Platelet biology in cancer and leukemia: Mechanisms and therapeutic insights

Acute leukemia (AL) is a hematological malignancy characterized by the uncontrolled proliferation of immature blood cells, disrupting normal hematopoiesis and leading to severe cytopenias and tissue infiltration. In acute myeloid leukemia (AML), leukemic blasts and dysfunctional megakaryocytes replace healthy bone marrow cells, severely impairing platelet production and resulting in thrombocytopenia. This profound reduction in platelet count increases the risk of life-threatening hemorrhagic events, posing a significant challenge in AML management. Beyond their well-established role in hemostasis, platelets actively participate in cancer progression through tumor cell-induced platelet aggregation, which promotes metastasis and immune evasion. By forming microthrombi and secreting a diverse range of bioactive molecules, platelets create a tumor-supportive microenvironment through interactions with endothelial cells, immune cells, fibroblasts, and epithelial cells. These interactions enhance angiogenesis, inflammation, and tumor survival, thereby influencing the pathophysiology of leukemia. Emerging evidence suggests that platelet dysfunction in AML is not merely a consequence of thrombocytopenia but also a key contributor to disease progression. Alterations in platelet signaling, granule secretion, and receptor expression may further exacerbate leukemic cell proliferation and immune evasion. Moreover, platelet-derived extracellular vesicles have been implicated in facilitating leukemic stem cell survival and chemotherapy resistance. This review provides a comprehensive analysis of platelet dysfunction in AML, emphasizing its mechanistic role in disease progression and its potential as a therapeutic target. A deeper understanding of platelet-leukemia crosstalk could reveal novel strategies for mitigating tumor growth and improving patient outcomes. Targeting platelet-mediated pathways may not only enhance conventional leukemia treatments but also pave the way for innovative anti-leukemic therapies with improved efficacy and reduced disease relapse.
- Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11(2):123-134. doi: 10.1038/nrc3004
- Elaskalani O, Berndt MC, Falasca M, Metharom P. Targeting platelets for the treatment of cancer. Cancers (Basel). 2017;9(7):94. doi: 10.3390/CANCERS9070094
- Koenen RR. The prowess of platelets in immunity and inflammation. Thromb Haemost. 2016;116(4):605-612. doi: 10.1160/TH16-04-0300
- Zhao J, Huang A, Zeller J, Peter K, McFadyen JD. Decoding the role of platelets in tumour metastasis: Enigmatic accomplices and intricate targets for anticancer treatments. Front Immunol. 2023;14:1256129. doi: 10.3389/FIMMU.2023.1256129/PDF
- Lou XL, Sun J, Gong SQ, Yu XF, Gong R, Deng H. Interaction between circulating cancer cells and platelets: Clinical implication. Chin J Cancer Res. 2015;27(5):450-460. doi: 10.3978/J.ISSN.1000-9604.2015.04.10
- Zhu J, Wang R, Yang C, et al. Blocking tumor-platelet crosstalk to prevent tumor metastasis via reprograming glycolysis using biomimetic membrane-hybridized liposomes. J Control Release. 2024;366:328-341. doi: 10.1016/J.JCONREL.2023.12.052
- Han H, Cao FL, Wang BZ, Mu XR, Li GY, Wang XW. Expression of angiogenesis regulatory proteins and epithelial-mesenchymal transition factors in platelets of the breast cancer patients. ScientificWorldJournal. 2014;2014:878209. doi: 10.1155/2014/878209
- Kuter DJ. What is the potential for thrombopoietic agents in acute leukemia? Best Pract Res Clin Haematol. 2011;24(4):553-558. doi: 10.1016/j.beha.2011.09.002
- Karrar HR, Nouh MI, Al Juman AA, et al. Leukemia perspective in current practice. World Family Med. 2022;20(13):193-197. doi: 10.5742/mewfm.2023.95251581
- Shi R, Zhou X, Ji WJ, et al. The emerging role of miR-223 in platelet reactivity: Implications in antiplatelet therapy. Biomed Res Int. 2015;2015:981841. doi: 10.1155/2015/981841
- Basu S, Nagy JA, Pal S, et al. The neurotransmitter dopamine inhibits angiogenesis induced by vascular permeability factor/vascular endothelial growth factor. Nat Med. 2001;7(5):569-574. doi: 10.1038/87895
- Guo Y, Cui W, Pei Y, Xu D. Platelets promote invasion and induce epithelial to mesenchymal transition in ovarian cancer cells by TGF-β signaling pathway. Gynecol Oncol. 2019;153(3):639-650. doi: 10.1016/J.YGYNO.2019.02.026
- Saboor M, Ayub Q, Ilyas S, Moinuddin. Platelet receptors; an instrumental of platelet physiology. Pak J Med Sci. 2013;29(3):891-896. doi: 10.12669/PJMS.293.3497
- Crist SA, Elzey BD, Ludwig AT, et al. Expression of TNF-related apoptosis-inducing ligand (TRAIL) in megakaryocytes and platelets. Exp Hematol. 2004;32(11):1073-1081. doi:10.1016/J.EXPHEM.2004.07.022
- Liefaard MC, Moore KS, Mulder L, et al. Tumour-educated platelets for breast cancer detection: Biological and technical insights. Br J Cancer. 2023;128(8):1572-1581. doi: 10.1038/S41416-023-02174-5
- Chaudhary PK, Kim S, Kim S. An insight into recent advances on platelet function in health and disease. Int J Mol Sci. 2022;23(11):6022. doi: 10.3390/IJMS23116022
- Faria AVS, Andrade SS, Peppelenbosch MP, Ferreira-Halder CV, Fuhler GM. Platelets in aging and cancer-“double-edged sword”. Cancer Metastasis Rev. 2020;39(4):1205-1221. doi: 10.1007/S10555-020-09926-2
- Mu D, Long S, Guo L, Liu W. High expression of VAV gene family predicts poor prognosis of acute myeloid leukemia. Technol Cancer Res Treat. 2021;20:1-17. doi: 10.1177/15330338211065877
- Tang L, Shi H, Luo Y. Small but mighty: Platelets as multifunctional architects of tumor metastasis and immune regulation. Med Comm Future Med. 2024;3(4):e70000. doi: 10.1002/MEF2.70000
- Farooqi AA, Attar R. Role of platelet-derived growth factor-mediated signaling in carcinogenesis and metastasis. Cell Mol Biol (Noisy-le-grand). 2023;69(14):300-302. doi: 10.14715/CMB/2023.69.14.49
- Liang X, Wang H, Zhou J, Zhu J, Jiao X, Zhai Z. Platelets form aggregates on the surface of AML cells via CD62P/ PSGL-1 and release TGF-β1 to promote drug resistance. Blood. 2024;144(Supplement 1):5809. doi: 10.1182/BLOOD-2024-210121
- Nikravesh F, Arezoomand H, Khalilabadi RH, Nooshadokht M, Valandani HM. Platelet-derived microparticles enhance Ara-C-induced cell death in acute lymphoblastic leukemia (Nalm-6). BioImpacts. 2024;15(1):30454. doi: 10.34172/BI.30454
- Braun A, Anders HJ, Gudermann T, Mammadova-Bach E. Platelet-cancer interplay: Molecular mechanisms and new therapeutic avenues. Front Oncol. 2021;11:665534. doi: 10.3389/FONC.2021.665534/PDF
- Liao K, Zhang X, Liu J, et al. The role of platelets in the regulation of tumor growth and metastasis: The mechanisms and targeted therapy. MedComm (2020). 2023;4(5):e350. doi: 10.1002/MCO2.350
- Schaubaecher JB, Smiljanov B, Haring F, et al. Procoagulant platelets promote immune evasion in triple-negative breast cancer. Blood. 2024;144(2):216-226. doi: 10.1182/BLOOD.2023022928
- Walsh TG, Metharom P, Berndt MC. The functional role of platelets in the regulation of angiogenesis. Platelets. 2015;26(3):199-211. doi: 10.3109/09537104.2014.909022
- Mohammad-Zadeh LF, Moses L, Gwaltney-Brant SM. Serotonin: A review. J Vet Pharmacol Ther. 2008;31(3): 187-199. doi: 10.1111/J.1365-2885.2008.00944.X
- Da Prada M, Picotti GB. Content and subcellular localization of catecholamines and 5-hydroxytryptamine in human and animal blood platelets: Monoamine distribution between platelets and plasma. Br J Pharmacol. 1979;65(4):653-662. doi: 10.1111/J.1476-5381.1979.TB07878.X
- Battinelli EM, Markens BA, Italiano JE Jr. Release of angiogenesis regulatory proteins from platelet alpha granules: Modulation of physiologic and pathologic angiogenesis. Blood. 2011;118(5):1359-1369. doi: 10.1182/BLOOD-2011-02-334524
- Fidler IJ. The pathogenesis of cancer metastasis: The ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3(6):453-458. doi: 10.1038/nrc1098
- Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20(5):576-590. doi: 10.1016/J.CCR.2011.09.009
- Schumacher D, Strilic B, Sivaraj KK, Wettschureck N, Offermanns S. Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell. 2013;24(1):130-137. doi: 10.1016/J.CCR.2013.05.008
- Leblanc R, Peyruchaud O. Metastasis: New functional implications of platelets and megakaryocytes. Blood. 2016;128(1):24-31. doi: 10.1182/BLOOD-2016-01-636399
- Tímár J, Tóvári J, Rásó E, Mészáros L, Bereczky B, Lapis K. Platelet-mimicry of cancer cells: Epiphenomenon with clinical significance. Oncology. 2005;69(3):185-201. doi: 10.1159/000088069
- Lin RJ, Afshar-Kharghan V, Schafer AI. Paraneoplastic thrombocytosis: The secrets of tumor self-promotion. Blood. 2014;124(2):184-187. doi: 10.1182/BLOOD-2014-03-562538
- Weber MR, Zuka M, Lorger M, et al. Activated tumor cell integrin αvβ3 cooperates with platelets to promote extravasation and metastasis from the blood stream. Thromb Res. 2016;140(Suppl 1):S27-S36. doi: 10.1016/S0049-3848(16)30095-0
- Garcia J, Callewaert N, Borsig L. P-selectin mediates metastatic progression through binding to sulfatides on tumor cells. Glycobiology. 2007;17(2):185-196. doi: 10.1093/GLYCOB/CWL059
- Wang J, Bhakta N, Ayer Miller V, et al. Acute leukemia classification using transcriptional profiles from low-cost nanopore mRNA sequencing. JCO Precis Oncol. 2022;6(6):e2100326. doi: 10.1200/PO.21.00326
- Al-Abbas NS, Shaer NA. Combination of coumarin and doxorubicin induces drug-resistant acute myeloid leukemia cell death. Heliyon. 2021;7(3):e06255. doi: 10.1016/J.HELIYON.2021.E06255
- Qian X, Wen-Jun L. Platelet changes in acute leukemia. Cell Biochem Biophys. 2013;67(3):1473-1479. doi: 10.1007/S12013-013-9648-Y
- Zhang AL, Chen XJ, Zou Y, et al. Clinical features and prognosis of children with acute lymphoblastic leukemia and different platelet levels. Zhongguo Dang Dai Er Ke Za Zhi. 2019;21(8):766-771. doi: 10.7499/J.ISSN.1008-8830.2019.08.006
- Foss B, Bruserud Ø. Platelet functions and clinical effects in acute myelogenous leukemia. Thromb Haemost. 2008;99(1):27-37. doi: 10.1160/TH07-04-0240
- Qu X, Zheng A, Yang J, et al. Global, regional, and national burdens of leukemia from 1990 to 2019: A systematic analysis of the global burden of disease in 2019 based on the APC model. Cancer Med. 2024;13(17):e7150. doi: 10.1002/cam4.7150
- Korniluk A, Koper-Lenkiewicz OM, Kamińska J, Kemona H, Dymicka-Piekarska V. Mean platelet volume (MPV): New perspectives for an old marker in the course and prognosis of inflammatory conditions. Mediators Inflamm. 2019;2019:9213074. doi: 10.1155/2019/9213074
- Zhang L, Liu J, Qin X, Liu W. Platelet-acute leukemia interactions. Clin Chim Acta. 2022;536:29-38. doi: 10.1016/J.CCA.2022.09.015
- Merdin A, Dal MS, Çakar MK, et al. Analysis of pre-chemotherapy WBC, PLT, monocyte, hemoglobin, and MPV levels in acute myeloid leukemia patients with WT1, FLT3, or NPM gene mutations. Medicine (United States). 2020;99(14):e19627. doi: 10.1097/MD.0000000000019627
- Zhang JQ, Hou XH, Hong Q, et al. Diagnostic value of MPV, PDW, PAIg and their combination for megakaryocyte dysmaturity in children with acute immune thrombocytopenic purpura. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2019;27(6):1949-1954. doi: 10.19746/J.CNKI.ISSN.1009-2137.2019.06.039
- Tığlıoğlu M, Albayrak M, Doğan S, et al. Mean platelet volume is a predictive and prognostic marker for patients with acute myeloid leukemia: A two-center retrospective analysis. Leuk Lymphoma. 2021;62(11):2755-2761. doi: 10.1080/10428194.2021.1929962
- Beyan C. Mean platelet volume may not be a predictive and prognostic marker in patients with acute myeloid leukemia. Leuk Lymphoma. 2021;62(13):3313. doi: 10.1080/10428194.2021.1953017
- Asare R, Opoku-Okrah C, Danquah KO, et al. Expression of platelet parameters and platelet membrane glycoproteins in childhood Burkitt lymphoma. Leuk Res. 2019;84:106189. doi: 10.1016/J.LEUKRES.2019.106189
- Contursi A, Tacconelli S, Di Berardino S, De Michele A, Patrignani P. Platelets as crucial players in the dynamic interplay of inflammation, immunity, and cancer: Unveiling new strategies for cancer prevention. Front Pharmacol. 2024;15:1520488. doi: 10.3389/FPHAR.2024.1520488/PDF
- Ali RA, Wuescher LM, Worth RG. Platelets: Essential components of the immune system. Curr Trends Immunol. 2015;16:65-78.
- Arman M, Krauel K. Human platelet IgG Fc receptor FcγRIIA in immunity and thrombosis. J Thromb Haemost. 2015;13(6):893-908. doi: 10.1111/JTH.12905
- Boylan B, Gao C, Rathore V, Gill JC, Newman DK, Newman PJ. Identification of FcgammaRIIa as the ITAM-bearing receptor mediating alphaIIbbeta3 outside-in integrin signaling in human platelets. Blood. 2008;112(7):2780-2786. doi: 10.1182/BLOOD-2008-02-142125
- Puhm F, Boilard E, MacHlus KR. Platelet extracellular vesicles: Beyond the blood. Arterioscler Thromb Vasc Biol. 2021;41(1):87-96. doi: 10.1161/ATVBAHA.120.314644
- Yeung J, Tourdot BE, Fernandez-Perez P, et al. Platelet 12-LOX is essential for FcγRIIa-mediated platelet activation. Blood. 2014;124(14):2271-2279. doi: 10.1182/BLOOD-2014-05-575878
- Kitamura T, Qian BZ, Pollard JW. Immune cell promotion of metastasis. Nat Rev Immunol. 2015;15(2):73-86. doi: 10.1038/nri3789
- Placke T, Örgel M, Schaller M, et al. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res. 2012;72(2):440-448. doi: 10.1158/0008-5472.CAN-11-1872
- Hu YB, Shao LB, Zhao L, Shen Y, Wu K, Wang YQ. Platelets decrease the sensitivity of leukemia cell L1210 to multiple drugs via activiting the AKT and ERK signalling pathway. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2016;24(5):1489-1494. doi: 10.7534/J.ISSN.1009-2137.2016.05.037
- Tran DQ, Andersson J, Wang R, Ramsey H, Unutmaz D, Shevach EM. GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells. Proc Natl Acad Sci U S A. 2009;106(32):13445-13450. doi: 10.1073/PNAS.0901944106
- Li C, Hao Z, Bo G, Zheng G. Clinical efficacy of platelet transfusion therapy in patients with leukemia and analysis of risk factors for ineffective transfusion. Oncol Lett. 2020;19(3):2554-2561. doi: 10.3892/OL.2020.11268
- Burnouf T, Goubran HA. Platelets, coagulation and cancer: Multifaceted interactions. Curr Res Med. 2012;3(2):130-140. doi: 10.3844/AMJSP.2012.130.140
- Zhang YJ, Zhan L, Jiang X, Tang X. Comprehensive review for non-coding RNAs: From mechanisms to therapeutic applications. Biochem Pharmacol. 2024;224:116218. doi: 10.1016/j.bcp.2024.116218
- Miao S, Zhang Q, Chang W, Wang J. New insights into platelet-enriched miRNAs: Production, functions, roles in tumors, and potential targets for tumor diagnosis and treatment. 2021;20:1359-1366. doi: 10.1158/1535-7163.MCT-21-0050
- Ayemoba CE, Zhang S, Di Staulo AM, et al. Platelet factor 4 binds to low-density lipoprotein receptor to block leukemic stem cell expansion and recurrence. Blood. 2023;142(Supplement 1):516. doi: 10.1182/BLOOD-2023-186962