Distinct toxicity of microplastics/TBBPA co-exposure to bioprinted liver organoids derived from hiPSCs of healthy and patient donors
Bioprinted tissues derived from human-induced pluripotent stem cells (hiPSCs) can provide precise information on disease mechanisms and toxicity. The detection of microplastics (MPs) in the liver tissues of patients with liver cirrhosis has raised concerns about their hepatotoxicity. MPs could absorb endocrine disruptors, such as tetrabromobisphenol A (TBBPA) that is widely present in the environment, thereby complicating their toxic behaviors. To investigate their toxic mechanisms in liver tissues, we used the electro-assisted inkjet printing technology to fabricate healthy donor or patient-sourced hiPSC-derived Disse space organoids (DOs) that resembled the cell types and transcriptional features of Disse space. We observed an accumulation of polystyrene MP microbeads in the DOs, and TBBPA exacerbated the process. Neither MPs and TBBPA alone nor the co-exposure at non-cytotoxicity dosages could affect the liver functions of healthy donor hiPSC-derived DOs, as revealed by transcriptomic and biochemical analyses, whereas alcoholic liver disease (ALD) patient hiPSC-derived DOs exhibited the ALD disease transcriptional profiles. We found that MPs/TBBPA co-exposure significantly influenced the patient organoids in terms of the pathological transcription expression and biochemical profiles. These results suggested that both hereditary factors and pollutants contribute to susceptibility to environmental toxicants. This study exemplified the value of bioprinting hiPSC-derived organoids in environmental toxicology, offering a powerful strategy to advance the personalized environmental toxicology paradigm.
- Vethaak AD, Legler J. Microplastics and human health. Science. 2021;371:672-674. doi: 10.1126/science.abe5041
- Li S, Ma R, Zhu X, et al. Sorption of tetrabromobisphenol A onto microplastics: Behavior, mechanisms, and the effects of sorbent and environmental factors. Ecotoxicol Environ Safety. 2021;210:111842. doi: 10.1016/j.ecoenv.2020.111842
- Leslie HA, van Velzen MJM, Brandsma SH, et al. Discovery and quantification of plastic particle pollution in human blood. Environ Int. 2022;163:107199. doi: 10.1016/j.envint.2022.107199
- Ragusa A, Svelato A, Santacroce C, et al. Plasticenta: First evidence of microplastics in human placenta. Environ Int. 2021;146:106274. doi: 10.1016/j.envint.2020.106274
- Horvatits T, Tamminga M, Liu B, et al. Microplastics detected in cirrhotic liver tissue. EBioMedicine. 2022;82:104147. doi: 10.1016/j.ebiom.2022.104147
- Danopoulos E, Twiddy M, West R, et al. A rapid review and meta-regression analyses of the toxicological impacts of microplastic exposure in human cells. J Hazard Mater. 2022;427:127861. doi: 10.1016/j.jhazmat.2021.127861
- Colnot T, Kacew S, Dekant W. Mammalian toxicology and human exposures to the flame retardant 2,2’,6,6’-tetrabromo- 4,4’-isopropylidenediphenol (TBBPA): Implications for risk assessment. Arch Toxicol. 2014;88:553-573. doi: 10.1007/s00204-013-1180-8
- Lai DY, Kacew S, Dekant W. Tetrabromobisphenol A (TBBPA): Possible modes of action of toxicity and carcinogenicity in rodents. Food Chem Toxicol. 2015;80:206-214. doi: 10.1016/j.fct.2015.03.023
- Liu K, Li J, Yan S, et al. A review of status of tetrabromobisphenol A (TBBPA) in China. Chemosphere. 2016;148:8-20. doi: 10.1016/j.chemosphere.2016.01.023
- Zhou H, Yin NY, Faiola F. Tetrabromobisphenol A (TBBPA): A controversial environmental pollutant. J Environ Sci. 2020;97:54-66. doi: 10.1016/j.jes.2020.04.039
- Xu S, Wu C, Guo WB, et al. Polystyrene nanoplastics inhibit the transformation of Tetrabromobisphenol A by the bacterium Rhodococcus jostii. Acs Nano. 2022;16: 405-414. doi: 10.1021/acsnano.1c07133
- Yu Y, Ma R, Qu H, et al. Enhanced adsorption of tetrabromobisphenol a (TBBPA) on cosmetic-derived plastic microbeads and combined effects on zebrafish. Chemosphere. 2020;248:126067. doi: 10.1016/j.chemosphere.2020.126067
- Lua I, Li Y, Zagory JA, et al. Characterization of hepatic stellate cells, portal fibroblasts, and mesothelial cells in normal and fibrotic livers. J Hepatol. 2016;64:1137-1146. doi: 10.1016/j.jhep.2016.01.010
- Cuvellier M, Ezan F, Oliveira H, et al. 3D culture of HepaRG cells in GelMa and its application to bioprinting of a multicellular hepatic model. Biomaterials, 2021;269:120611. doi: 10.1016/j.biomaterials.2020.120611
- Rowe RG, Daley GQ. Induced pluripotent stem cells in disease modelling and drug discovery. Nat Rev Genet, 2019;20:377-388. doi: 10.1038/s41576-019-0100-z
- Soman SS, Vijayavenkataraman S. Applications of 3D bioprinted-induced pluripotent stem cells in healthcare. Int J Bioprint. 2020;6:280. doi: 10.18063/ijb.v6i4.280
- Palpant NJ, Pabon L, Friedman CE, et al. Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Nat Protoc. 2017;12:15-31. doi: 10.1038/nprot.2016.153
- Yao R, Alkhawtani AYF, Chen R, Luan J, Xu M. Rapid and efficient in vivo angiogenesis directed by electro-assisted bioprinting of alginate/collagen microspheres with human umbilical vein endothelial cell coating layer. Int J Bioprint. 2019;5:194. doi: 10.18063/ijb.v5i2.1.194
- Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499:481-484. doi: 10.1038/nature12271
- Li Y, Jiang X, Li L, et al. 3D printing human induced pluripotent stem cells with novel hydroxypropyl chitin bioink: scalable expansion and uniform aggregation. Biofabrication. 2018;10:044101. doi: 10.1088/1758-5090/aacfc3
- Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8:035020. doi: 10.1088/1758-5090/8/3/035020
- Feng L, Liang S, Zhou Y, et al. Three-Dimensional Printing of Hydrogel Scaffolds with Hierarchical Structure for Scalable Stem Cell Culture. ACS Biomater Sci Eng. 2020;6: 2995-3004. doi: 10.1021/acsbiomaterials.9b01825
- Suntornnond R, Ng WL, Huang X, et al. Improving printability of hydrogel-based bio-inks for thermal inkjet bioprinting applications via saponification and heat treatment processes. J Mater Chem B. 2022;10:5989-6000. doi: 10.1039/d2tb00442a
- Below CR, Kelly J, Brown A, et al. A microenvironment-inspired synthetic three-dimensional model for pancreatic ductal adenocarcinoma organoids. Nat Mater. 2022;21: 110-119. doi: 10.1038/s41563-021-01085-1
- Kanninen LK, Harjumaki R, Peltoniemi P, et al. Laminin-511 and laminin-521-based matrices for efficient hepatic specification of human pluripotent stem cells. Biomaterials. 2016;103:86-100. doi: 10.1016/j.biomaterials.2016.06.054
- Huo H, Liu F, Luo Y, et al. Triboelectric nanogenerators for electro-assisted cell printing. Nano Energy. 2020;67:104150. doi: 10.1016/j.nanoen.2019.104150
- Horiguchi I, Torizal FG, Nagate H, et al. Protection of human induced pluripotent stem cells against shear stress in suspension culture by Bingham plastic fluid. Biotechnol Prog. 2021;37:e3100. doi: 10.1002/btpr.3100
- Xu L, Hui AY, Albanis E, et al. Human hepatic stellate cell lines, LX-1 and LX-2:New tools for analysis of hepatic fibrosis. Gut. 2005;54:142-151. doi: 10.1136/gut.2004.042127
- Caldwell J, Lehner R, Balog S, et al. Fluorescent plastic nanoparticles to track their interaction and fate in physiological environments. Environ Sci Nano. 2021;8:502-513. doi: 10.1039/D0EN00944J
- Caldwell J, Taladriz-Blanco P, Lehner R, et al. The micro-, submicron-, and nanoplastic hunt: A review of detection methods for plastic particles. Chemosphere. 293:133514. doi: 10.1016/j.chemosphere.2022.133514
- Zauner W, Farrow NA, Haines AMR. In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J Control Release. 2001;71:39-51. doi: 10.1016/s0168-3659(00)00358-8
- Lunov O, Syrovets T, Loos C, et al. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. Acs Nano. 2011;5:1657-1669. doi: 10.1021/nn2000756
- Shen R, Yang K, Cheng X, et al. Accumulation of polystyrene microplastics induces liver fibrosis by activating cGAS/ STING pathway. Environ Pollut. 2022;300:118986. doi: 10.1016/j.envpol.2022.118986
- Wang X, Wei L, Zhu JB, et al. Environmentally relevant doses of tetrabromobisphenol A (TBBPA) cause immunotoxicity in murine macrophages. Chemosphere, 2019;236:124413. doi: 10.1016/j.chemosphere.2019.124413
- Banerjee A, Shelver WL. Micro- and nanoplastic induced cellular toxicity in mammals: A review. Sci Total Environ. 2021;755:142518. doi: 10.1016/j.scitotenv.2020.142518
- Yin N, Liang S, Liang S, et al. TBBPA and its alternatives disturb the early stages of neural development by interfering with the NOTCH and WNT pathways. Environ Sci Technol. 52:5459-5468. doi: 10.1021/acs.est.8b00414
- Cheng W, Li X, Zhou Y, et al. Polystyrene microplastics induce hepatotoxicity and disrupt lipid metabolism in the liver organoids. Sci Total Environ. 2021;806:150328. doi: 10.1016/j.scitotenv.2021.150328
- Roman S, Zepeda-Carrillo EA, Moreno-Luna LE, et al. Alcoholism and liver disease in Mexico: Genetic and environmental factors. World J Gastroenterol. 2013;19: 7972-7982. doi: 10.3748/wjg.v19.i44.7972
- Gurevich I, Burton SA, Munn C, et al. iPSC-derived hepatocytes generated from NASH donors provide a valuable platform for disease modeling and drug discovery. Biol Open. 2020;9:bio055087. doi: 10.1242/bio.055087
- Ceni E, Mello T, Galli A. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism. World J Gastroenterol. 2014;20:17756-17772. doi: 10.3748/wjg.v20.i47.17756
- Purohit V, Gao B, Song BJ. Molecular mechanisms of alcoholic fatty liver. Alcohol Clin Exp Res. 2009;33:191-205. doi: 10.1111/j.1530-0277.2008.00827.x
- Affo S, Dominguez M, Lozano JJ, et al. Transcriptome analysis identifies TNF superfamily receptors as potential therapeutic targets in alcoholic hepatitis. Gut. 2013;62: 452-460. doi: 10.1136/gutjnl-2011-301146
- Chaparro M, Sanz-Cameno P, Trapero-Marugán M, García-Buey L, Moreno-Otero R, et al. Mechanisms of angiogenesis in chronic inflammatory liver disease. Annals of Hepatology. 2007;6:208-213. doi: 10.1016/S1665-2681(19)31900-3
- An R, Wang X, Yang L, et al. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology. 2021;449:152665. doi: 10.1016/j.tox.2020.152665
- Vlacil AK, Banfer S, Jacob R, et al. Polystyrene microplastic particles induce endothelial activation. Plos One. 2021;16:e0260181. doi: 10.1371/journal.pone.0260181
- Mansouri A, Gattolliat CH, Asselah T. Mitochondrial dysfunction and signaling in chronic liver diseases. Gastroenterology. 2018;155:629-647. doi: 10.1053/j.gastro.2018.06.083