AccScience Publishing / IJB / Volume 12 / Issue 1 / DOI: 10.36922/IJB025470490
RESEARCH ARTICLE

A novel method to enhance acoustic droplet bioprinting quality through the analysis of parametric influence mechanisms

Qing Guo1 Siyu Li1 Dachao Li1* Haixia Yu1*
Show Less
1 State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China.
IJB 2026, 12(1), 622–636; https://doi.org/10.36922/IJB025470490
Received: 21 November 2025 | Accepted: 31 December 2025 | Published online: 8 January 2026
© 2026 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Three-dimensional bioprinting ushers a transformative change in tissue engineering, providing unparalleled opportunities for regenerative medicine by precisely fabricating intricate, biomimetic tissues. To achieve true organ-level in vitro tissue construction, various advanced bioprinting technologies have been developed. Among these, acoustic droplet bioprinting technology, owing to its excellent biocompatibility and multi-sample handling capabilities, offers an efficient, non-contact liquid-handling approach for tissue engineering applications. To meet the printing structure’s geometric precision requirements, meticulous control of printing parameters is essential. However, the selection of acoustic droplet printing parameters still depends heavily on empirical values, which often leads to print outcomes that fall short of optimal standards. In this paper, a parameterized droplet dispensing method for multi-sample droplet excitation was established. This method introduces a unified scaling parameter based on the product of surface tension and viscosity, integrating acoustic stress and fluid response into a single dimensionless quantity, thereby enabling precise adjustment of droplet velocity. The relative error between the initial velocity measured using this method and the preset velocity was less than 6.7%. Next, we analyzed the effects of droplet overlap distance and the Weber and Ohnesorge numbers on printed line-width consistency. By employing optimized printing parameters, we achieved controllable printing of patterned hydrogel meshes suitable for cell culture. The results demonstrated that the lengths and widths of the nine sub-meshes exhibited high consistency. These advances move acoustic droplet bioprinting from an experience-driven process toward a more systematic, predictive, and reproducible parameter-optimization strategy.

Graphical abstract
Keywords
Acoustic droplet bioprinting
Bioprinting parameters optimization
Parameterized droplet dispensing method
Funding
This work is supported by the National Natural Science Foundation of China (No. 12304532) and the Natural Science Foundation of Tianjin (No. 23JCQNJC01320).
Conflict of interest
The authors declare no conflict of interest.
References
  1. Lechler RI, Sykes M, Thomson AW, Turka LA. Organ transplantation—how much of the promise has been realized? Nat Med. 2005;11(6):605-613. doi: 10.1038/nm1251
  2. Giwa S, Lewis JK, Alvarez L, et al. The promise of organ and tissue preservation to transform medicine. Nat Biotechnol. 2017;35(6):530-542. doi: 10.1038/nbt.3889
  3. Berthiaume F, Maguire TJ, Yarmush ML. Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng. 2011;2(1):403-430. doi: 10.1146/annurev-chembioeng-061010-114257
  4. Van Blitterswijk C, De Boer J. Tissue Engineering. Cambridge, MA, USA: Academic Press; 2022. doi: 10.1016/C2020-0-01481-7
  5. Paxton N, Smolan W, Böck T, Melchels F, Groll J, Jungst T. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication. 2017;9(4):044107. doi: 10.1088/1758-5090/aa8dd
  6. Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76(37):321-343. doi: 10.1016/j.biomaterials.2015.10.076
  7. Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials. Chem Rev. 2020;120(19):10793-10833. doi: 10.1021/acs.chemrev.0c00008
  8. Angelopoulos I, Allenby MC, Lim M, Zamorano M. Engineering inkjet bioprinting processes toward translational therapies. Biotechnol Bioeng. 2020;117(1):272-284. doi: 10.1002/bit.27176
  9. Guillotin B, Souquet A, Catros S, et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials. 2010;31(28):7250-7256. doi: 10.1016/j.biomaterials.2010.05.055
  10. Ventura RD. An overview of laser-assisted bioprinting (LAB) in tissue engineering applications. Med Lasers Eng Basic Res Clin Appl. 2021;10(2):76-81. doi: 10.25289/ML.2021.10.2.76
  11. Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31(24):6121-6130. doi: 10.1016/j.biomaterials.2010.04.050
  12. Skoog SA, Goering PL, Narayan RJ. Stereolithography in tissue engineering. J Mater Sci Mater Med. 2014;25(3):845-856. doi: 10.1007/s10856-013-5107-y
  13. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-785. doi: org/10.1038/nbt.2958
  14. Krainer S, Smit C, Hirn U. The effect of viscosity and surface tension on inkjet printed picoliter dots. RSC Adv. 2019;9(54):31708-31719. doi: 10.1039/c9ra04993b
  15. Castro JO, Ramesan S, Rezk AR, Yeo LY. Continuous tuneable droplet ejection via pulsed surface acoustic wave jetting. Soft Matter. 2018;14(28):5721-5727. doi: 10.1039/c7sm02534c
  16. Guo Q, Su X, Zhang X, Shao M, Yu H, Li D. A review on acoustic droplet ejection technology and system. Soft Matter. 2021;17(11):3010-3021. doi: 10.1039/d0sm02193h
  17. Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M. 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact Mater. 2018;3(2):144-156. doi: 10.1016/j.bioactmat.2017.11.008
  18. Hadimioglu B, Stearns R, Ellson R. Moving liquids with sound: the physics of acoustic droplet ejection for robust laboratory automation in life sciences. J Lab Autom. 2016;21(1):4-18. doi: 10.1177/2211068215615096
  19. Lagus TP, Edd JF. High-throughput co-encapsulation of self-ordered cell trains: cell pair interactions in microdroplets. RSC Adv. 2013;3(43):20512-20522. doi: 10.1039/C3RA43624A
  20. Jentsch S, Nasehi R, Kuckelkorn C, Gundert B, Aveic S, Fischer H. Multiscale 3D bioprinting by nozzle‐free acoustic droplet ejection. Small Methods. 2021;5(6):2000971. doi: 10.1002/smtd.202000971
  21. Xia Y, Chen H, Li J, et al. Acoustic droplet-assisted superhydrophilic–superhydrophobic microarray platform for high-throughput screening of patient-derived tumor spheroids. ACS Appl Mater Interfaces. 2021;13(20):23489-23501. doi: 10.1021/acsami.1c06655
  22. Chen K, Jiang E, Wei X, et al. The acoustic droplet printing of functional tumor microenvironments. Lab Chip. 2021;21(8):1604-1612. doi: 10.1039/d1lc00003a
  23. Gong Z, Huang L, Tang X, et al. Acoustic droplet printing tumor organoids for modeling bladder tumor immune microenvironment within a week. Adv Healthc Mater. 2021;10(22):2101312. doi: 10.1002/adhm.202101312
  24. Fang Y, Frampton JP, Raghavan S, et al. Rapid generation of multiplexed cell cocultures using acoustic droplet ejection followed by aqueous two-phase exclusion patterning. Tissue Eng Part C Methods. 2012;18(9):647-657. doi: 10.1089/ten.TEC.2011.0709
  25. Guo Q, Shao M, Su X, Zhang X, Yu H, Li D. Controllable droplet ejection of multiple reagents through focused acoustic beams. Langmuir. 2021;37(51):14805-14812. doi: 10.1021/acs.langmuir.1c02450
  26. Gudapati H, Dey M, Ozbolat I. A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials. 2016;102:20-42. doi: 10.1016/j.biomaterials.2016.06.012
  27. Gong Y, Bi Z, Bian X, et al. Study on linear bio-structure print process based on alginate bio-ink in 3D bio-fabrication. Bio Des Manuf. 2020;3(2):109-121. doi: 10.1007/s42242-020-00065-9
  28. Xiao S, Zhao T, Wang J, et al. Gelatin methacrylate (GelMA)-based hydrogels for cell transplantation: an effective strategy for tissue engineering. Stem Cell Rev Rep. 2019;15(5):664-679. doi: 10.1007/s12015-019-09893-4
  29. Mamidi N, Ijadi F, Norahan MH. Leveraging the recent advancements in GelMA scaffolds for bone tissue engineering: an assessment of challenges and opportunities. Biomacromolecules. 2023;25(4):2075-2113. doi: 10.1021/acs.biomac.3c00279
  30. Lemmo AV, Fisher JT, Geysen HM, Rose DJ. Characterization of an inkjet chemical microdispenser for combinatorial library synthesis. Anal Chem. 1997;69(4):543-551. doi: 10.1021/ac960808v
  31. Gao H, Luo X, Cui D, et al. A study of film thickness and hydrodynamic entrance length in liquid laminar film flow along a vertical tube. AIChE J. 2018;64(6):2078-2088. doi: 10.1002/aic.16081
  32. Ji Y, Yang QZ, Huang GY, et al. Improved resolution and fidelity of droplet-based bioprinting by upward ejection. ACS Biomater Sci Eng. 2019;5(8):4112-4121. doi: 10.1021/acsbiomaterials.9b00400
  33. Qian J, Law CK. Regimes of coalescence and separation in droplet collision. J Fluid Mech. 1997;331:59-80. doi: 10.1017/S0022112096003722
  34. Brazier-Smith P, Jennings S, Latham J. The interaction of falling water drops: coalescence. Proc R Soc Lond A Math Phys Sci. 1972;326(1566):393-408. doi: 10.1098/rspa.1972.0016
  35. Cui Z, Feng Y, Liu F, Jiang L, Yue J. 3D bioprinting of living materials for structure-dependent production of hyaluronic acid. ACS Macro Lett. 2022;11(4):452-459. doi: 10.1021/acsmacrolett.2c00037

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing