Revisiting Alport syndrome: Genetic background, phenotypic variability, and therapeutic approaches

Nearly a century has passed since Cecil A. Alport first described the triad of nephritis, hearing loss, and ocular abnormalities that would later be recognized as the second most common inherited nephropathy and a significant cause of end-stage kidney disease. Pathogenic variants in COL4A3, COL4A4, and COL4A5 genes lead to compromised synthesis, assembly, and/or function of α3, α4, and α5 chains of type IV collagen (COL4). This disruption leads to an abnormal trimerization of COL4 into a stable network, impairing the integrity and function of glomerular, cochlear, and ocular basement membranes. The gold standard for Alport syndrome diagnosis is molecular genetic testing, which provides a non-invasive and highly specific approach. In settings with limited access to genetic testing, kidney biopsy with electron microscopy remains essential, revealing characteristic glomerular basement membrane abnormalities. Despite significant advancements in understanding its genetic and molecular basis, Alport syndrome remains a relentlessly progressive disorder, often culminating in end-stage kidney disease during early adulthood. While no disease-specific therapy exists, early initiation of renin-angiotensin-aldosterone system blockade is the cornerstone of AS management, delaying disease progression. Emerging therapies, including sodium-glucose cotransporter-2 inhibitors and mineralocorticoid receptor antagonists, are being investigated for their nephroprotective potential. In addition, recent breakthroughs in therapeutic research – including gene- and cell-based treatments – hold the potential to transform disease management. Genetic factors influence treatment response, reinforcing the need for personalized therapeutic approaches. In this review, we discuss the genetic background and phenotypic correlations of Alport syndrome, the pathophysiological mechanisms driving both renal and extrarenal manifestations, and explore diagnostic approaches and emerging strategies aimed at modifying the natural course of this disease.
- De Gregorio V, Caparali EB, Shojaei A, Ricardo S, Barua M. Alport syndrome: Clinical spectrum and therapeutic advances. Kidney Med. 2023;5(5):100631. doi: 10.1016/J.XKME.2023.100631
- Huang HX, Tsai IJ, Greenbaum LA. Alport syndrome: Expanding diagnosis and treatment. Pediatr Neonatol. 2024;66:S13-S17. doi: 10.1016/J.PEDNEO.2024.10.005
- Puapatanakul P, Miner JH. Alport syndrome and Alport kidney diseases - elucidating the disease spectrum. Curr Opin Nephrol Hypertens. 2024;33(3):283-290. doi: 10.1097/MNH.0000000000000983
- Savige J. Heterozygous pathogenic COL4A3 and COL4A4 variants (autosomal dominant alport syndrome) are common, and not typically associated with end-stage kidney failure, hearing loss, or ocular abnormalities. Kidney Int Rep. 2022;7(9):1933-1938. doi: 10.1016/J.EKIR.2022.06.001
- Gibson J, Fieldhouse R, Chan MMY, et al. Prevalence estimates of predicted pathogenic col4a3-col4a5 variants in a population sequencing database and their implications for alport syndrome. J Am Soc Nephrol. 2021;32(9):2273-2290. doi: 10.1681/ASN.2020071065
- Torra R, Lipska-Ziętkiewicz B, Acke F, et al. Diagnosis, management and treatment of the Alport syndrome-2024 guideline on behalf of ERKNet, ERA and ESPN. Nephrol Dial Transplant. 2014;16(3):518-524. doi: 10.1093/NDT/GFAE265
- Gatseva A, Sin YY, Brezzo G, Van Agtmael T. Basement membrane collagens and disease mechanisms. Essays Biochem. 2019;63(3):297-312. doi: 10.1042/EBC20180071
- Funk SD, Lin MH, Miner JH. Alport syndrome and pierson syndrome: Diseases of the glomerular basement membrane. Matrix Biol. 2018;71-72:250. doi: 10.1016/J.MATBIO.2018.04.008
- Plaisier E, Gribouval O, Alamowitch S, et al. COL4A1 mutations and hereditary angiopathy, nephropathy, aneurysms, and muscle cramps. N Engl J Med. 2007;357(26):2687-2695. doi: 10.1056/nejmoa071906
- Plaisier E, Ronco P. COL4A1-Related Disorders; 2016. Available from: https://www.radiopaedia.org [Last accessed on 2024 Dec 14]. doi: 10.53347/rid-55939
- Jeanne M, Labelle-Dumais C, Jorgensen J, et al. COL4A2 Mutations Impair COL4A1 and COL4A2 secretion and cause hemorrhagic stroke. Am J Hum Genet. 2012;90(1):91. doi: 10.1016/J.AJHG.2011.11.022
- Heidet L, Gubler MC. The renal lesions of Alport syndrome. J Am Soc Nephrol. 2009;20(6):1210-1215. doi: 10.1681/ASN.2008090984
- Kang E, Park BH, Lee H, et al. A comprehensive review of Alport syndrome: Definition, pathophysiology, clinical manifestations, and diagnostic considerations. Korean J Nephrol. 2024. doi: 10.23876/J.KRCP.24.065
- Jais JP, Knebelmann B, Giatras I, et al. X-linked alport syndrome. J Am Soc Nephrol. 2000;11(4):649-657. doi: 10.1681/ASN.V114649
- Shaw EA, Colville D, Wang YY, et al. Characterization of the peripheral retinopathy in X-linked and autosomal recessive Alport syndrome. Nephrol Dial Transplant. 2007;22(1):104-108. doi: 10.1093/NDT/GFL607
- Christopher A, Kaur R, Kaur G, Kaur A, Gupta V, Bansal P. MicroRNA therapeutics: Discovering novel targets and developing specific therapy. Perspect Clin Res. 2016;7(2):68. doi: 10.4103/2229-3485.179431
- Nozu K, Minamikawa S, Yamada S, et al. Characterization of contiguous gene deletions in COL4A6 and COL4A5 in Alport syndrome-diffuse leiomyomatosis. J Hum Genet. 2017;62(7):733-735. doi: 10.1038/JHG.2017.28
- Uliana V, Marcocci E, Mucciolo M, et al. Alport syndrome and leiomyomatosis: The first deletion extending beyond COL4A6 intron 2. Pediatr Nephrol. 2011;26(5):717-724. doi: 10.1007/S00467-010-1693-9
- Matthaiou A, Poulli T, Deltas C. Prevalence of clinical, pathological and molecular features of glomerular basement membrane nephropathy caused by COL4A3 or COL4A4 mutations: A systematic review. Clin Kidney J. 2020;13(6):1025. doi: 10.1093/CKJ/SFZ176
- Lee JM, Nozu K, Choi DE, Kang HG, Ha IS, Cheong HII. Features of autosomal recessive alport syndrome: A systematic review. J Clin Med. 2019;8(2):178. doi: 10.3390/JCM8020178
- Zhang Y, Böckhaus J, Wang F, et al. Genotype-phenotype correlations and nephroprotective effects of RAAS inhibition in patients with autosomal recessive Alport syndrome. Pediatr Nephrol. 2021;36(9):2719-2730. doi: 10.1007/S00467-021-05040-9
- Storey H, Savige J, Sivakumar V, Abbs S, Flinter FA. COL4A3/COL4A4 mutations and features in individuals with autosomal recessive alport syndrome. J Am Soc Nephrol. 2013;24(12):1945-1954. doi: 10.1681/ASN.2012100985
- García-Aznar JM, De la Higuera L, Besada Cerecedo L, et al. New insights into renal failure in a cohort of 317 patients with autosomal dominant forms of alport syndrome: Report of two novel heterozygous mutations in COL4A3. J Clin Med. 2022;11(16):4883. doi: 10.3390/JCM11164883/S1
- Marcocci E, Uliana V, Bruttini M, et al. Autosomal dominant Alport syndrome: Molecular analysis of the COL4A4 gene and clinical outcome. Nephrol Dial Transplant. 2009;24(5):1464-1471. doi: 10.1093/NDT/GFN681
- Savige J, Renieri A, Ars E, et al. Digenic alport syndrome. Clin J Am Soc Nephrol. 2022;17(11):1697-1706. doi: 10.2215/CJN.03120322
- Kashtan CE, Ding J, Garosi G, et al. Alport syndrome: A unified classification of genetic disorders of collagen IV α345: A position paper of the Alport Syndrome Classification Working Group. Kidney Int. 2018;93(5):1045-1051. doi: 10.1016/J.KINT.2017.12.018
- Mencarelli MA, Heidet L, Storey H, et al. Evidence of digenic inheritance in Alport syndrome. J Med Genet. 2015;52(3):163-174. doi: 10.1136/JMEDGENET-2014-102822
- Yamamura T, Nozu K, Minamikawa S, et al. Comparison between conventional and comprehensive sequencing approaches for genetic diagnosis of Alport syndrome. Mol Genet Genomic Med. 2019;7(9):e883. doi: 10.1002/MGG3.883
- Furlano M, Arlandis R, Del Prado Venegas M, et al. MYH9 Associated nephropathy. Nefrología (English Edition). 2019;39(2):133-140. doi: 10.1016/J.NEFROE.2018.08.006
- Oh T, Seo HJ, Lee KT, et al. MYH9 nephropathy. Kidney Res Clin Pract. 2014;34(1):53. doi: 10.1016/J.KRCP.2014.09.003
- Savige J, Rana K, Tonna S, Buzza M, Dagher H, Wang YY. Thin basement membrane nephropathy. Kidney Int. 2003;64(4):1169-1178. doi: 10.1046/j.1523-1755.2003.00234.x
- Gross O, Tönshoff B, Weber LT, et al. A multicenter, randomized, placebo-controlled, double-blind phase 3 trial with open-arm comparison indicates safety and efficacy of nephroprotective therapy with ramipril in children with Alport’s syndrome. Kidney Int. 2020;97(6):1275-1286. doi: 10.1016/J.KINT.2019.12.015
- Kashtan CE, Gross O. Clinical practice recommendations for the diagnosis and management of Alport syndrome in children, adolescents, and young adults-an update for 2020. Pediatr Nephrol. 2021;36(3):711-719. doi: 10.1007/S00467-020-04819-6/METRICS
- Gross O, Friede T, Hilgers R, et al. Safety and efficacy of the ace-inhibitor ramipril in alport syndrome: The double-blind, randomized, placebo-controlled, multicenter phase III early PRO-Tect alport trial in pediatric patients. ISRN Pediatr. 2012;2012:436046. doi: 10.5402/2012/436046
- Zhu Z, Rosenkranz KAT, Kusunoki Y, et al. Finerenone added to RAS/SGLT2 blockade for CKD in Alport syndrome. Results of a randomized controlled trial with Col4a3/mice. J Am Soc Nephrol. 2023;34(9):1513-1520. doi: 10.1681/ASN.0000000000000186
- Study Details - A Study to Learn More About How Well the Study Treatment Finerenone Works, How Safe it is, How it Moves Into, Through, and Out of the Body, and the Effects it Has on the Body When Taken With an ACE Inhibitor or Angiotensin Receptor Blocker in Children With Chronic Kidney Disease and Proteinuria. Available from: https:// clinicaltrials.gov/study/NCT05196035#participation-criteria [Last accessed on 2024 Dec 14].
- Yamamura T, Horinouchi T, Nagano C, et al. Genotype-phenotype correlations influence the response to angiotensin-targeting drugs in Japanese patients with male X-linked Alport syndrome. Kidney Int. 2020;98(6):1605-1614. doi: 10.1016/J.KINT.2020.06.038
- Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):17-18. doi: 10.1056/NEJMOA1504720
- Boeckhaus J, Gale DP, Simon J, et al. SGLT2- inhibition in patients with alport syndrome. Kidney Int Rep. 2024;9(12):3490-3500. doi: 10.1016/J.EKIR.2024.09.014
- Gross O, Boeckhaus J, Weber LT, et al. Protocol and rationale for a randomized controlled SGLT2 inhibitor trial in paediatric and young adult populations with chronic kidney disease: Double PRO-Tect Alport. Nephrol Dial Transplant. 2024;40:679-687. doi: 10.1093/NDT/GFAE180
- Dufek B, Meehan DT, Delimont D, et al. Endothelin A receptor activation on mesangial cells initiates Alport glomerular disease. Kidney Int. 2016;90(2):300-310. doi: 10.1016/j.kint.2016.02.018
- Study Details - Study of Sparsentan Treatment in Pediatrics With Proteinuric Glomerular Disease. Available from: https://clinicaltrials.gov/study/nct05003986 [Last accessed 2024 Dec 14].
- Kim SG, Akinfolarin AA, Inker LA, et al. WCN23-1117 atrasentan in patients with proteinuric glomerular diseases-the affinity study. Kidney Int Rep. 2023;8(9):1902. doi: 10.1016/j.ekir.2023.02.1089
- Komers R, Coppo R, Masthan Ahmed NA, et al. WCN24- 774 preliminary findings from the phase 2 eppik study of sparsentan in pediatric patients with selected proteinuric glomerular diseases. Kidney Int Rep. 2024;9(4):S142-S143. doi: 10.1016/J.EKIR.2024.02.294
- Unger RH, Clark GO, Scherer PE, Orci L. Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids. 2010;1801(3):209-214. doi: 10.1016/J.BBALIP.2009.10.006
- Merscher S, Pedigo CE, Mendez AJ. Metabolism, energetics, and lipid biology in the podocyte - cellular cholesterol-mediated glomerular injury. Front Endocrinol (Lausanne). 2014;5:169. doi: 10.3389/FENDO.2014.00169
- Mitrofanova A, Molina J, Varona Santos J, et al. Hydroxypropyl-β-cyclodextrin protects from kidney disease in experimental Alport syndrome and focal segmental glomerulosclerosis. Kidney Int. 2018;94(6):1151-1159. doi: 10.1016/J.KINT.2018.06.031
- Study Details - Study to Evaluate R3R01 in Patients With Alport Syndrome and Patients With Focal Segmental Glomerulosclerosis. Available from: https://clinicaltrials.gov/ study/NCT05267262 [Last accessed on 2024 Dec 14].
- Rao IR, Kolakemar A, Shenoy SV, et al. Hydroxychloroquine in nephrology: Current status and future directions. J Nephrol. 2023;36(8):2191-2208. doi: 10.1007/S40620-023-01733-6
- Chavez E, Rodriguez J, Drexler Y, Fornoni A. Novel therapies for alport syndrome. Front Med (Lausanne). 2022;9:848389. doi: 10.3389/FMED.2022.848389/BIBTEX
- Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology. Nat Rev Rheumatol. 2020;16:1-12. doi: 10.1038/s41584-020-0372-x
- Sun L, Kuang XY, Zhang J, Huang WY. Hydroxychloroquine ameliorates hematuria in children with X-linked alport syndrome: Retrospective Case series study. Pharmgenomics Pers Med. 2023;16:145. doi: 10.2147/PGPM.S394290
- Study Details - Study of Hydroxychloroquine in Patients With X-linked Alport Syndrome in China (CHXLAS). Available from: https://clinicaltrials.gov/study/NCT04937907 [Last accessed on 2024 Dec 14].
- Warady BA, Pergola PE, Agarwal R, et al. Effects of bardoxolone methyl in alport syndrome. Clin J Am Soc Nephrol. 2022;17(12):1763-1774. doi: 10.2215/CJN.02400222/-/DCSUPPLEMENTAL
- Chertow GM, Appel GB, Andreoli S, et al. Study design and baseline characteristics of the CARDINAL trial: A phase 3 study of bardoxolone methyl in patients with alport syndrome. Am J Nephrol. 2021;52(3):180-189. doi: 10.1159/000513777
- Quinlan C, Jayasinghe K. Bardoxolone methyl for alport syndrome: Opportunities and challenges. Clin J Am Soc Nephrol. 2022;17(12):1713. doi: 10.2215/CJN.12491022
- Yamamura T, Horinouchi T, Adachi T, et al. Development of an exon skipping therapy for X-linked Alport syndrome with truncating variants in COL4A5. Nat Commun. 2020;11(1):2777. doi: 10.1038/S41467-020-16605-X
- Cox DBT, Platt RJ, Zhang F. Therapeutic genome editing: Prospects and challenges. Nat Med. 2015;21(2):121-131. doi: 10.1038/NM.3793
- Daga S, Donati F, Capitani K, et al. New frontiers to cure Alport syndrome: COL4A3 and COL4A5 gene editing in podocyte-lineage cells. Eur J Hum Genet. 2020;28(4):480-490. doi: 10.1038/S41431-019-0537-8