AccScience Publishing / IJB / Volume 10 / Issue 3 / DOI: 10.36922/ijb.1403
RESEARCH ARTICLE

Distinct toxicity of microplastics/TBBPA co-exposure to bioprinted liver organoids derived from hiPSCs of healthy and patient donors

Shaojun Liang1† Yixue Luo1† Yijun Su1 Dawei Zhang2 Shi-jie Wang3 Mingen Xu4,5 Rui Yao1*
Show Less
1 Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing, China
2 Senior Department of Infectious Diseases of the 5th Medical Center, PLA General Hospital, Beijing, China
3 National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, China
4 Key Laboratory of Medical Information and 3D Biological of Zhejiang Province, Hangzhou Dianzi University, Hangzhou, China
5 Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
IJB 2024, 10(3), 1403 https://doi.org/10.36922/ijb.1403
Submitted: 27 July 2023 | Accepted: 19 September 2023 | Published: 18 January 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Bioprinted tissues derived from human-induced pluripotent stem cells (hiPSCs) can provide precise information on disease mechanisms and toxicity. The detection of microplastics (MPs) in the liver tissues of patients with liver cirrhosis has raised concerns about their hepatotoxicity. MPs could absorb endocrine disruptors, such as tetrabromobisphenol A (TBBPA) that is widely present in the environment, thereby complicating their toxic behaviors. To investigate their toxic mechanisms in liver tissues, we used the electro-assisted inkjet printing technology to fabricate healthy donor or patient-sourced hiPSC-derived Disse space organoids (DOs) that resembled the cell types and transcriptional features of Disse space. We observed an accumulation of polystyrene MP microbeads in the DOs, and TBBPA exacerbated the process. Neither MPs and TBBPA alone nor the co-exposure at non-cytotoxicity dosages could affect the liver functions of healthy donor hiPSC-derived DOs, as revealed by transcriptomic and biochemical analyses, whereas alcoholic liver disease (ALD) patient hiPSC-derived DOs exhibited the ALD disease transcriptional profiles. We found that MPs/TBBPA co-exposure significantly influenced the patient organoids in terms of the pathological transcription expression and biochemical profiles. These results suggested that both hereditary factors and pollutants contribute to susceptibility to environmental toxicants. This study exemplified the value of bioprinting hiPSC-derived organoids in environmental toxicology, offering a powerful strategy to advance the personalized environmental toxicology paradigm.

Keywords
Disse space organoids
Induced pluripotent stem cells
Bioprinting; Microplastics
Toxicology
Funding
The authors were sincerely grateful for funding from the National Key Research and Development Program of China (2022YFA1104600 and 2018YFA0109000).
Conflict of interest
The authors declare no conflicts of interest.
References
  1. Vethaak AD, Legler J. Microplastics and human health. Science. 2021;371:672-674. doi: 10.1126/science.abe5041
  2. Li S, Ma R, Zhu X, et al. Sorption of tetrabromobisphenol A onto microplastics: Behavior, mechanisms, and the effects of sorbent and environmental factors. Ecotoxicol Environ Safety. 2021;210:111842. doi: 10.1016/j.ecoenv.2020.111842
  3. Leslie HA, van Velzen MJM, Brandsma SH, et al. Discovery and quantification of plastic particle pollution in human blood. Environ Int. 2022;163:107199. doi: 10.1016/j.envint.2022.107199
  4. Ragusa A, Svelato A, Santacroce C, et al. Plasticenta: First evidence of microplastics in human placenta. Environ Int. 2021;146:106274. doi: 10.1016/j.envint.2020.106274
  5. Horvatits T, Tamminga M, Liu B, et al. Microplastics detected in cirrhotic liver tissue. EBioMedicine. 2022;82:104147. doi: 10.1016/j.ebiom.2022.104147
  6. Danopoulos E, Twiddy M, West R, et al. A rapid review and meta-regression analyses of the toxicological impacts of microplastic exposure in human cells. J Hazard Mater. 2022;427:127861. doi: 10.1016/j.jhazmat.2021.127861
  7. Colnot T, Kacew S, Dekant W. Mammalian toxicology and human exposures to the flame retardant 2,2’,6,6’-tetrabromo- 4,4’-isopropylidenediphenol (TBBPA): Implications for risk assessment. Arch Toxicol. 2014;88:553-573. doi: 10.1007/s00204-013-1180-8
  8. Lai DY, Kacew S, Dekant W. Tetrabromobisphenol A (TBBPA): Possible modes of action of toxicity and carcinogenicity in rodents. Food Chem Toxicol. 2015;80:206-214. doi: 10.1016/j.fct.2015.03.023
  9. Liu K, Li J, Yan S, et al. A review of status of tetrabromobisphenol A (TBBPA) in China. Chemosphere. 2016;148:8-20. doi: 10.1016/j.chemosphere.2016.01.023
  10. Zhou H, Yin NY, Faiola F. Tetrabromobisphenol A (TBBPA): A controversial environmental pollutant. J Environ Sci. 2020;97:54-66. doi: 10.1016/j.jes.2020.04.039
  11. Xu S, Wu C, Guo WB, et al. Polystyrene nanoplastics inhibit the transformation of Tetrabromobisphenol A by the bacterium Rhodococcus jostii. Acs Nano. 2022;16: 405-414. doi: 10.1021/acsnano.1c07133
  12. Yu Y, Ma R, Qu H, et al. Enhanced adsorption of tetrabromobisphenol a (TBBPA) on cosmetic-derived plastic microbeads and combined effects on zebrafish. Chemosphere. 2020;248:126067. doi: 10.1016/j.chemosphere.2020.126067
  13. Lua I, Li Y, Zagory JA, et al. Characterization of hepatic stellate cells, portal fibroblasts, and mesothelial cells in normal and fibrotic livers. J Hepatol. 2016;64:1137-1146. doi: 10.1016/j.jhep.2016.01.010
  14. Cuvellier M, Ezan F, Oliveira H, et al. 3D culture of HepaRG cells in GelMa and its application to bioprinting of a multicellular hepatic model. Biomaterials, 2021;269:120611. doi: 10.1016/j.biomaterials.2020.120611
  15. Rowe RG, Daley GQ. Induced pluripotent stem cells in disease modelling and drug discovery. Nat Rev Genet, 2019;20:377-388. doi: 10.1038/s41576-019-0100-z
  16. Soman SS, Vijayavenkataraman S. Applications of 3D bioprinted-induced pluripotent stem cells in healthcare. Int J Bioprint. 2020;6:280. doi: 10.18063/ijb.v6i4.280
  17. Palpant NJ, Pabon L, Friedman CE, et al. Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Nat Protoc. 2017;12:15-31. doi: 10.1038/nprot.2016.153
  18. Yao R, Alkhawtani AYF, Chen R, Luan J, Xu M. Rapid and efficient in vivo angiogenesis directed by electro-assisted bioprinting of alginate/collagen microspheres with human umbilical vein endothelial cell coating layer. Int J Bioprint. 2019;5:194. doi: 10.18063/ijb.v5i2.1.194
  19. Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature. 2013;499:481-484. doi: 10.1038/nature12271
  20. Li Y, Jiang X, Li L, et al. 3D printing human induced pluripotent stem cells with novel hydroxypropyl chitin bioink: scalable expansion and uniform aggregation. Biofabrication. 2018;10:044101. doi: 10.1088/1758-5090/aacfc3
  21. Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. 2016;8:035020. doi: 10.1088/1758-5090/8/3/035020
  22. Feng L, Liang S, Zhou Y, et al. Three-Dimensional Printing of Hydrogel Scaffolds with Hierarchical Structure for Scalable Stem Cell Culture. ACS Biomater Sci Eng. 2020;6: 2995-3004. doi: 10.1021/acsbiomaterials.9b01825
  23. Suntornnond R, Ng WL, Huang X, et al. Improving printability of hydrogel-based bio-inks for thermal inkjet bioprinting applications via saponification and heat treatment processes. J Mater Chem B. 2022;10:5989-6000. doi: 10.1039/d2tb00442a
  24. Below CR, Kelly J, Brown A, et al. A microenvironment-inspired synthetic three-dimensional model for pancreatic ductal adenocarcinoma organoids. Nat Mater. 2022;21: 110-119. doi: 10.1038/s41563-021-01085-1
  25. Kanninen LK, Harjumaki R, Peltoniemi P, et al. Laminin-511 and laminin-521-based matrices for efficient hepatic specification of human pluripotent stem cells. Biomaterials. 2016;103:86-100. doi: 10.1016/j.biomaterials.2016.06.054
  26. Huo H, Liu F, Luo Y, et al. Triboelectric nanogenerators for electro-assisted cell printing. Nano Energy. 2020;67:104150. doi: 10.1016/j.nanoen.2019.104150
  27. Horiguchi I, Torizal FG, Nagate H, et al. Protection of human induced pluripotent stem cells against shear stress in suspension culture by Bingham plastic fluid. Biotechnol Prog. 2021;37:e3100. doi: 10.1002/btpr.3100
  28. Xu L, Hui AY, Albanis E, et al. Human hepatic stellate cell lines, LX-1 and LX-2:New tools for analysis of hepatic fibrosis. Gut. 2005;54:142-151. doi: 10.1136/gut.2004.042127
  29. Caldwell J, Lehner R, Balog S, et al. Fluorescent plastic nanoparticles to track their interaction and fate in physiological environments. Environ Sci Nano. 2021;8:502-513. doi: 10.1039/D0EN00944J
  30. Caldwell J, Taladriz-Blanco P, Lehner R, et al. The micro-, submicron-, and nanoplastic hunt: A review of detection methods for plastic particles. Chemosphere. 293:133514. doi: 10.1016/j.chemosphere.2022.133514
  31. Zauner W, Farrow NA, Haines AMR. In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J Control Release. 2001;71:39-51. doi: 10.1016/s0168-3659(00)00358-8
  32. Lunov O, Syrovets T, Loos C, et al. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. Acs Nano. 2011;5:1657-1669. doi: 10.1021/nn2000756
  33. Shen R, Yang K, Cheng X, et al. Accumulation of polystyrene microplastics induces liver fibrosis by activating cGAS/ STING pathway. Environ Pollut. 2022;300:118986. doi: 10.1016/j.envpol.2022.118986
  34. Wang X, Wei L, Zhu JB, et al. Environmentally relevant doses of tetrabromobisphenol A (TBBPA) cause immunotoxicity in murine macrophages. Chemosphere, 2019;236:124413. doi: 10.1016/j.chemosphere.2019.124413
  35. Banerjee A, Shelver WL. Micro- and nanoplastic induced cellular toxicity in mammals: A review. Sci Total Environ. 2021;755:142518. doi: 10.1016/j.scitotenv.2020.142518
  36. Yin N, Liang S, Liang S, et al. TBBPA and its alternatives disturb the early stages of neural development by interfering with the NOTCH and WNT pathways. Environ Sci Technol. 52:5459-5468. doi: 10.1021/acs.est.8b00414
  37. Cheng W, Li X, Zhou Y, et al. Polystyrene microplastics induce hepatotoxicity and disrupt lipid metabolism in the liver organoids. Sci Total Environ. 2021;806:150328. doi: 10.1016/j.scitotenv.2021.150328
  38. Roman S, Zepeda-Carrillo EA, Moreno-Luna LE, et al. Alcoholism and liver disease in Mexico: Genetic and environmental factors. World J Gastroenterol. 2013;19: 7972-7982. doi: 10.3748/wjg.v19.i44.7972
  39. Gurevich I, Burton SA, Munn C, et al. iPSC-derived hepatocytes generated from NASH donors provide a valuable platform for disease modeling and drug discovery. Biol Open. 2020;9:bio055087. doi: 10.1242/bio.055087
  40. Ceni E, Mello T, Galli A. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism. World J Gastroenterol. 2014;20:17756-17772. doi: 10.3748/wjg.v20.i47.17756
  41. Purohit V, Gao B, Song BJ. Molecular mechanisms of alcoholic fatty liver. Alcohol Clin Exp Res. 2009;33:191-205. doi: 10.1111/j.1530-0277.2008.00827.x
  42. Affo S, Dominguez M, Lozano JJ, et al. Transcriptome analysis identifies TNF superfamily receptors as potential therapeutic targets in alcoholic hepatitis. Gut. 2013;62: 452-460. doi: 10.1136/gutjnl-2011-301146
  43. Chaparro M, Sanz-Cameno P, Trapero-Marugán M, García-Buey L, Moreno-Otero R, et al. Mechanisms of angiogenesis in chronic inflammatory liver disease. Annals of Hepatology. 2007;6:208-213. doi: 10.1016/S1665-2681(19)31900-3
  44. An R, Wang X, Yang L, et al. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology. 2021;449:152665. doi: 10.1016/j.tox.2020.152665
  45. Vlacil AK, Banfer S, Jacob R, et al. Polystyrene microplastic particles induce endothelial activation. Plos One. 2021;16:e0260181. doi: 10.1371/journal.pone.0260181
  46. Mansouri A, Gattolliat CH, Asselah T. Mitochondrial dysfunction and signaling in chronic liver diseases. Gastroenterology. 2018;155:629-647. doi: 10.1053/j.gastro.2018.06.083
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing