AccScience Publishing / IJB / Volume 12 / Issue 1 / DOI: 10.36922/IJB025440447
REVIEW ARTICLE

Extracellular matrix-inspired 4D SMART biomaterials for bioprinting in tissue engineering

Ryan Martin1 Haiwei Zhai2 Daehoon Han3 Fanben Meng2,4* Daeha Joung1,5*
Show Less
1 Department of Physics, College of Humanities and Sciences, Virginia Commonwealth University, Richmond, Virginia, United States
2 Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
3 School of Chemical Engineering, Chonnam National University, Gwangju, Republic of Korea
4 Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, Nebraska, United States
5 Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States
IJB 2026, 12(1), 225–261; https://doi.org/10.36922/IJB025440447
Received: 29 October 2025 | Accepted: 26 December 2025 | Published online: 12 January 2026
(This article belongs to the Special Issue Multidisciplinary Efforts in Bioprinting)
© 2026 by the Author(s).. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Tissue development and regeneration arise from a dynamic interplay among cells, the extracellular matrix (ECM), and surrounding biophysical and biochemical cues. These interactions form the basis for stimuli-responsive materials for advanced regenerative technologies (SMART) that drive innovation in four-dimensional (4D) bioprinting for tissue engineering. This review discusses the biophysical foundations of SMART materials, emphasizing native ECM components, their interactions, and organ-specific properties that inform biomimetic material design. We highlight recent advances in 4D SMART systems, including ionic self-healing, pH-, thermal-, hydration-, and magneto-responsive materials, and their roles in mimicking developmental and regenerative processes. This is followed by a comparative overview of these stimuli-responsive material classes, benchmarked against one another, native ECM performance, and clinical translation requirements, revealing persistent gaps in long-term stability, multi-stimuli integration, and regulatory feasibility. Together, these insights provide an interdisciplinary framework for designing adaptive, responsive biomaterials that guide tissue morphogenesis and advance the future of regenerative medicine.

Graphical abstract
Keywords
Biomaterials
Extracellular matrix
Four-dimensional bioprinting
Four-dimensional tissue engineering
Regenerative medicine
Stimuli-responsive materials
Funding
This research was supported by the Commonwealth Health Research Board (236-08-21); the National Institutes of Health, under the National Institute of General Medical Sciences grant (P20GM113126); the American Cancer Society (IRG-22-146-07-IRG); National Institutes of Health, under the National Cancer Institute grant (CA036727), the Nexus of Virology, Immunology, and Bioengineering; the Nebraska Tobacco Settlement Biomedical Research Development Funds; the “Regional Innovation System & Education (RISE)” program, through the Gwangju RISE Center, funded by the Ministry of Education and the Gwangju Metropolitan Government, Republic of Korea (2025-RISE-05-011).
Conflict of interest
Fanben Meng and Daeha Joung serve as the guest editors of this Special Issue, but did not in any way involve in the editorial and peer-review process conducted for this paper, directly or indirectly. Other authors declare they have no competing interests.
References
  1. Crossley RM, Johnson S, Tsingos E, et al. Modeling the extracellular matrix in cell migration and morphogenesis: a guide for the curious biologist. Front Cell Dev Biol. 2024;12:1354132. doi: 10.3389/fcell.2024.1354132
  2. Martin R, Joung D. The promise and challenges of bioprinting in tissue engineering. Micromachines. 2024;15(12):1529. doi: 10.3390/mi15121529
  3. Lu P, Ruan D, Huang M, et al. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther. 2024;9(1):166. doi: 10.1038/s41392-024-01852-x
  4. Dethe MR, Prabakaran A, Ahmed H, Agrawal M, Roy U, Alexander A. PCL-PEG copolymer based injectable thermosensitive hydrogels. J Control Release. 2022;343:217-236. doi: 10.1016/j.jconrel.2022.01.035
  5. Doberenz F, Zeng K, Willems C, Zhang K, Groth T. Thermoresponsive polymers and their biomedical application in tissue engineering – a review. J Mater Chem B. 2020;8(4):607-628. doi: 10.1039/C9TB02052G
  6. Pei Y, Chen J, Yang L, et al. The effect of pH on the LCST of poly(N-isopropylacrylamide) and poly(N-isopropylacrylamide-co-acrylic acid). J Biomat Sci Polymer Edn. 2004;15(5):585-594. doi: 10.1163/156856204323046852
  7. Correa S, Grosskopf AK, Lopez Hernandez H, et al. Translational applications of hydrogels. Chem Rev. 2021;121(18):11385-11457. doi: 10.1021/acs.chemrev.0c01177
  8. Taylor S, Mueller E, Jones LR, Makela AV, Ashammakhi N. Translational aspects of 3D and 4D printing and bioprinting. Adv Healthc Mater. 2024;13(27):2400463. doi: 10.1002/adhm.202400463
  9. Cao H, Duan L, Zhang Y, Cao J, Zhang K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct Target Ther. 2021;6(1):426. doi: 10.1038/s41392-021-00830-x
  10. Di X, Gao X, Peng L, et al. Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduct Target Ther. 2023;8(1):282. doi: 10.1038/s41392-023-01501-9
  11. Ambattu LA, Yeo LY. Sonomechanobiology: vibrational stimulation of cells and its therapeutic implications. Biophys Rev. 2023;4(2):021301. doi: 10.1063/5.0127122
  12. Arif ZU, Khalid MY, Ahmed W, Arshad H. A review on four-dimensional (4D) bioprinting in pursuit of advanced tissue engineering applications. Bioprinting. 2022;27:e00203. doi: 10.1016/j.bprint.2022.e00203
  13. Zhou W, Chen Y, Roh T, et al. Multifunctional bioreactor system for human intestine tissues. ACS Biomater Sci Eng. 2018;4(1):231-239. doi: 10.1021/acsbiomaterials.7b00794
  14. Williamson A, Khoshmanesh K, Pirogova E, et al. Bioreactors: a regenerative approach to skeletal muscle engineering for repair and replacement. Adv Nanobiomed Res. 2024;4(10):2400030. doi: 10.1002/anbr.202400030
  15. Yarali E, Mirzaali MJ, Ghalayaniesfahani A, Accardo A, Diaz‐Payno PJ, Zadpoor AA. 4D printing for biomedical applications. Adv Mater. 2024;36(31):2402301. doi: 10.1002/adma.202402301
  16. Wang J, Wang Y, Wang R, et al. A review on 3D printing processes in pharmaceutical engineering and tissue engineering: applications, trends and challenges. Adv Mater Technol. 2025;10(2):2400620. doi: 10.1002/admt.202400620
  17. Joung D, Lavoie NS, Guo S, Park SH, Parr AM, McAlpine MC. 3D printed neural regeneration devices. Adv Funct Mater. 2020;30(1):1906237. doi: 10.1002/adfm.201906237
  18. Li YC, Zhang YS, Akpek A, Shin SR, Khademhosseini A. 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials. Biofabrication. 2016;9(1):012001. doi: 10.1088/1758-5090/9/1/012001
  19. Michael PL, Lam YT, Mitchell TC, et al. Harnessing physiological shear stress in a perfusion bioreactor for enhanced endothelialization of small‐diameter vascular grafts. Adv Nanobiomed Res. 2025;5:2500025. doi: 10.1002/anbr.202500025
  20. Mierke CT. Viscoelasticity, like forces, plays a role in mechanotransduction. Front Cell Dev Biol. 2022;10:789841. doi: 10.3389/fcell.2022.789841
  21. Asadi Tokmedash M, Kim C, Chavda AP, Li A, Robins J, Min J. Engineering multifunctional surface topography to regulate multiple biological responses. Biomaterials. 2025;319:123136. doi: 10.1016/j.biomaterials.2025.123136
  22. Özkale B, Sakar MS, Mooney DJ. Active biomaterials for mechanobiology. Biomaterials. 2021;267:120497. doi: 10.1016/j.biomaterials.2020.120497
  23. Kayser LV, Lipomi DJ. Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv Mater. 2019;31(10):1806133. doi: 10.1002/adma.201806133
  24. Bryan AE, Krutko M, Rebholz S, et al. Development of a bioactive, piezoelectric PVDF-TrFE scaffold with evaluation of tissue reaction for potential in nerve repair. Biomater Sci. 2025;13(20):5769-5785. doi: 10.1039/D5BM01054C
  25. Mariano A, Lubrano C, Bruno U, Ausilio C, Dinger NB, Santoro F. Advances in cell-conductive polymer biointerfaces and role of the plasma membrane. Chem Rev. 2022;122(4):4552-4580. doi: 10.1021/acs.chemrev.1c00363
  26. Tonti OR, Larson H, Lipp SN, et al. Tissue-specific parameters for the design of ECM-mimetic biomaterials. Acta Biomater. 2021;132:83-102. doi: 10.1016/j.actbio.2021.04.017
  27. Valdoz JC, Johnson BC, Jacobs DJ, et al. The ECM: to scaffold, or not to scaffold, that is the question. Int J Mol Sci. 2021;22(23):12690. doi: 10.3390/ijms222312690
  28. Rahmati M, Silva EA, Reseland JE, A. Heyward C, Haugen HJ. Biological responses to physicochemical properties of biomaterial surface. Chem Soc Rev. 2020;49(15):5178-5224. doi: 10.1039/D0CS00103A
  29. Yamada KM, Doyle AD, Lu J. Cell–3D matrix interactions: recent advances and opportunities. Trends Cell Biol. 2022;32(10):883-895. doi: 10.1016/j.tcb.2022.03.002
  30. Hervé S, Miroshnikova YA. Biophysical determinants of nuclear shape and mechanics and their implications for genome integrity. Curr Opin Biomed Eng. 2024;30:100521. doi: 10.1016/j.cobme.2024.100521
  31. Miroshnikova YA, Wickström SA. Mechanical forces in nuclear organization. Cold Spring Harb Perspect Biol. 2022;14(1):a039685. doi: 10.1101/cshperspect.a039685
  32. Vermeulen S, Honig F, Vasilevich A, et al. Expanding biomaterial surface topographical design space through natural surface reproduction. Adv Mater. 2021;33(31):2102084. doi: 10.1002/adma.202102084
  33. Comelles J, Fernández-Majada V, Acevedo V, Rebollo- Calderon B, Martínez E. Soft topographical patterns trigger a stiffness-dependent cellular response to contact guidance. Mater Today Bio. 2023;19:100593. doi: 10.1016/j.mtbio.2023.100593
  34. Min K, Karuppannan SK, Tae G. The impact of matrix stiffness on hepatic cell function, liver fibrosis, and hepatocellular carcinoma-based on quantitative data. Biophys Rev. 2024;5(2):021306. doi: 10.1063/5.0197875
  35. Elosegui-Artola A, Gupta A, Najibi AJ, et al. Matrix viscoelasticity controls spatiotemporal tissue organization. Nat Mater. 2023;22(1):117-127. doi: 10.1038/s41563-022-01400-4
  36. Wu Y, Song Y, Soto J, et al. Viscoelastic extracellular matrix enhances epigenetic remodeling and cellular plasticity. Nat Commun. 2025;16(1):4054. doi: 10.1038/s41467-025-59190-7
  37. Wan S, Chen Y, Huang C, et al. Scalable ultrastrong MXene films with superior osteogenesis. Nature. 2024;634(8036):1103-1110. doi: 10.1038/s41586-024-08067-8
  38. Cheng Y, Wang Y, Wang Y, et al. Microenvironment-feedback regulated hydrogels as living wound healing materials. Nat Commun. 2025;16(1):6050. doi: 10.1038/s41467-025-60858-3
  39. Zhang C, Cai D, Liao P, et al. 4D printing of shape-memory polymeric scaffolds for adaptive biomedical implantation. Acta Biomater. 2021;122:101-110. doi: 10.1016/j.actbio.2020.12.042
  40. Benwood C, Chrenek J, Kirsch RL, et al. Natural biomaterials and their use as bioinks for printing tissues. Bioengineering. 2021;8(2):27. doi: 10.3390/bioengineering8020027
  41. Chen XB, Fazel Anvari-Yazdi A, Duan X, et al. Biomaterials/ bioinks and extrusion bioprinting. Bioact Mater. 2023;28:511-536. doi: 10.1016/j.bioactmat.2023.06.006
  42. Carvalho EM, Kumar S. Lose the stress: viscoelastic materials for cell engineering. Acta Biomater. 2023;163:146-157. doi: 10.1016/j.actbio.2022.03.058
  43. Fonseca AC, Melchels FP, Ferreira MJ, et al. Emulating human tissues and organs: a bioprinting perspective toward personalized medicine. Chem Rev. 2020;120(19):11093-11139. doi: 10.1021/acs.chemrev.0c00342
  44. Khalid MY, Otabil A, Mamoun OS, Askar K, Bodaghi M. Transformative 4D printed SMPs into soft electronics and adaptive structures: innovations and practical insights. Adv Mater Technol. 2025;10(19):e00309. doi: 10.1002/admt.202500309
  45. Mirasadi K, Yousefi MA, Jin L, et al. 4D printing of magnetically responsive shape memory polymers: toward sustainable solutions in soft robotics, wearables, and biomedical devices. Adv Sci. 2025:e13091. doi: 10.1002/advs.202513091
  46. Zhang W, Liu Y, Zhang H. Extracellular matrix: an important regulator of cell functions and skeletal muscle development. Cell Biosci. 2021;11(1):65. doi: 10.1186/s13578-021-00579-4
  47. Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326(5957):1216-1219. doi: 10.1126/science.1176009
  48. Zhang S-y, Li X-y, Yang N, et al. Electrospun collagen nanofibers reduce inflammation, inhibit fibrosis, and promote wound healing on the ocular surface. ACS Appl Nano Mater. 2024;7(17):20267-20278. doi: 10.1021/acsanm.4c03180
  49. Orr SB, Chainani A, Hippensteel KJ, et al. Aligned multilayered electrospun scaffolds for rotator cuff tendon tissue engineering. Acta Biomater. 2015;24:117-126. doi: 10.1016/j.actbio.2015.06.010
  50. Kim HN, Jiao A, Hwang NS, et al. Nanotopography-guided tissue engineering and regenerative medicine. Adv Drug Deliv Rev. 2013;65(4):536-558. doi: 10.1016/j.addr.2012.07.014
  51. Putra VDL, Kilian KA, Knothe Tate ML. Biomechanical, biophysical and biochemical modulators of cytoskeletal remodelling and emergent stem cell lineage commitment. Commun Biol. 2023;6(1):75. doi: 10.1038/s42003-022-04320-w
  52. Pike DB, Cai S, Pomraning KR, et al. Heparin-regulated release of growth factors in vitro and angiogenic response in vivo to implanted hyaluronan hydrogels containing VEGF and bFGF. Biomaterials. 2006;27(30):5242-5251. doi: 10.1016/j.biomaterials.2006.05.018
  53. Zhao T, Huang Y, Zhu J, et al. Extracellular matrix signaling cues: biological functions, diseases, and therapeutic targets. MedComm. 2025;6(8):e70281. doi: 10.1002/mco2.70281
  54. Karamanos NK, Theocharis AD, Piperigkou Z, et al. A guide to the composition and functions of the extracellular matrix. FEBS J. 2021;288(24):6850-6912. doi: 10.1111/febs.15776
  55. Nicolas J, Magli S, Rabbachin L, Sampaolesi S, Nicotra F, Russo L. 3D extracellular matrix mimics: fundamental concepts and role of materials chemistry to influence stem cell fate. Biomacromolecules. 2020;21(6):1968-1994. doi: 10.1021/acs.biomac.0c00045
  56. Liu C, Pei M, Li Q, Zhang Y. Decellularized extracellular matrix mediates tissue construction and regeneration. Front Med. 2022;16(1):56-82. doi: 10.1007/s11684-021-0900-3
  57. Zhang X, Chen X, Hong H, Hu R, Liu J, Liu C. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioact Mater. 2022;10:15-31. doi: 10.1016/j.bioactmat.2021.09.014
  58. Xie R, Yu X, Cao T, et al. Fibrous viscoelastic extracellular matrix assists precise neuronal connectivity. Adv Funct Mater. 2023;33(36):2301926. doi: 10.1002/adfm.202301926
  59. Karsdal MA, ed. Biochemistry of Collagens, Laminins and Elastin: Structure, Function and Biomarkers. 3rd ed. London. United Kingdom: Academic Press. An imprint of Elsevier; 2024.
  60. Wang Z, Liu H, Luo W, et al. Regeneration of skeletal system with genipin crosslinked biomaterials. J Tissue Eng. 2020;11:2041731420974861. doi: 10.1177/2041731420974861
  61. Despanie J, Dhandhukia JP, Hamm-Alvarez SF, MacKay JA. Elastin-like polypeptides: Therapeutic applications for an emerging class of nanomedicines. J Control Release 2016;240:93-108. doi: 10.1016/j.jconrel.2015.11.010
  62. Wang K, Meng X, Guo Z. Elastin structure, synthesis, regulatory mechanism and relationship with cardiovascular Diseases. Front Cell Dev Biol. 2021;9:596702. doi: 10.3389/fcell.2021.596702
  63. Dai X, Wu D, Xu K, Ming P, Cao S, Yu L. Viscoelastic mechanics: from pathology and cell fate to tissue regeneration biomaterial development. ACS Appl Mater Interfaces. 2025;17(6):8751-8770. doi: 10.1021/acsami.4c18174
  64. Tillman BW, Yazdani SK, Lee SJ, Geary RL, Atala A, Yoo JJ. The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction. Biomaterials. 2009;30(4):583-588. doi: 10.1016/j.biomaterials.2008.10.006
  65. Shao Y, Fu J. Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: a materials perspective. Adv Mater. 2014;26(10):1494-1533. doi: 10.1002/adma.201304431
  66. Cavalcanti‐Adam EA, Aydin D, Hirschfeld‐Warneken VC, Spatz JP. Cell adhesion and response to synthetic nanopatterned environments by steering receptor clustering and spatial location. HFSP J. 2008;2(5):276-285. doi: 10.2976/1.2976662
  67. Longstreth JH, Wang K. The role of fibronectin in mediating cell migration. Am J Physiol Cell Physiol. 2024;326(4):C1212-C1225. doi: 10.1152/ajpcell.00633.2023
  68. Parisi L, Toffoli A, Ghezzi B, Mozzoni B, Lumetti S, Macaluso GM. A glance on the role of fibronectin in controlling cell response at biomaterial interface. J Dent Sci Rev. 2020;56(1):50-55. doi: 10.1016/j.jdsr.2019.11.002
  69. Kupfer ME, Lin WH, Ravikumar V, et al. In situ expansion, differentiation, and electromechanical coupling of human cardiac muscle in a 3D bioprinted, chambered organoid. Circ Res. 2020;127(2):207-224. doi: 10.1161/CIRCRESAHA.119.316155
  70. Ahn S, Jain A, Kasuba KC, et al. Engineering fibronectin-templated multi-component fibrillar extracellular matrices to modulate tissue-specific cell response. Biomaterials. 2024;308:122560. doi: 10.1016/j.biomaterials.2024.122560
  71. Oliver‐Cervelló L, Martin‐Gómez H, Mas‐Moruno C. New trends in the development of multifunctional peptides to functionalize biomaterials. J Pept Sci. 2022;28(1):e3335. doi: 10.1002/psc.3335
  72. Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24(24):4385-4415. doi: 10.1016/S0142-9612(03)00343-0
  73. Xu X, Jha AK, Harrington DA, Farach-Carson MC, Jia X. Hyaluronic acid-based hydrogels: from a natural polysaccharide to complex networks. Soft Matter. 2012;8(12):3280. doi: 10.1039/c2sm06463d
  74. Bellis SL. Advantages of RGD peptides for directing cell association with biomaterials. Biomaterials. 2011;32(18):4205-4210. doi: 10.1016/j.biomaterials.2011.02.029
  75. Miner JH, Yurchenco PD. Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol. 2004;20(1):255-284. doi: 10.1146/annurev.cellbio.20.010403.094555
  76. Mota C, Camarero-Espinosa S, Baker MB, Wieringa P, Moroni L. Bioprinting: from tissue and organ development to in vitro models. Chem Rev. 2020;120(19):10547-10607. doi: 10.1021/acs.chemrev.9b00789
  77. He L, Liao S, Quan D, et al. The influence of laminin-derived peptides conjugated to Lys-capped PLLA on neonatal mouse cerebellum C17.2 stem cells. Biomaterials. 2009;30(8):1578-1586. doi: 10.1016/j.biomaterials.2008.12.020
  78. Penton CM, Badarinarayana V, Prisco J, et al. Laminin 521 maintains differentiation potential of mouse and human satellite cell-derived myoblasts during long-term culture expansion. Skelet Muscle. 2016;6(1):44. doi: 10.1186/s13395-016-0116-4
  79. Aisenbrey EA, Murphy WL. Synthetic alternatives to matrigel. Nat Rev Mater. 2020;5(7):539-551. doi: 10.1038/s41578-020-0199-8
  80. Speer JE, Barcellona MN, Lu MY, et al. Development of a library of laminin-mimetic peptide hydrogels for control of nucleus pulposus cell behaviors. J Tissue Eng. 2021;12:20417314211021220. doi: 10.1177/20417314211021220
  81. Adams JC. Thrombospondins: conserved mediators and modulators of metazoan extracellular matrix. Int J Exp Pathol. 2024;105(5):136-169. doi: 10.1111/iep.12517
  82. Calabro NE, Kristofik NJ, Kyriakides TR. Thrombospondin-2 and extracellular matrix assembly. Biochim Biophys Acta. 2014;1840(8):2396-2402. doi: 10.1016/j.bbagen.2014.01.013
  83. Calabro NE, Barrett A, Chamorro-Jorganes A, et al. Thrombospondin-2 regulates extracellular matrix production, LOX levels, and cross-linking via downregulation of miR-29. Matrix Biol. 2019;82:71-85. doi: 10.1016/j.matbio.2019.03.002
  84. Bornstein P, Kyriakides TR, Yang Z, Armstrong LC, Birk DE. Thrombospondin 2 modulates collagen fibrillogenesis and angiogenesis. J Investig Dermatol Symp Proc. 2000;5(1):61-66. doi: 10.1046/j.1087-0024.2000.00005.x
  85. Xu ZY, Wang M, Shi JY, et al. Engineering a dynamic extracellular matrix using thrombospondin-1 to propel hepatocyte organoids reprogramming and improve mouse liver regeneration post-transplantation. Mater Today Bio. 2025;32:101700. doi: 10.1016/j.mtbio.2025.101700
  86. Kyriakides TR, MacLauchlan S. The role of thrombospondins in wound healing, ischemia, and the foreign body reaction. J Cell Commun Signal. 2009;3(3-4):215-225. doi: 10.1007/s12079-009-0077-z
  87. Chen D, Smith LR, Khandekar G, et al. Distinct effects of different matrix proteoglycans on collagen fibrillogenesis and cell-mediated collagen reorganization. Sci Rep. 2020;10(1):19065. doi: 10.1038/s41598-020-76107-0
  88. Iozzo RV, Schaefer L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 2015;42:11-55. doi: 10.1016/j.matbio.2015.02.003
  89. Schönherr E, Hausser HJ. Extracellular matrix and cytokines: a functional unit. J Immunol Res. 2000;7(2-4):89-101. doi: 10.1155/2000/31748
  90. Nguyen M, Panitch A. Proteoglycans and proteoglycan mimetics for tissue engineering. Am J Physiol Cell Physiol. 2022;322(4):C754-C761. doi: 10.1152/ajpcell.00442.2021
  91. Wei H, Cui J, Lin K, Xie J, Wang X. Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration. Bone Res. 2022;10(1):17. doi: 10.1038/s41413-021-00180-y
  92. Perez S, Makshakova O, Angulo J, et al. Glycosaminoglycans: what remains to be deciphered? JACS Au. 2023;3(3):628-656. doi: 10.1021/jacsau.2c00569
  93. Wang Z, Wang Z, Lu WW, Zhen W, Yang D, Peng S. Novel biomaterial strategies for controlled growth factor delivery for biomedical applications. NPG Asia Mater. 2017;9(10):e435-e435. doi: 10.1038/am.2017.171
  94. Kempen DHR, Lu L, Heijink A, et al. Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration. Biomaterials. 2009;30(14):2816-2825. doi: 10.1016/j.biomaterials.2009.01.031
  95. Riley LA, Merryman WD. Cadherin-11 and cardiac fibrosis: a common target for a common pathology. Cell Signal. 2021;78:109876. doi: 10.1016/j.cellsig.2020.109876
  96. Koirala R, Priest AV, Yen CF, et al. Inside-out regulation of E-cadherin conformation and adhesion. Proc Natl Acad Sci U S A. 2021;118(30):e2104090118. doi: 10.1073/pnas.2104090118
  97. Hassan M, Mohanty AK, Wang T, Dhakal HN, Misra M. Current status and future outlook of 4D printing of polymers and composites—a prospective. Compos Part C Open Access. 2025;17:100602. doi: 10.1016/j.jcomc.2025.100602
  98. Daamen W, Veerkamp J, Vanhest J, Vankuppevelt T. Elastin as a biomaterial for tissue engineering. Biomaterials. 2007;28(30):4378-4398. doi: 10.1016/j.biomaterials.2007.06.025
  99. Zhu D, Wang H, Trinh P, Heilshorn SC, Yang F. Elastin-like protein-hyaluronic acid (ELP-HA) hydrogels with decoupled mechanical and biochemical cues for cartilage regeneration. Biomaterials. 2017;127:132-140. doi: 10.1016/j.biomaterials.2017.02.010
  100. Wang H, Zhu D, Paul A, et al. Covalently adaptable elastin‐like protein–hyaluronic acid (ELP–HA) hybrid hydrogels with secondary thermoresponsive crosslinking for injectable stem cell delivery. Adv Funct Mater. 2017;27(28):1605609. doi: 10.1002/adfm.201605609
  101. Sugawara-Narutaki A, Nakamura J, Ohtsuki C. Elastin-like hydrogels as tissue regeneration scaffolds. In: Hydrogels for Tissue Engineering and Regenerative Medicine. Amsterdam, Netherlands: Elsevier; 2024:65-77. doi: 10.1016/B978-0-12-823948-3.00018-X
  102. Nguyen LT, Odeleye AO, Chui C, Baudequin T, Cui Z, Ye H. Development of thermo-responsive polycaprolactone macrocarriers conjugated with poly(N-isopropyl acrylamide) for cell culture. Sci Rep. 2019;9(1):3477. doi: 10.1038/s41598-019-40242-0
  103. Trujillo S, Gonzalez-Garcia C, Rico P, et al. Engineered 3D hydrogels with full-length fibronectin that sequester and present growth factors. Biomaterials. 2020;252:120104. doi: 10.1016/j.biomaterials.2020.120104
  104. Namgung S, Kim T, Baik KY, Lee M, Nam J, Hong S. Fibronectin–carbon‐nanotube hybrid nanostructures for controlled cell growth. Small. 2011;7(1):56-61. doi: 10.1002/smll.201001513
  105. Shiwarski DJ, Tashman JW, Tsamis A, et al. Fibronectin-based nanomechanical biosensors to map 3D surface strains in live cells and tissue. Nat Commun. 2020;11(1):5883. doi: 10.1038/s41467-020-19659-z
  106. Silva GA, Czeisler C, Niece KL, et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science. 2004;303(5662):1352-1355. doi: 10.1126/science.1093783
  107. Ishihara J, Ishihara A, Fukunaga K, et al. Laminin heparin-binding peptides bind to several growth factors and enhance diabetic wound healing. Nat Commun. 2018;9(1):2163. doi: 10.1038/s41467-018-04525-w
  108. Hayes AJ, Farrugia BL, Biose IJ, Bix GJ, Melrose J. Perlecan, a multi-functional, cell-instructive, matrix-stabilizing proteoglycan with roles in tissue development has relevance to connective tissue repair and regeneration. Front Cell Dev Biol. 2022;10:856261. doi: 10.3389/fcell.2022.856261
  109. Jha AK, Yang W, Kirn-Safran CB, Farach-Carson MC, Jia X. Perlecan domain I-conjugated, hyaluronic acid-based hydrogel particles for enhanced chondrogenic differentiation via BMP-2 release. Biomaterials. 2009;30(36): 6964-6975. doi: 10.1016/j.biomaterials.2009.09.009
  110. Kiani C, Chen L, Wu YJ, Yee AJ, Yang BB. Structure and function of aggrecan. Cell Res. 2002;12(1):19-32. doi: 10.1038/sj.cr.7290106
  111. Deng Z, Fan T, Xiao C, et al. TGF-β signaling in health, disease and therapeutics. Signal Transduct Target Ther. 2024;9(1):61. doi: 10.1038/s41392-024-01764-w
  112. Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res. 2015;3(1):15005. doi: 10.1038/boneres.2015.5
  113. Li Y, Liu Y, Bai H, et al. Sustained release of VEGF to promote angiogenesis and osteointegration of three-dimensional printed biomimetic titanium alloy implants. Front Bioeng Biotechnol. 2021;9:757767. doi: 10.3389/fbioe.2021.757767
  114. Schutte RJ, Xie L, Klitzman B, Reichert WM. In vivo cytokine-associated responses to biomaterials. Biomaterials. 2009;30(2):160-168. doi: 10.1016/j.biomaterials.2008.09.026
  115. Tu Z, Zhong Y, Hu H, et al. Design of therapeutic biomaterials to control inflammation. Nat Rev Mater. 2022;7(7): 557-574. doi: 10.1038/s41578-022-00426-z
  116. Barthel SR, Gavino JD, Descheny L, Dimitroff CJ. Targeting selectins and selectin ligands in inflammation and cancer. Expert Opin Ther Targets. 2007;11(11):1473-1491. doi: 10.1517/14728222.11.11.1473
  117. Pang X, He X, Qiu Z, et al. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther. 2023;8(1):1. doi: 10.1038/s41392-022-01259-6
  118. Hu M, Ling Z, Ren X. Extracellular matrix dynamics: tracking in biological systems and their implications. J Biol Eng. 2022;16(1):13. doi: 10.1186/s13036-022-00292-x
  119. Lu P, Weaver VM, Werb Z. The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol. 2012;196(4):395-406. doi: 10.1083/jcb.201102147
  120. Estrach S, Vivier CM, Féral CC. ECM and epithelial stem cells: the scaffold of destiny. Front Cell Dev Biol. 2024;12:1359585. doi: 10.3389/fcell.2024.1359585
  121. Kozyrina AN, Piskova T, Di Russo J. Mechanobiology of epithelia from the perspective of extracellular matrix heterogeneity. Front Bioeng Biotechnol. 2020;8:596599. doi: 10.3389/fbioe.2020.596599
  122. Pfisterer K, Shaw LE, Symmank D, Weninger W. The extracellular matrix in skin inflammation and infection. Front Cell Dev Biol. 2021;9:682414. doi: 10.3389/fcell.2021.682414
  123. Wagenseil JE, Mecham RP. Vascular extracellular matrix and arterial mechanics. Physiol Rev. 2009;89(3):957-989. doi: 10.1152/physrev.00041.2008
  124. Burgess JK, Weiss DJ, Westergren-Thorsson G, et al. Extracellular matrix as a driver of chronic lung diseases. Am J Respir Cell Mol Biol. 2024;70(4):239-246. doi: 10.1165/rcmb.2023-0176PS
  125. Del Monte-Nieto G, Fischer JW, Gorski DJ, Harvey RP, Kovacic JC. Basic biology of extracellular matrix in the cardiovascular system, part 1/4. J Am Coll Cardiol. 2020;75(17):2169-2188. doi: 10.1016/j.jacc.2020.03.024
  126. Luo Y, Li N, Chen H, et al. Spatial and temporal changes in extracellular elastin and laminin distribution during lung alveolar development. Sci Rep. 2018;8(1):8334. doi: 10.1038/s41598-018-26673-1
  127. Mura M, Binnie M, Han B, et al. Functions of type II pneumocyte-derived vascular endothelial growth factor in alveolar structure, acute inflammation, and vascular permeability. Am J Pathol. 2010;176(4):1725-1734. doi: 10.2353/ajpath.2010.090209
  128. Ahmed DW, Tan ML, Liu Y, et al. Local photocrosslinking of native tissue matrix regulates lung epithelial cell mechanosensing and function. Nat Mater. 2025;24:1812–1825. doi: 10.1038/s41563-025-02329-0
  129. Merrilees MJ, Ching PS, Beaumont B, Hinek A, Wight TN, Black PN. Changes in elastin, elastin binding protein and versican in alveoli in chronic obstructive pulmonary disease. Respir Res. 2008;9(1):41. doi: 10.1186/1465-9921-9-41
  130. Ye X, Gaucher JF, Vidal M, Broussy S. A structural overview of vascular endothelial growth factors pharmacological ligands: from macromolecules to designed peptidomimetics. Molecules. 2021;26(22):6759. doi: 10.3390/molecules26226759
  131. Csapo R, Gumpenberger M, Wessner B. Skeletal muscle extracellular matrix – what do we know about its composition, regulation, and physiological roles? A narrative review. Front Physiol. 2020;11:253. doi: 10.3389/fphys.2020.00253
  132. Takala TE, Virtanen P. Biochemical composition of muscle extracellular matrix: the effect of loading. Scand Med Sci Sports. 2000;10(6):321-325. doi: 10.1034/j.1600-0838.2000.010006321.x
  133. Gillies AR, Lieber RL. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve. 2011;44(3):318-331. doi: 10.1002/mus.22094
  134. Stern MM, Myers RL, Hammam N, et al. The influence of extracellular matrix derived from skeletal muscle tissue on the proliferation and differentiation of myogenic progenitor cells ex vivo. Biomaterials. 2009;30(12):2393-2399. doi: 10.1016/j.biomaterials.2008.12.069
  135. Wachsmuth L, Söder S, Fan Z, Finger F, Aigner T. Immunolocalization of matrix proteins in different human cartilage subtypes. Histol Histopathol. 2006;(21):477-485. doi: 10.14670/HH-21.477
  136. Han B, Li Q, Wang C, et al. Decorin regulates the aggrecan network integrity and biomechanical functions of cartilage extracellular matrix. ACS Nano. 2019;13(10):11320-11333. doi: 10.1021/acsnano.9b04477
  137. McKee TJ, Perlman G, Morris M, Komarova SV. Extracellular matrix composition of connective tissues: a systematic review and meta-analysis. Sci Rep. 2019;9(1):10542. doi: 10.1038/s41598-019-46896-0
  138. Vainieri ML, Lolli A, Kops N, et al. Evaluation of biomimetic hyaluronic-based hydrogels with enhanced endogenous cell recruitment and cartilage matrix formation. Acta Biomater. 2020;101:293-303. doi: 10.1016/j.actbio.2019.11.015
  139. Fontcuberta-Rigo M, Nakamura M, Puigbò P. Phylobone: a comprehensive database of bone extracellular matrix proteins in human and model organisms. Bone Res. 2023;11(1):44. doi: 10.1038/s41413-023-00281-w
  140. Qin L, Yang S, Zhao C, et al. Prospects and challenges for the application of tissue engineering technologies in the treatment of bone infections. Bone Res. 2024;12(1):28. doi: 10.1038/s41413-024-00332-w
  141. Hua R, Ni Q, Eliason TD, et al. Biglycan and chondroitin sulfate play pivotal roles in bone toughness via retaining bound water in bone mineral matrix. Matrix Biol. 2020;94:95-109. doi: 10.1016/j.matbio.2020.09.002
  142. Lewns FK, Tsigkou O, Cox LR, Wildman RD, Grover LM, Poologasundarampillai G. Hydrogels and bioprinting in bone tissue engineering: creating artificial stem‐cell niches for in vitro models. Adv Mater. 2023;35(52):2301670. doi: 10.1002/adma.202301670
  143. Silva AC, Pereira C, Fonseca ACRG, Pinto-do-Ó P, Nascimento DS. Bearing my heart: the role of extracellular matrix on cardiac development, homeostasis, and injury response. Front Cell Dev Biol. 2021;8:621644. doi: 10.3389/fcell.2020.621644
  144. Barallobre-Barreiro J, Loeys B, Mayr M, Rienks M, Verstraeten A, Kovacic JC. Extracellular matrix in vascular disease, part 2/4. J Am Coll Cardiol. 2020;75(17): 2189-2203. doi: 10.1016/j.jacc.2020.03.018
  145. El-Husseiny HM, Mady EA, El-Dakroury WA, Doghish AS, Tanaka R. Stimuli-responsive hydrogels: smart state of-the-art platforms for cardiac tissue engineering. Front Bioeng Biotechnol. 2023;11:1174075. doi: 10.3389/fbioe.2023.1174075
  146. Pohl U. Connexins: key players in the control of vascular plasticity and function. Physiol Rev. 2020;100(2): 525-572. doi: 10.1152/physrev.00010.2019
  147. Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev. 2023;103(2):1247-1421. doi: 10.1152/physrev.00053.2021
  148. Lee TT, García JR, Paez JI, et al. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials. Nat Mater. 2015;14(3):352-360. doi: 10.1038/nmat4157
  149. Amelung CD, Gerecht S. Cell–material interactions in vascular tissue engineering. Acc Mater Res. 2025;6(5):577-588. doi: 10.1021/accountsmr.4c00390
  150. Grigoryan B, Paulsen SJ, Corbett DC, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science. 2019;364(6439):458-464. doi: 10.1126/science.aav9750
  151. Suttkus A, Morawski M, Arendt T. Protective properties of neural extracellular matrix. Mol Neurobiol. 2016; 53(1):73-82. doi: 10.1007/s12035-014-8990-4
  152. Chelyshev YA, Kabdesh IM, Mukhamedshina YO. Extracellular matrix in neural plasticity and regeneration. Cell Mol Neurobiol. 2022;42(3):647-664. doi: 10.1007/s10571-020-00986-0
  153. Wareham LK, Baratta RO, Del Buono BJ, Schlumpf E, Calkins DJ. Collagen in the central nervous system: contributions to neurodegeneration and promise as a therapeutic target. Mol Neurodegener. 2024;19(1):11. doi: 10.1186/s13024-024-00704-0
  154. Weickenmeier J, De Rooij R, Budday S, Steinmann P, Ovaert TC, Kuhl E. Brain stiffness increases with myelin content. Acta Biomater. 2016;42:265-272. doi: 10.1016/j.actbio.2016.07.040
  155. Moshayedi P, Ng G, Kwok JC, et al. The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials. 2014;35(13):3919-3925. doi: 10.1016/j.biomaterials.2014.01.038
  156. Dityatev A, Schachner M, Sonderegger P. The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat Rev Neurosci. 2010;11(11):735-746. doi: 10.1038/nrn2898
  157. Lam D, Enright HA, Cadena J, et al. Tissue-specific extracellular matrix accelerates the formation of neural networks and communities in a neuron-glia co-culture on a multi-electrode array. Sci Rep. 2019;9(1):4159. doi: 10.1038/s41598-019-40128-1
  158. Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol. 2010;341(1):126-140. doi: 10.1016/j.ydbio.2009.10.026
  159. Muir VG, Burdick JA. Chemically modified biopolymers for the formation of biomedical hydrogels. Chem Rev. 2021;121(18):10908-10949. doi: 10.1021/acs.chemrev.0c00923
  160. Joyce K, Fabra GT, Bozkurt Y, Pandit A. Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduct Target Ther. 2021;6(1):122. doi: 10.1038/s41392-021-00512-8
  161. Liu B, Li H, Meng F, et al. 4D printed hydrogel scaffold with swelling-stiffening properties and programmable deformation for minimally invasive implantation. Nat Commun. 2024;15(1):1587. doi: 10.1038/s41467-024-45938-0
  162. Ni C, Chen D, Yin Y, et al. Shape memory polymer with programmable recovery onset. Nature. 2023;622(7984):748-753. doi: 10.1038/s41586-023-06520-8
  163. Wang XQ, Chan KH, Lu W, et al. Macromolecule conformational shaping for extreme mechanical programming of polymorphic hydrogel fibers. Nat Commun. 2022;13(1):3369. doi: 10.1038/s41467-022-31047-3
  164. Yao X, Chen H, Qin H, Wu QH, Cong HP, Yu SH. Solvent-adaptive hydrogels with lamellar confinement cellular structure for programmable multimodal locomotion. Nat Commun. 2024;15(1):9254. doi: 10.1038/s41467-024-53549-y
  165. Wang M, Zhang P, Shamsi M, et al. Tough and stretchable ionogels by in situ phase separation. Nat Mater. 2022;21(3):359-365. doi: 10.1038/s41563-022-01195-4
  166. Kim J, Choi H, Kim Y, Song S. Thermo‐responsive nanocomposite bioink with growth‐factor holding and its application to bone regeneration. Small. 2023;19(9): 2203464. doi: 10.1002/smll.202203464
  167. Parimita S, Kumar A, Krishnaswamy H, Ghosh P. 4D printing of pH-responsive bilayer with programmable shape-shifting behaviour. Eur Polym J. 2025;222:113581. doi: 10.1016/j.eurpolymj.2024.113581
  168. Liu J, Huang YS, Liu Y, et al. Reconfiguring hydrogel assemblies using a photocontrolled metallopolymer adhesive for multiple customized functions. Nat Chem. 2024;16(6):1024-1033. doi: 10.1038/s41557-024-01476-2
  169. Chiesa I, Esposito A, Vozzi G, Gottardi R, De Maria C. 4D bioprinted self‐folding scaffolds enhance cartilage formation in the engineering of trachea. Adv Mater Technol. 2025;10(6):2401210. doi: 10.1002/admt.202401210
  170. Zhou B, Zou Y, You H, Zhang B, Lu X. Preparation and evaluation of 4D‐printed poly(L‐lactic) acid/silk fibroin polymer blends with enhanced mechanical properties and water‐induced shape memory effects. Adv Eng Mater. 2025;27(7):2402496. doi: 10.1002/adem.202402496
  171. Lai J, Xiong T, Chen S, et al. Facile single‐nanocomposite 4D bioprinting of dynamic hydrogel constructs with thickness‐controlled gradient. Adv Sci. 2025;12:e09449. doi: 10.1002/advs.202509449
  172. Miao W, Zou W, Jin B, et al. On demand shape memory polymer via light regulated topological defects in a dynamic covalent network. Nat Commun. 2020;11(1):4257. doi: 10.1038/s41467-020-18116-1
  173. Zhang L, Huang X, Cole T, et al. 3D-printed liquid metal polymer composites as NIR-responsive 4D printing soft robot. Nat Commun. 2023;14(1):7815. doi: 10.1038/s41467-023-43667-4
  174. Matsuura K, Inaba H. Photoresponsive peptide materials: spatiotemporal control of self-assembly and biological functions. Biophys Rev. 2023;4(4):041303. doi: 10.1063/5.0179171
  175. Butenko S, Nagalla RR, Guerrero-Juarez CF, et al. Hydrogel crosslinking modulates macrophages, fibroblasts, and their communication, during wound healing. Nat Commun. 2024;15(1):6820. doi: 10.1038/s41467-024-50072-y
  176. McCracken JM, Rauzan BM, Kjellman JCE, Su H, Rogers SA, Nuzzo RG. Ionic hydrogels with biomimetic 4D‐printed mechanical gradients: models for soft‐bodied aquatic organisms. Adv Funct Mater. 2019;29(28):1806723. doi: 10.1002/adfm.201806723
  177. Díaz‐Payno PJ, Kalogeropoulou M, Muntz I, et al. Swelling‐dependent shape‐based transformation of a human mesenchymal stromal cells‐laden 4D bioprinted construct for cartilage tissue engineering. Adv Healthc Mater. 2023;12(2):2201891. doi: 10.1002/adhm.202201891
  178. Araújo-Custódio S, Gomez-Florit M, Tomás AR, et al. Injectable and magnetic responsive hydrogels with bioinspired ordered structures. ACS Biomater Sci Eng. 2019;5(3):1392-1404. doi: 10.1021/acsbiomaterials.8b01179
  179. Daul B, Martin R, Glass P, et al. 3D printed magnetic origami scaffolds for guided tissue assembly. Adv Mater Interfaces. 2025;12:2400903. doi: 10.1002/admi.202400903
  180. Zhang H, Hua S, He C, et al. Application of 4D‐printed magnetoresponsive fogs hydrogel scaffolds in auricular cartilage regeneration. Adv Healthc Mater. 2025;14(9):2404488. doi: 10.1002/adhm.202404488
  181. Rajan Unnithan A, Krishnamoorthi Kaliannagounder V, Rao Alluri N, Park CH, Veluswamy P, Ramachandra Kurup Sasikala A. Design and application of piezoelectric conductive smart scaffold for noninvasive neural tissue regeneration via custom‐made in vitro mechano‐stimulator. Adv Nanobiomed Res. 2025;5:2500058. doi: 10.1002/anbr.202500058
  182. Ebrahimi S, Khoomortezaei S, Fan J, et al. Conducting polymer coatings for bioelectronic arthroscopy probes. Adv Healthc Mater. 2025;27:e02269. doi: 10.1002/adhm.202502269
  183. Liu W, Zhao H, Zhang C, et al. In situ activation of flexible magnetoelectric membrane enhances bone defect repair. Nat Commun. 2023;14(1):4091. doi: 10.1038/s41467-023-39744-3
  184. Yuan Y, Raheja K, Milbrandt NB, et al. Thermoresponsive polymers with LCST transition: synthesis, characterization, and their impact on biomedical frontiers. RSC Appl Polym. 2023;1(2):158-189. doi: 10.1039/D3LP00114H
  185. Qiao SL, Mamuti M, An HW, Wang H. Thermoresponsive polymer assemblies: from molecular design to theranostics application. Prog Polym Sci. 2022;131:101578. doi: 10.1016/j.progpolymsci.2022.101578
  186. Frazar EM, Shah RA, Dziubla TD, Hilt JZ. Multifunctional temperature‐responsive polymers as advanced biomaterials and beyond. J Appl Polym Sci. 2020;137(25):48770. doi: 10.1002/app.48770
  187. Heskins M, Guillet JE. Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Part A. 1968;2(8):1441-1455. doi: 10.1080/10601326808051910
  188. Tang Z, Okano T. Recent development of temperature-responsive surfaces and their application for cell sheet engineering. Regen Biomater. 2014;1(1):91-102. doi: 10.1093/rb/rbu011
  189. Li Z, Zhu Y, Matson JB. pH-responsive self-assembling peptide-based biomaterials: designs and applications. ACS Appl Bio Mater. 2022;5(10):4635-4651. doi: 10.1021/acsabm.2c00188
  190. Vegad U, Patel M, Khunt D, Zupančič O, Chauhan S, Paudel A. pH stimuli-responsive hydrogels from non-cellulosic biopolymers for drug delivery. Front Bioeng Biotechnol. 2023;11:1270364. doi: 10.3389/fbioe.2023.1270364
  191. Qu X, Wirsén A, Albertsson AC. Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. Polymer. 2000;41(12):4589-4598. doi: 10.1016/S0032-3861(99)00685-0
  192. Zhu L, Bratlie KM. pH sensitive methacrylated chitosan hydrogels with tunable physical and chemical properties. Biochem Eng J. 2018;132:38-46. doi: 10.1016/j.bej.2017.12.012
  193. Ollier RC, Webber MJ. Mechanoresponsive hydrogels emerging from dynamic and non‐covalent interactions. Adv Mater. 2025;37(40):2507397. doi: 10.1002/adma.202507397
  194. Yang EC, Divine R, Miranda MC, et al. Computational design of non-porous pH-responsive antibody nanoparticles. Nat Struct Mol Biol. 2024;31(9):1404-1412. doi: 10.1038/s41594-024-01288-5
  195. Mintis DG, Mavrantzas VG. Effect of pH and molecular length on the structure and dynamics of short poly(acrylic acid) in dilute solution: detailed molecular dynamics study. J Phys Chem B. 2019;123(19):4204-4219. doi: 10.1021/acs.jpcb.9b01696
  196. Farasati Far B, Omrani M, Naimi Jamal MR, Javanshir S. Multi-responsive chitosan-based hydrogels for controlled release of vincristine. Commun Chem. 2023;6(1):28. doi: 10.1038/s42004-023-00829-1
  197. Zoe LH, David SR, Rajabalaya R. Chitosan nanoparticle toxicity: a comprehensive literature review of in vivo and in vitro assessments for medical applications. Toxicol Rep. 2023;11:83-106. doi: 10.1016/j.toxrep.2023.06.012
  198. Shin Y, Kim D, Hu Y, et al. pH-responsive succinoglycan-carboxymethyl cellulose hydrogels with highly improved mechanical strength for controlled drug delivery systems. Polymers. 2021;13(18):3197. doi: 10.3390/polym13183197
  199. Héraly F, Zhang M, Åhl A, Cao W, Bergström L, Yuan J. Nanodancing with moisture: humidity‐sensitive bilayer actuator derived from cellulose nanofibrils and reduced graphene oxide. Adv Intell Syst. 2022;4(1):2100084. doi: 10.1002/aisy.202100084
  200. Guo F, Kim F, Han TH, Shenoy VB, Huang J, Hurt RH. Hydration-responsive folding and unfolding in graphene oxide liquid crystal phases. ACS Nano. 2011;5(10):8019-8025. doi: 10.1021/nn2025644
  201. Formisano N, Van Der Putten C, Grant R, et al. Mechanical properties of bioengineered corneal stroma. Adv Healthc Mater. 2021;10(20):2100972. doi: 10.1002/adhm.202100972
  202. Pérez-Madrigal MM, Shaw JE, Arno MC, Hoyland JA, Richardson SM, Dove AP. Robust alginate/hyaluronic acid thiol-yne click-hydrogel scaffolds with superior mechanical performance and stability for load-bearing soft tissue engineering. Biomater Sci. 2020;8(1):405-412. doi: 10.1039/C9BM01494B
  203. Jamilludin MA, Dinatha IKH, Supii AI, Partini J, Kusindarta DL, Yusuf Y. Functionalized cellulose nanofibrils in carbonate-substituted hydroxyapatite nanorod-based scaffold from long-spined sea urchin (Diadema setosum) shells reinforced with polyvinyl alcohol for alveolar bone tissue engineering. RSC Adv. 2023;13(46):32444-32456. doi: 10.1039/D3RA06165E
  204. Lawless BM, Sadeghi H, Temple DK, Dhaliwal H, Espino DM, Hukins DWL. Viscoelasticity of articular cartilage: analysing the effect of induced stress and the restraint of bone in a dynamic environment. J Mech Behav Biomed Mater. 2017;75:293-301. doi: 10.1016/j.jmbbm.2017.07.040
  205. Lee HP, Gaharwar AK. Light‐responsive inorganic biomaterials for biomedical applications. Adv Sci. 2020;7(17):2000863. doi: 10.1002/advs.202000863
  206. Chen G, Cao Y, Tang Y, et al. Advanced near‐infrared light for monitoring and modulating the spatiotemporal dynamics of cell functions in living systems. Adv Sci. 2020;7(8):1903783. doi: 10.1002/advs.201903783
  207. Lu Y, Chen C, Li H, et al. Visible light-responsive hydrogels for cellular dynamics and spatiotemporal viscoelastic regulation. Nat Commun. 2025;16(1):1365. doi: 10.1038/s41467-024-54880-0
  208. Guo P, Dong L, Xue B, Cao Y, Yang J. From light to life: molecular mechanisms and macroscopic transformations in photoresponsive hydrogels. Polym Sci Technol. 2025;1:812−831. doi: 10.1021/polymscitech.5c00102
  209. Overchuk M, Weersink RA, Wilson BC, Zheng G. Photodynamic and photothermal therapies: synergy opportunities for nanomedicine. ACS Nano. 2023;17(9):7979-8003. doi: 10.1021/acsnano.3c00891
  210. Jayakumar MKG, Idris NM, Zhang Y. Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc Natl Acad Sci U S A. 2012;109(22):8483-8488. doi: 10.1073/pnas.1114551109
  211. Liu TM, Conde J, Lipiński T, Bednarkiewicz A, Huang CC. Revisiting the classification of nir-absorbing/emitting nanomaterials for in vivo bioapplications. NPG Asia Mater. 2016;8(8):e295-e295. doi: 10.1038/am.2016.106
  212. Lee CH, Wu SB, Hong CH, Yu HS, Wei YH. Molecular mechanisms of UV-induced apoptosis and its effects on skin residential cells: the implication in UV-Based Phototherapy. Int J Mol Sci. 2013;14(3):6414-6435. doi: 10.3390/ijms14036414
  213. Meng F, Meyer CM, Joung D, Vallera DA, McAlpine MC, Panoskaltsis‐Mortari A. 3D bioprinted in vitro metastatic models via reconstruction of tumor microenvironments. Adv Mater. 2019;31(10):1806899. doi: 10.1002/adma.201806899
  214. He D, Zhao A, Su H, et al. An injectable scaffold based on temperature‐responsive hydrogel and factor‐loaded nanoparticles for application in vascularization in tissue engineering. J Biomed Mater Res. 2019;107(10): 2123-2134. doi: 10.1002/jbm.a.36723
  215. Bonnet S. Ruthenium-based photoactivated chemotherapy. J Am Chem Soc. 2023;145(43):23397-23415. doi: 10.1021/jacs.3c01135
  216. Munteanu AC, Notaro A, Jakubaszek M, et al. Synthesis, characterization, cytotoxic activity, and metabolic studies of ruthenium(II) polypyridyl complexes containing flavonoid ligands. Inorg Chem. 2020;59(7):4424-4434. doi: 10.1021/acs.inorgchem.9b03562
  217. António JPM, Gandioso A, Nemati F, et al. Polymeric encapsulation of a ruthenium( ii ) polypyridyl complex: from synthesis to in vivo studies against high-grade epithelial ovarian cancer. Chem Sci. 2023;14(2):362-371. doi: 10.1039/D2SC05693C
  218. Bolanta SO, Malijauskaite S, McGourty K, O’Reilly EJ. Synthesis of poly(acrylic acid)-cysteine-based hydrogels with highly customizable mechanical properties for advanced cell culture applications. ACS Omega. 2022;7(11):9108-9117. doi: 10.1021/acsomega.1c03408
  219. Suhail M, Liu JY, Hung MC, Chiu IH, Minhas MU, Wu PC. Preparation, in vitro characterization, and cytotoxicity evaluation of polymeric pH-responsive hydrogels for controlled drug release. Pharmaceutics. 2022;14(9):1864. doi: 10.3390/pharmaceutics14091864
  220. Leigh BL, Cheng E, Xu L, Derk A, Hansen MR, Guymon CA. Antifouling photograftable zwitterionic coatings on PDMS substrates. Langmuir. 2019;35(5):1100-1110. doi: 10.1021/acs.langmuir.8b00838
  221. Zhao C, Zheng J. Synthesis and characterization of poly(N -hydroxyethylacrylamide) for long-term antifouling ability. Biomacromolecules. 2011;12(11):4071-4079. doi: 10.1021/bm2011455
  222. Fernandes LC, Correia DM, Costa CM, Lanceros‐Mendez S. Recent advances in ionic liquid‐based hybrid materials for electroactive soft actuator applications. Macromol Mater Eng. 2025;310(2):2400279. doi: 10.1002/mame.202400279
  223. Datta D, Colaco V, Bandi SP, et al. Stimuli-responsive self-healing ionic gels: a promising approach for dermal and tissue engineering applications. ACS Biomater Sci Eng. 2025;11(3):1338-1372. doi: 10.1021/acsbiomaterials.4c02264
  224. Plaas AHK, Moran MM, Sandy JD, Hascall VC. Aggrecan and hyaluronan: the infamous cartilage polyelectrolytes – then and now. In: Connizzo BK, Han L, Sah RL, eds. Electromechanobiology of Cartilage and Osteoarthritis. Vol. 1402. Advances in Experimental Medicine and Biology. Cham, Switzerland: Springer International Publishing; 2023:3-29. doi: 10.1007/978-3-031-25588-5_1
  225. Ricka J, Tanaka T. Swelling of ionic gels: quantitative performance of the Donnan theory. Macromolecules. 1984;17(12):2916-2921. doi: 10.1021/ma00142a081
  226. Wei W. Hofmeister effects shine in nanoscience. Adv Sci. 2023;10(22):2302057. doi: 10.1002/advs.202302057
  227. Huang S, Zhao Z, Feng C, Mayes E, Yang J. Nanocellulose reinforced P(AAm-co-AAc) hydrogels with improved mechanical properties and biocompatibility. Compos A Appl Sci Manuf. 2018;112:395-404. doi: 10.1016/j.compositesa.2018.06.028
  228. Echeverria C, Fernandes SN, Godinho MH, Borges JP, Soares PIP. Functional stimuli-responsive gels: hydrogels and microgels. Gels. 2018;4(2):54. doi: 10.3390/gels4020054
  229. Chen H, Wei P, Qi Y, Xie Y, Huang X. Water-induced cellulose nanofibers/poly(vinyl alcohol) hydrogels regulated by hydrogen bonding for in situ water shutoff. ACS Appl Mater Interfaces. 2023;15(33):39883-39895. doi: 10.1021/acsami.3c07989
  230. Xu W, Newton MAA, Chen Z, Xin B. Design, characterization, and performance evaluation of novel PVA/CS/CNF/MOP TN ionic conductive hydrogels for flexible sensors. J Polym Sci. 2024;62(12):2744-2761. doi: 10.1002/pol.20240043
  231. Zhang H, Fu C, Yong LC, Sun N, Liu FG. Flexible and transparent PVA/CNF hydrogel with ultrahigh dielectric constant. ACS Appl Polym Mater. 2024;6(10):5706-5713. doi: 10.1021/acsapm.4c00302
  232. Xu Z, Chen H, Yang HB, et al. Hierarchically aligned heterogeneous core-sheath hydrogels. Nat Commun. 2025;16(1):400. doi: 10.1038/s41467-024-55677-x
  233. Zhang A, Yue Z, Grove B, et al. Highly‐soft, scalable, personalizable skin‐interfaced systems via self‐healing gels. Adv Funct Mater. 2025;35(50):e07821. doi: 10.1002/adfm.202507821
  234. Mistral J, Ve Koon KT, Fernando Cotica L, et al. Chitosan-coated superparamagnetic Fe3 O4 nanoparticles for magnetic resonance imaging, magnetic hyperthermia, and drug delivery. ACS Appl Nano Mater. 2024;7(7):7097-7110. doi: 10.1021/acsanm.3c06118
  235. Mammoto A, Mammoto T, Ingber DE. Mechanosensitive mechanisms in transcriptional regulation. J Cell Sci. 2012:125 (13): 3061–3073. doi: 10.1242/jcs.093005
  236. Lucariello M, Valicenti ML, Giannoni S, et al. Mechanobiology in action: biomaterials, devices, and the cellular machinery of force sensing. Biomolecules. 2025;15(6):848. doi: 10.3390/biom15060848
  237. Estelrich J, Busquets MA, Del Carmen Morán M. Effect of PEGylation on ligand-targeted magnetoliposomes: a missed goal. ACS Omega. 2017;2(10):6544-6555. doi: 10.1021/acsomega.7b00778
  238. Masoumi Godgaz S, Asefnejad A, Bahrami SH. Fabrication of PEGylated SPIONs-loaded niosome for codelivery of paclitaxel and trastuzumab for breast cancer treatment: in vivo study. ACS Appl Bio Mater. 2024;7(5):2951-2965. doi: 10.1021/acsabm.4c00027
  239. Carter TJ, Agliardi G, Lin F, et al. Potential of magnetic hyperthermia to stimulate localized immune activation. Small. 2021;17(14):2005241. doi: 10.1002/smll.202005241
  240. Moonesi Rad R, Daul B, Glass P, et al. 3D printed magnet‐infused origami platform for 3D cell culture assessments. Adv Mater Technol. 2023;8(8):2202204. doi: 10.1002/admt.202202204
  241. Yang D, Hu Y, Liu S, et al. Synthesis and assembly strategy of electroactive biomaterials and systems for soft tissue engineering applications. Chem. 2025;11(9):102596. doi: 10.1016/j.chempr.2025.102596
  242. Ning C, Zhou Z, Tan G, Zhu Y, Mao C. Electroactive polymers for tissue regeneration: Developments and perspectives. Prog Polym Sci. 2018;81:144-162. doi: 10.1016/j.progpolymsci.2018.01.001
  243. Chen AY, Pegg E, Chen A, Jin Z, Gu GX. 4D printing of electroactive materials. Adv Intell Syst. 2021;3(12):2100019. doi: 10.1002/aisy.202100019
  244. Grodzinsky AJ. Electromechanical and physicochemical properties of connective tissue. Crit Rev Biomed Eng. 1983;9(2):133-199. doi: 10.1016/0021-9290(87)90282-x.
  245. Pillay V, Tsai T, Choonara YE, et al. A review of integrating electroactive polymers as responsive systems for specialized drug delivery applications. J Biomed Mater Res. 2014;102(6):2039-2054. doi: 10.1002/jbm.a.34869
  246. Acharya R, Dutta SD, Patil TV, Ganguly K, Randhawa A, Lim KT. A review on electroactive polymer–metal composites: development and applications for tissue regeneration. J Funct Biomater. 2023;14(10):523. doi: 10.3390/jfb14100523
  247. Rivnay J, Inal S, Collins BA, et al. Structural control of mixed ionic and electronic transport in conducting polymers. Nat Commun. 2016;7(1):11287. doi: 10.1038/ncomms11287
  248. Deng X, Zhuang Y, Cui J, et al. Open challenges and opportunities in piezoelectricity for tissue regeneration. Adv Sci. 2025;12(38):e10349. doi: 10.1002/advs.202510349
  249. Filippi M, Badolato A, Georgopoulou A, et al. Bioprinting of piezoresistive organohydrogel networks for advanced real-time mechanosensing in engineered tissue models. Trends Biotechnol. 2025;43(10):2509-2538. doi: 10.1016/j.tibtech.2025.05.026
  250. Faber L, Yau A, Chen Y. Translational biomaterials of four-dimensional bioprinting for tissue regeneration. Biofabrication. 2024;16(1):012001. doi: 10.1088/1758-5090/acfdd0
  251. Narayana S, Gowda BHJ, Hani U, Ahmed MG, Asiri ZA, Paul K. Smart poly(N-isopropylacrylamide)-based hydrogels: a tour d’horizon of biomedical applications. Gels. 2025;11(3):207. doi: 10.3390/gels11030207
  252. Cui Z, Lee BH, Pauken C, Vernon BL. Degradation, cytotoxicity, and biocompatibility of NIPAAm‐based thermosensitive, injectable, and bioresorbable polymer hydrogels. J Biomed Mater Res. 2011;98A(2):159-166. doi: 10.1002/jbm.a.33093
  253. Allyn MM, Luo RH, Hellwarth EB, Swindle-Reilly KE. Considerations for polymers used in ocular drug delivery. Front Med. 2022;8:787644. doi: 10.3389/fmed.2021.787644
  254. Chu S, Shi X, Tian Y, Gao F. pH-responsive polymer nanomaterials for tumor therapy. Front Oncol. 2022;12:855019. doi: 10.3389/fonc.2022.855019
  255. Gao W, Chan JM, Farokhzad OC. pH-responsive nanoparticles for drug delivery. Mol Pharm. 2010;7(6):1913-1920. doi: 10.1021/mp100253e
  256. Linsley CS, Wu BM. Recent advances in light-responsive on-demand drug-delivery systems. Ther Deliv. 2017;8(2):89-107. doi: 10.4155/tde-2016-0060
  257. Verbroekken RMC, Savchak OK, Alofs TFJ, Schenning APHJ, Gumuscu B. Light-responsive liquid crystal surface topographies for dynamic stimulation of cells. ACS Appl Mater Interfaces. 2025;17(19):27871-27881. doi: 10.1021/acsami.5c02526
  258. Lungu CN, Gurau G, Mehedinti MC. Pro-angiogenic bioactive molecules in vascular morphogenesis: integrating endothelial cell dynamics. Curr Issues Mol Biol. 2025;47(10):851. doi: 10.3390/cimb47100851
  259. Bril M, Saberi A, Jorba I, et al. Shape‐morphing photoresponsive hydrogels reveal dynamic topographical conditioning of fibroblasts. Adv Sci. 2023;10(31):2303136. doi: 10.1002/advs.202303136
  260. Li C, Iscen A, Palmer LC, Schatz GC, Stupp SI. Light-driven expansion of spiropyran hydrogels. J Am Chem Soc. 2020;142(18):8447-8453. doi: 10.1021/jacs.0c02201
  261. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials. 2015;73:254-271. doi: 10.1016/j.biomaterials.2015.08.045
  262. Nowak BP, Niehues M, Ravoo BJ. Magneto-responsive hydrogels by self-assembly of low molecular weight peptides and crosslinking with iron oxide nanoparticles. Soft Matter. 2021;17(10):2857-2864. doi: 10.1039/D0SM02049D
  263. Hu K, Yu T, Tang S, et al. Dual anisotropicity comprising 3D printed structures and magnetic nanoparticle assemblies: towards the promotion of mesenchymal stem cell osteogenic differentiation. NPG Asia Mater. 2021;13(1):19. doi: 10.1038/s41427-021-00288-x
  264. Malektaj H, Drozdov AD, deClaville Christiansen J. Mechanical properties of alginate hydrogels cross-linked with multivalent cations. Polymers. 2023;15(14):3012. doi: 10.3390/polym15143012
  265. Salari P, Easson GWD, Broz KS, Kelly MP, Tang SY. Effects of sustained tensile distraction on vertebrae and intervertebral disc growth: an in vivo study using a mouse tail model. J Bone Joint Surg Am. 2025;107(10):1107-1115. doi: 10.2106/JBJS.24.00224
  266. Freeman FE, Kelly DJ. Tuning alginate bioink stiffness and composition for controlled growth factor delivery and to spatially direct MSC fate within bioprinted tissues. Sci Rep. 2017;7(1):17042. doi: 10.1038/s41598-017-17286-1
  267. Meyers K, Lee BP, Rajachar RM. Electroactive polymeric composites to mimic the electromechanical properties of myocardium in cardiac tissue repair. Gels. 2021;7(2):53. doi: 10.3390/gels7020053
  268. Roshanbinfar K, Schiffer M, Carls E, et al. Electrically conductive collagen‐PEDOT:PSS hydrogel prevents post‐infarct cardiac arrhythmia and supports hiPSC‐cardiomyocyte function. Adv Mater. 2024;36(28):2403642. doi: 10.1002/adma.202403642
  269. Jebran AF, Seidler T, Tiburcy M, et al. Engineered heart muscle allografts for heart repair in primates and humans. Nature. 2025;639(8054):503-511. doi: 10.1038/s41586-024-08463-0
  270. Zhu J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials. 2010;31(17):4639-4656. doi: 10.1016/j.biomaterials.2010.02.044
  271. Patel DK, Jung E, Priya S, Won SY, Han SS. Recent advances in biopolymer-based hydrogels and their potential biomedical applications. Carbohydr Polym. 2024;323:121408. doi: 10.1016/j.carbpol.2023.121408
  272. Sexton ZA, Rütsche D, Herrmann JE, et al. Rapid model-guided design of organ-scale synthetic vasculature for biomanufacturing. Science. 2025;388(6752):1198-1204. doi: 10.1126/science.adj6152
  273. Chen Z, Wang Y, Chen H, et al. A magnetic multi-layer soft robot for on-demand targeted adhesion. Nat Commun. 2024;15(1):644. doi: 10.1038/s41467-024-44995-9
  274. Pang X, Liang S, Wang T, et al. Engineering thermo-pH dual responsive hydrogel for enhanced tumor accumulation, penetration, and chemo-protein combination therapy. Int J Nanomed. 2020;15:4739-4752. doi: 10.2147/IJN.S253990
  275. Kumar K, Nain A. Emerging 4D fabrication of tubular structures and clinical challenges: critical perspective. ACS Mater Au. 2025;5(6):886-895. doi: 10.1021/acsmaterialsau.5c00101
  276. Huang G, Zhao Y, Chen D, et al. Applications, advancements, and challenges of 3D bioprinting in organ transplantation. Biomater Sci. 2024;12(6):1425-1448. doi: 10.1039/D3BM01934A
  277. Osouli-Bostanabad K, Masalehdan T, Kapsa RM, et al. Traction of 3D and 4D printing in the healthcare industry: from drug delivery and analysis to regenerative medicine. ACS Biomater Sci Eng. 2022;8(7):2764-2797. doi: 10.1021/acsbiomaterials.2c00094
  278. Ramesh S, Harrysson OLA, Rao PK, et al. Extrusion bioprinting: recent progress, challenges, and future opportunities. Bioprinting. 2021;21:e00116. doi: 10.1016/j.bprint.2020.e00116
  279. Li MX, Wei QQ, Mo HL, et al. Challenges and advances in materials and fabrication technologies of small-diameter vascular grafts. Biomater Res. 2023;27(1):58. doi: 10.1186/s40824-023-00399-2
  280. Sun J, Gong Y, Xu M, Chen H, Shao H, Zhou R. Coaxial 3D bioprinting process research and performance tests on vascular scaffolds. Micromachines. 2024;15(4):463. doi: 10.3390/mi15040463
  281. Damiati LA, Alsudir SA, Mohammed RY, et al. 4D printing in skin tissue engineering: a revolutionary approach to enhance wound healing and combat infections. Bioprinting. 2025;45:e00386. doi: 10.1016/j.bprint.2025.e00386
  282. Bonatti AF, Batoni E, Fortunato GM, Vitale-Brovarone C, Vozzi G, De Maria C. Robust design methodologies to engineer multimaterial and multiscale bioprinters. Bioprinting. 2024;44:e00372. doi: 10.1016/j.bprint.2024.e00372
  283. Albrecht FB, Schmidt FF, Schmidt C, Börret R, Kluger PJ. Robot‐based 6D bioprinting for soft tissue biomedical applications. Eng Life Sci. 2024;24(7):e2300226. doi: 10.1002/elsc.202300226
  284. Pettersson ABV, Ballardini RM, Mimler M, et al. Core legal challenges for medical 3D printing in the EU. Healthcare. 2024;12(11):1114. doi: 10.3390/healthcare12111114
  285. Gilbert F, O’Connell CD, Mladenovska T, Dodds S. Print me an organ? Ethical and regulatory issues emerging from 3D bioprinting in medicine. Sci Eng Ethics. 2018;24(1):73-91. doi: 10.1007/s11948-017-9874-6
  286. Ricles LM, Coburn JC, Di Prima M, Oh SS. Regulating 3D-printed medical products. Sci Transl Med. 2018;10(461):eaan6521. doi: 10.1126/scitranslmed.aan6521
  287. U.S. Food and Drug Administration. 21 CFR Part 1271— Human cells, tissues, and cellular and tissue-based products. Code of Federal Regulations; 2024. https://www.ecfr.gov/current/title-21/chapter-I/ subchapter-L/part-1271
  288. U.S. Food and Drug Administration. Classification of products as drugs and devices and additional product classification issues: Guidance for industry and FDA staff (Footnote 12); 2017 https://www.fda.gov/regulatory-information/search-fda-guidance-documents/classification-products-drugs-and-devices-and-additional-product-classification-issues
  289. Vijayavenkataraman S, Lu WF, Fuh JYH. 3D bioprinting – an ethical, legal and social aspects (ELSA) framework. Bioprinting. 2016;1-2:11-21. doi: 10.1016/j.bprint.2016.08.001
  290. Melvin T. The European medical device regulation–what biomedical engineers need to know. IEEE J Transl Eng Health Med. 2022;10:1-5. doi: 10.1109/JTEHM.2022.3194415
  291. European Parliament & Council. Regulation (EC) No 1394/2007 on advanced therapy medicinal products, OJ L. 2007;324:121–137. https://eur-lex.europa.eu/eli/reg/2007/1394/oj/eng
  292. Dwenger A, Straßburger J, Schwerdtfeger W. Regulation (EC) No. 1394/2007 on advanced therapy medicinal products: incorporation into national law. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2010;53(1):14-19. doi: 10.1007/s00103-009-0985-3
  293. Kim M, Kim YJ, Kim YS, et al. One-year results of ear reconstruction with 3d printed implants. Yonsei Med J. 2024;65(8):456. doi: 10.3349/ymj.2023.0444
  294. World Health Organization. Considerations in developing a regulatory framework for human cells and tissues and for advanced therapy medicinal products (TRS 1048, Annex 3); 2023. https://www.who.int/publications/m/item/considerations-in-developing-a-regulatory-framework-for-human-cells-and-tissues-and-for-advanced-therapy-medicinal-products
  295. Human Tissue Act 2004, c. 30. (2004). UK Public General Acts. https://www.legislation.gov.uk/ukpga/2004/30/contents

 

 

 

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing