomaterials that support cell adhesion, growth, and proliferation. However, immune responses triggered by tissue injury and biomaterial implantation can lead to undesired reactions such as foreign body response and fibrotic capsule formation. Macrophages play a critical role in these immune responses. Therefore, comprehending and controlling the immune responses to biomaterials are crucial for successful clinical translation in tissue engineering. In this experimental study, we fabricated three-dimensional-bioprinted hydrogel scaffolds with adaptable stiffness by adjusting the alginate–gelatin ratio. We examined the physical properties of these scaffolds and assessed the immune responses they provoked both in vitro and in vivo. Our results revealed that higher-stiffness implants could drive macrophage polarization toward pro-inflammatory phenotypes in vivo. Furthermore, our animal experiments demonstrated that high-stiffness hydrogels elicited elevated immune responses through the TLR4/Myd88/NF-κB signaling pathway and IL-6/JAK-STAT signaling pathway. Collectively, our study demonstrates that increased implant stiffness correlates with stronger immune responses. These findings are expected to provide novel insights for the clinical application of alginate–gelatin composite hydrogels.

Keywords
3D bioprinting
Tunable stiffness
Alginate–gelatin scaffolds
Immune responses
Funding
This study was supported by the National Natural Science Foundation of China (32000969, 82274362), National Key Research and Development Program of China (2022YFA1104600, 2022YFA1104604), Beijing Natural Science Foundation (L234066), Natural Science Foundation of Inner Mongolia Autonomous Region of China (2021LHMS08050), Inner Mongolia Autonomous Region Higher Education Innovation Team Development Plan (NMGIRT2227), Inner Mongolia Youth Science and Technology Talent support program (NJYT24031), Key Project of Inner Mongolia Medical University (YKD2021ZD001), Youth Independent Innovation Science Fund Project of PLA General Hospital (22QNFC018), Ulanqab Basic Research Project (2021JC321), and Inner Mongolia Medical University Doctoral Initiation Program (YKD2023BSQD012).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Kim S, Uroz M, Bays JL, Chen CS. Harnessing mechanobiology for tissue engineering. Dev Cell. 2021;56(2):180-191. doi: 10.1016/j.devcel.2020.12.017
  2. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226:119536. doi: 10.1016/j.biomaterials.2019.119536
  3. Taraballi F, Sushnitha M, Tsao C, et al. Biomimetic tissue engineering: tuning the immune and inflammatory response to implantable biomaterials. Adv Healthc Mater. 2018;7(17):e1800490. doi: 10.1002/adhm.201800490
  4. Crupi A, Costa A, Tarnok A, Melzer S, Teodori L. Inflammation in tissue engineering: the Janus between engraftment and rejection. Eur J Immunol. 2015;45(12): 3222-3236. doi: 10.1002/eji.201545818
  5. Abaricia JO, Farzad N, Heath TJ, Simmons J, Morandini L, Olivares-Navarrete R. Control of innate immune response by biomaterial surface topography, energy, and stiffness. Acta Biomater. 2021;133:58-73. doi: 10.1016/j.actbio.2021.04.021
  6. Locati M, Curtale G, Mantovani A. Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 2020;15(1):123-147. doi: 10.1146/annurev-pathmechdis-012418-012718
  7. Chen S, Saeed A, Liu Q, et al. Macrophages in immunoregulation and therapeutics. Signal Transduct Target Ther. 2023;8(1):207. doi: 10.1038/s41392-023-01452-1
  8. Al Sadoun H. Macrophage phenotypes in normal and diabetic wound healing and therapeutic interventions. Cells. 2022;11(15). doi: 10.3390/cells11152430
  9. Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44(3):450-462. doi: 10.1016/j.immuni.2016.02.015
  10. Balabiyev A, Podolnikova NP, Kilbourne JA, et al. Fibrin polymer on the surface of biomaterial implants drives the foreign body reaction. Biomaterials. 2021;277. doi: 10.1016/j.biomaterials.2021.121087
  11. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20(2): 86-100. doi: 10.1016/j.smim.2007.11.004
  12. Lee SC, Gillispie G, Prim P, Lee SJ. Physical and chemical factors influencing the printability of hydrogel-based extrusion bioinks. Chem Rev. 2020;120(19):10834-10886. doi: 10.1021/acs.chemrev.0c00015
  13. Bu W, Wu Y, Ghaemmaghami AM, Sun H, Mata A. Rational design of hydrogels for immunomodulation. Regen Biomater. 2022;9:rbac009. doi: 10.1093/rb/rbac009
  14. Camarero‐Espinosa S, Carlos‐Oliveira M, Liu H, Mano JF, Bouvy N, Moroni L. 3D printed dual‐porosity scaffolds: the combined effect of stiffness and porosity in the modulation of macrophage polarization. Adv Healthc Mater. 2021;11(1). doi: 10.1002/adhm.202101415
  15. Sridharan R, Cavanagh B, Cameron AR, Kelly DJ, O’Brien FJ. Material stiffness influences the polarization state, function and migration mode of macrophages. Acta Biomater. 2019;89:47-59. doi: 10.1016/j.actbio.2019.02.048
  16. Previtera ML, Sengupta A. Substrate stiffness regulates proinflammatory mediator production through TLR4 Activity in macrophages. PLoS One. 2015;10(12): e0145813. doi: 10.1371/journal.pone.0145813
  17. He H, Xiao Z, Zhou Y, et al. Zwitterionic poly(sulfobetaine methacrylate) hydrogels with optimal mechanical properties for improving wound healing in vivo. J Mater Chem B. 2019;7(10):1697-1707. doi: 10.1039/c8tb02590h
  18. Xing X, Wang Y, Zhang X, et al. Matrix stiffness‐mediated effects on macrophages polarization and their LOXL2 expression. FEBS J. 2020;288(11):3465-3477. doi: 10.1111/febs.15566 
  19. Chen M, Zhang Y, Zhou P, et al. Substrate stiffness modulates bone marrow-derived macrophage polarization through NF-kappaB signaling pathway. Bioact Mater. 2020;5(4):880-890. doi: 10.1016/j.bioactmat.2020.05.004
  20. Ng WL, Huang X, Shkolnikov V, Suntornnond R, Yeong WY. Polyvinylpyrrolidone-based bioink: influence of bioink properties on printing performance and cell proliferation during inkjet-based bioprinting. Bio-Des Manuf. 2023;6(6):676-690. doi: 10.1007/s42242-023-00245-3
  21. Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials. Chem Rev. 2020;120(19):10793-10833. doi: 10.1021/acs.chemrev.0c00008
  22. Chartrain NA, Williams CB, Whittington AR. A review on fabricating tissue scaffolds using vat photopolymerization. Acta Biomater. 2018;2018(74):90-111. doi: 10.1016/j.actbio.2018.05.010
  23. Ramesh S, Harrysson OLA, Rao PK, et al. Extrusion bioprinting: recent progress, challenges, and future opportunities. Bioprinting. 2021;21. doi: 10.1016/j.bprint.2020.e00116
  24. Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev. 2018;132:296-332. doi: 10.1016/j.addr.2018.07.004
  25. Labowska MB, Cierluk K, Jankowska AM, Kulbacka J, Detyna J, Michalak I. A review on the adaption of alginate-gelatin hydrogels for 3D cultures and bioprinting. Materials. 2021;14(4). doi: 10.3390/ma14040858
  26. Jorgensen AM, Yoo JJ, Atala A. Solid organ bioprinting: strategies to achieve organ function. Chem Rev. 2020;120(19):11093-11127. doi: 10.1021/acs.chemrev.0c00145
  27. Giuseppe MD, Law N, Webb B, et al. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. J Mech Behav Biomed Mater. 2018;79:150-157. doi: 10.1016/j.jmbbm.2017.12.018
  28. Liu Y, Li Z, Li J, et al. Stiffness-mediated mesenchymal stem cell fate decision in 3D-bioprinted hydrogels. Burns Trauma. 2020;8. doi: 10.1093/burnst/tkaa029
  29. Liang L, Li Z, Yao B, et al. Extrusion bioprinting of cellular aggregates improves mesenchymal stem cell proliferation and differentiation. Biomater Adv. 2023;149:213369. doi: 10.1016/j.bioadv.2023.213369
  30. Yu X, Wang Y, Zhang M, et al. 3D printing of gear-inspired biomaterials: immunomodulation and bone regeneration. Acta Biomater. 2023;156:222-233. doi: 10.1016/j.actbio.2022.09.008
  31. Rastogi P, Kandasubramanian B. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication. 2019;11(4). doi: 10.1088/1758-5090/ab331e
  32. Li J, Zhang Y, Enhe J, et al. Bioactive nanoparticle reinforced alginate/gelatin bioink for the maintenance of stem cell stemness. Mater Sci Eng C Mater Biol Appl. 2021;126:112193. doi: 10.1016/j.msec.2021.112193
  33. Wang X, Ji L, Wang J, Liu C. Matrix stiffness regulates osteoclast fate through integrin-dependent mechanotransduction. Bioact Mater. 2023;27:138-153. doi: 10.1016/j.bioactmat.2023.03.014
  34. Yi H-G, Kim H, Kwon J, Choi Y-J, Jang J, Cho D-W. Application of 3D bioprinting in the prevention and the therapy for human diseases. Signal Transduct Target Ther. 2021;6(1). doi: 10.1038/s41392-021-00566-8
  35. Di X, Gao X, Peng L, et al. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther. 2023;8(1):282. doi: 10.1038/s41392-023-01501-9
  36. Eppler HB, Jewell CM. Biomaterials as tools to decode immunity. Adv Mater. 2019;32(13). doi: 10.1002/adma.201903367 
  37. Bialik-Was K, Krolicka E, Malina D. Impact of the type of crosslinking agents on the properties of modified sodium alginate/poly(vinyl alcohol) hydrogels. Molecules. 2021;26(8). doi: 10.3390/molecules26082381
  38. Meli VS, Atcha H, Veerasubramanian PK, et al. YAP-mediated mechanotransduction tunes the macrophage inflammatory response. Sci Adv. 2020;6(49):eabb8471. doi: 10.1126/sciadv.abb8471
  39. Hsieh JY, Keating MT, Smith TD, et al. Matrix crosslinking enhances macrophage adhesion, migration, and inflammatory activation. APL Bioeng. 2019;3(1):016103. doi: 10.1063/1.5067301
  40. Sadtler K, Wolf MT, Ganguly S, et al. Divergent immune responses to synthetic and biological scaffolds. Biomaterials. 2019;192:405-415. doi: 10.1016/j.biomaterials.2018.11.002
  41. Wang D, Zhang S, Li L, Liu X, Mei K, Wang X. Structural insights into the assembly and activation of IL-1beta with its receptors. Nat Immunol. 2010;11(10):905-911. doi: 10.1038/ni.1925
  42. Bogdan C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol. 2015;36(3): 161-178. doi: 10.1016/j.it.2015.01.003
  43. Amarante-Mendes GP, Adjemian S, Branco LM, Zanetti LC, Weinlich R, Bortoluci KR. Pattern recognition receptors and the host cell death molecular machinery. Front Immunol. 2018;9:2379. doi: 10.3389/fimmu.2018.02379
  44. Shekarian T, Valsesia-Wittmann S, Brody J, et al. Pattern recognition receptors: immune targets to enhance cancer immunotherapy. Ann Oncol. 2017;28(8):1756-1766. doi: 10.1093/annonc/mdx179
  45. Kim HJ, Kim H, Lee JH, Hwangbo C. Toll-like receptor 4 (TLR4): new insight immune and aging. Immun Ageing. 2023;20(1):67. doi: 10.1186/s12979-023-00383-3
  46. Brubaker SW, Bonham KS, Zanoni I, Kagan JC. Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol. 2015;33:257-290. doi: 10.1146/annurev-immunol-032414-112240
  47. Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-kappaB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther. 2020;5(1):209. doi: 10.1038/s41392-020-00312-6
  48. Banerjee S, Biehl A, Gadina M, Hasni S, Schwartz DM. JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs. 2017;77(5):521-546. doi: 10.1007/s40265-017-0701-9
  49. Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther. 2021;6(1):402. doi: 10.1038/s41392-021-00791-1
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing