AccScience Publishing / GPD / Online First / DOI: 10.36922/gpd.8575
REVIEW ARTICLE

Exploring the multifaceted roles of adenosine: A molecule with diverse functions

Jacqueline Fátima Martins de Almeida1 Martina Contestabile1 Simona Daniele1*
Show Less
1 Department of Pharmacy, Faculty of Pharmacy, University of Pisa, Pisa, Italy
Submitted: 17 January 2025 | Revised: 27 February 2025 | Accepted: 28 February 2025 | Published: 27 March 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Adenosine is a ubiquitous molecule distributed in all eukaryotic cells of the human body. The function of adenosine varies depending on the cell type and receptor subtypes involved. For instance, adenosine 2A and 2B receptors couple with stimulatory G proteins, leading to increased intracellular cyclic adenosine 3’,5’-monophosphate (cAMP) levels upon activation. In contrast, adenosine 1 and 3 receptors couple with inhibitory G proteins, resulting in decreased intracellular cAMP levels. Consequently, an imbalance of adenosine receptor expression can affect several biological pathways and mechanisms. In the brain, where adenosine plays an important role, dysregulation of adenosine receptors has been linked to several neurological diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, epilepsy, and Huntington’s disease. Adenosine also modulates cardiovascular function, influencing vasodilatation, blood pressure regulation, heart rate, and platelet activity. In addition, growing evidence highlights the impact of adenosine receptors on decision-making, habits, and goal-directed behaviors, linking them to stress-induced mood depression and other psychiatric disorders. Given the importance of adenosine modulation on human health, studying nutraceuticals and natural substances that influence adenosine could provide valuable insights. Considering the extensive physiological roles of adenosine, this review aims to summarize the diverse functions of adenosine receptors across various human tissues, emphasizing their connection to various diseases and the potential influence of external factors on their expression and functionality.

Graphical abstract
Keywords
Adenosine receptors
G protein-coupled receptors
Adenosine receptors expression
Adenosine receptors and neurological disease
Funding
We acknowledge financial support under the National Recovery and Resilience Plan (NRRP), Mission 4, Component 2, Investment 1.1, Call for Tender No. 104, published on February 2, 2022, by the Italian Ministry of University and Research (MUR), funded by the European Union-NextGenerationEU, under the project title “Development of nano/micro-engineered devices for applications in peripheral nervous system pathological models (ENGInerve)” – CUP I53D23002260006 – Grant number: 2022ZH5M72 (449999_PRIN2022_ DANIELE_2022ZH5M72).
Conflict of interest
Simona Daniele is an editorial board member of this journal but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Separately, other authors declared that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.
References
  1. Idzko M, Ferrari D, Eltzschig HK. Nucleotide signalling during inflammation. Nature. 2014;509(7500):310-317. doi: 10.1038/nature13085

 

  1. Eltzschig HK, Faigle M, Knapp S, et al. Endothelial catabolism of extracellular adenosine during hypoxia: The role of surface adenosine deaminase and CD26. Blood. 2006;108(5):1602-1610. doi: 10.1182/blood-2006-02-001016

 

  1. Yang D, Zhou Q, Labroska V, et al. G protein-coupled receptors: Structure- and function-based drug discovery. Signal Transduct Target Ther. 2021;6(1):7. doi: 10.1038/s41392-020-00435-w

 

  1. Lillo A, Serrano-Marín J, Lillo J, Raïch I, Navarro G, Franco R. Gene regulation in activated microglia by adenosine A3 receptor agonists: A transcriptomics study. Purinergic Signal. 2024;20(3):237-245. doi: 10.1007/s11302-022-09916-9

 

  1. Cunha RA. How does adenosine control neuronal dysfunction and neurodegeneration? J Neurochem. 2016;139(6):1019-1055. doi: 10.1111/jnc.13724

 

  1. Stone TW, Ceruti S, Abbracchio MP. Adenosine receptors and neurological disease: Neuroprotection and neurodegeneration. Handb Exp Pharmacol. 2009;(193):535-587. doi: 10.1007/978-3-540-89615-9_17

 

  1. Atif M, Alsrhani A, Naz F, et al. Targeting adenosine receptors in neurological diseases. Cell Reprogramming. 2021;23(2):57-72. doi: 10.1089/cell.2020.0087

 

  1. Guieu R, Deharo JC, Maille B, et al. Adenosine and the cardiovascular system: The good and the bad. J Clin Med. 2020;9(5):1366. doi: 10.3390/jcm9051366

 

  1. Marchi E, Muraca I, Berteotti M, Gori AM, Valenti R, Marcucci R. Adenosine in interventional cardiology: Physiopathologic and pharmacologic effects in coronary artery disease. Int J Mol Sci. 2024;25(11):5852. doi: 10.3390/ijms25115852

 

  1. Polosa R, Holgate S. Adenosine receptors as promising therapeutic targets for drug development in chronic airway inflammation. Curr Drug Targets. 2006;7(6):699-706. doi: 10.2174/138945006777435236

 

  1. Effendi WI, Nagano T, Kobayashi K, Nishimura Y. Focusing on adenosine receptors as a potential targeted therapy in human diseases. Cells. 2020;9(3):785. doi: 10.3390/cells9030785

 

  1. Michno M, Schmitz J, Foerges AL, et al. Effect of acute hypoxia exposure on the availability of A1 adenosine receptors and perfusion in the human brain. J Nucl Med. 2025;66(1):142-149. doi: 10.2967/jnumed.124.268455

 

  1. Alam MS, Costales MG, Cavanaugh C, Williams K. Extracellular adenosine generation in the regulation of pro-inflammatory responses and pathogen colonization. Biomolecules. 2015;5(2):775-792. doi: 10.3390/biom5020775

 

  1. Zhang C, Wang K, Wang H. Adenosine in cancer immunotherapy: Taking off on a new plane. Biochim Biophys Acta Rev Cancer. 2023;1878(6):189005. doi: 10.1016/j.bbcan.2023.189005

 

  1. Xia C, Yin S, To KKW, Fu L. CD39/CD73/A2AR pathway and cancer immunotherapy. Mol Cancer. 2023;22(1):44. doi: 10.1186/s12943-023-01733-x

 

  1. Behzadi P, St Hilaire C. Metabolites and metabolism in vascular calcification: Links between adenosine signaling and the methionine cycle. Am J Physiol Heart Circ Physiol. 2024;327(6):H1361-H1375. doi: 10.1152/ajpheart.00267.2024

 

  1. Pasquini S, Contri C, Borea PA, Vincenzi F, Varani K. Adenosine and inflammation: Here, there and everywhere. Int J Mol Sci. 2021;22(14):7685. doi: 10.3390/ijms22147685

 

  1. Kazemzadeh-Narbat M, Annabi N, Tamayol A, Oklu R, Ghanem A, Khademhosseini A. Adenosine-associated delivery systems. J Drug Target. 2015;23(7-8):580-596. doi: 10.3109/1061186X.2015.1058803

 

  1. Bagheri S, Saboury AA, Haertlé T. Adenosine deaminase inhibition. Int J Biol Macromol. 2019;141:1246-1257. doi: 10.1016/j.ijbiomac.2019.09.078

 

  1. Insel PA, Sriram K, Gorr MW, et al. GPCRomics: An approach to discover GPCR drug targets. Trends Pharmacol Sci. 2019;40(6):378-387. doi: 10.1016/j.tips.2019.04.001

 

  1. Chen JF. Adenosine receptor control of cognition in normal and disease. Int Rev Neurobiol. 2014;119:257-307. doi: 10.1016/B978-0-12-801022-8.00012-X

 

  1. Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE. International Union of basic and clinical pharmacology. LXXXI. nomenclature and classification of adenosine receptors--an update. Pharmacol Rev. 2011;63(1):1-34. doi: 10.1124/pr.110.003285

 

  1. Wegmann L, Haas HL, Sergeeva OA. Comparative analysis of adenosine 1 receptor expression and function in hippocampal and hypothalamic neurons. Inflamm Res. 2025;74(1):11. doi: 10.1007/s00011-024-01980-8

 

  1. Cao Y, Wu Z, Zhang M, Ji R, Zhang H, Song L. Microglial adenosine A2A receptor in the paraventricular thalamic nucleus regulates pain sensation and analgesic effects independent of opioid and cannabinoid receptors. Front Pharmacol. 2024;15:1467305. doi: 10.3389/fphar.2024.1467305

 

  1. Gebicke-Haerter PJ, Christoffel F, Timmer J, Northoff H, Berger M, Van Calker D. Both adenosine A1-and A2-receptors are required to stimulate microglial proliferation. Neurochem Int. 1996;29(1):37-42.

 

  1. Theparambil SM, Kopach O, Braga A, et al. Adenosine signalling to astrocytes coordinates brain metabolism and function. Nature. 2024;632(8023):139-146. doi: 10.1038/s41586-024-07611-w

 

  1. Othman T, Yan H, Rivkees SA. Oligodendrocytes express functional A1 adenosine receptors that stimulate cellular migration. Glia. 2003;44(2):166-172. doi: 10.1002/glia.10281

 

  1. Zhao Y, Zhou YG, Chen JF. Targeting the adenosine A2A receptor for neuroprotection and cognitive improvement in traumatic brain injury and Parkinson’s disease. Chin J Traumatol. 2024;27(3):125-133. doi: 10.1016/j.cjtee.2023.08.003

 

  1. Cunha RA, Ferré S, Vaugeois JM, Chen JF. Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders. Curr Pharm Des. 2008;14(15):1512-1524. doi: 10.2174/138161208784480090

 

  1. Cunha RA. Different cellular sources and different roles of adenosine: A1 receptor-mediated inhibition through astrocytic-driven volume transmission and synapse-restricted A2A receptor-mediated facilitation of plasticity. Neurochem Int. 2008;52(1-2):65-72. doi: 10.1016/j.neuint.2007.06.026

 

  1. Chen JF, Sonsalla PK, Pedata F, et al. Adenosine A2A receptors and brain injury: Broad spectrum of neuroprotection, multifaceted actions and “fine tuning” modulation. Prog Neurobiol. 2007;83(5):310-331. doi: 10.1016/j.pneurobio.2007.09.002

 

  1. Fredholm B, Cunha R, Svenningsson P. Pharmacology of adenosine A2A receptors and therapeutic applications. Curr Top Med Chem. 2003;3(4):413-426. doi: 10.2174/1568026033392200

 

  1. Sheth S, Brito R, Mukherjea D, Rybak L, Ramkumar V. Adenosine receptors: Expression, function and regulation. Int J Mol Sci. 2014;15(2):2024-2052. doi: 10.3390/ijms15022024

 

  1. Carracedo S, Launay A, Dechelle-Marquet PA, et al. Purinergic-associated immune responses in neurodegenerative diseases. Prog Neurobiol. 2024;243:102693. doi: 10.1016/j.pneurobio.2024.102693

 

  1. Mullah SHER, Inaji M, Nariai T, Ishibashi S, Ohno K. A selective adenosine A2A receptor antagonist ameliorated hyperlocomotion in an animal model of lateral fluid percussion brain injury. Acta Neurochir Suppl. 2013;118:89-92. doi: 10.1007/978-3-7091-1434-6_15

 

  1. Ning YL, Yang N, Chen X, et al. Adenosine A2A receptor deficiency alleviates blast-induced cognitive dysfunction. J Cereb Blood Flow Metab. 2013;33(11):1789-1798. doi: 10.1038/jcbfm.2013.127

 

  1. Cunha RA. Neuroprotection by adenosine in the brain: From A(1) receptor activation to A (2A) receptor blockade. Purinergic Signal. 2005;1(2):111-134. doi: 10.1007/s11302-005-0649-1

 

  1. Chen CCV, Chen YC, Hsiao HY, Chang C, Chern Y. Neurovascular abnormalities in brain disorders: Highlights with angiogenesis and magnetic resonance imaging studies. J Biomed Sci. 2013;20(1):47. doi: 10.1186/1423-0127-20-47

 

  1. El Yacoubi M, Ledent C, Parmentier M, Costentin J, Vaugeois JM. Evidence for the involvement of the adenosine A(2A) receptor in the lowered susceptibility to pentylenetetrazol-induced seizures produced in mice by long-term treatment with caffeine. Neuropharmacology. 2008;55(1):35-40. doi: 10.1016/j.neuropharm.2008.04.007

 

  1. El Yacoubi M, Ledent C, Parmentier M, Costentin J, Vaugeois JM. Adenosine A2A receptor deficient mice are partially resistant to limbic seizures. Naunyn Schmiedebergs Arch Pharmacol. 2009;380(3):223-232. doi: 10.1007/s00210-009-0426-8

 

  1. Lee HK, Choi SS, Han KJ, Han EJ, Suh HW. Roles of adenosine receptors in the regulation of kainic acid-induced neurotoxic responses in mice. Brain Res Mol Brain Res. 2004;125(1-2):76-85. doi: 10.1016/j.molbrainres.2004.03.004

 

  1. Rosim FE, Persike DS, Nehlig A, Amorim RP, de Oliveira DM, da Silva Fernandes Fernandes MJ. Differential neuroprotection by A(1) receptor activation and A(2A) receptor inhibition following pilocarpine-induced status epilepticus. Epilepsy Behav. 2011;22(2):207-213. doi: 10.1016/j.yebeh.2011.07.004

 

  1. Udo MSB, Zaccarelli-Magalhães J, Clemons GA, et al. Blockade of A2AR improved brain perfusion and cognitive function in a mouse model of Alzheimer’s disease. GeroScience. 2025. doi: 10.1007/s11357-025-01526-8

 

  1. Choi IY, Lee JC, Ju C, et al. A3 adenosine receptor agonist reduces brain ischemic injury and inhibits inflammatory cell migration in rats. Am J Pathol. 2011;179(4):2042-2052. doi: 10.1016/j.ajpath.2011.07.006

 

  1. Burnstock G. Purinergic signaling in the cardiovascular system. Circ Res. 2017;120(1):207-228. doi: 10.1161/CIRCRESAHA.116.309726

 

  1. Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of adenosine receptors: The state of the art. Physiol Rev. 2018;98(3):1591-1625. doi: 10.1152/physrev.00049.2017

 

  1. Wolska N, Rozalski M. Blood platelet adenosine receptors as potential targets for anti-platelet therapy. Int J Mol Sci. 2019;20(21):5475. doi: 10.3390/ijms20215475

 

  1. Sanjani MS, Teng B, Krahn T, Tilley S, Ledent C, Mustafa SJ. Contributions of A2A and A2B adenosine receptors in coronary flow responses in relation to the KATP channel using A2B and A2A/2B double-knockout mice. Am J Physiol Heart Circ Physiol. 2011;301(6):H2322-H2333. doi: 10.1152/ajpheart.00052.2011

 

  1. Zhao Z, Francis CE, Ravid K. An A3-subtype adenosine receptor is highly expressed in rat vascular smooth muscle cells: Its role in attenuating adenosine-induced increase in cAMP. Microvasc Res. 1997;54(3):243-252. doi: 10.1006/mvre.1997.2044

 

  1. Marquardt DL, Gruber HE, Wasserman SI. Adenosine release from stimulated mast cells. Proc Natl Acad Sci U S A. 1984;81(19):6192-6196. doi: 10.1073/pnas.81.19.6192

 

  1. Mann JS, Renwick AG, Holgate ST. Release of adenosine and its metabolites from activated human leucocytes. Clin Sci (Lond). 1986;70(5):461-468. doi: 10.1042/cs0700461

 

  1. Madara JL, Patapoff TW, Gillece-Castro B, et al. 5’-adenosine monophosphate is the neutrophil-derived paracrine factor that elicits chloride secretion from T84 intestinal epithelial cell monolayers. J Clin Invest. 1993;91(5):2320-2325. doi: 10.1172/JCI116462

 

  1. Resnick MB, Colgan SP, Patapoff TW, et al. Activated eosinophils evoke chloride secretion in model intestinal epithelia primarily via regulated release of 5’-AMP. J Immunol. 1993;151(10):5716-5723.

 

  1. Sun Y, Liu C, He L. Adenosine A2A receptor antagonist Sch58261 improves the cognitive function in Alzheimer’s disease model mice through activation of Nrf2 via an autophagy-dependent pathway. Antioxid Redox Signal. 2024;41(16-18):1117-1133. doi: 10.1089/ars.2023.0455

 

  1. Schwarzschild MA, Agnati L, Fuxe K, Chen JF, Morelli M. Targeting adenosine A2A receptors in Parkinson’s disease. Trends Neurosci. 2006;29(11):647-654. doi: 10.1016/j.tins.2006.09.004

 

  1. Jenner P, Mori A, Hauser R, Morelli M, Fredholm BB, Chen JF. Adenosine, adenosine A2A antagonists, and Parkinson’s disease. Parkinsonism Relat Disord. 2009;15(6):406-413. doi: 10.1016/j.parkreldis.2008.12.006

 

  1. Safarzadeh E, Jadidi-Niaragh F, Motallebnezhad M, Yousefi M. The role of adenosine and adenosine receptors in the immunopathogenesis of multiple sclerosis. Inflamm Res. 2016;65(7):511-520. doi: 10.1007/s00011-016-0936-z

 

  1. Adebiyi OE, Bynoe MS. Roles of adenosine receptor (subtypes A1 and A2A) in cuprizone-induced hippocampal demyelination. Mol Neurobiol. 2023;60(10):5878-5890. doi: 10.1007/s12035-023-03440-6

 

  1. Ghosh A, Ribeiro-Rodrigues L, Ruffolo G, et al. Selective modulation of epileptic tissue by an adenosine A3 receptor-activating drug. Br J Pharmacol. 2024;181(24):5041-5061. doi: 10.1111/bph.17319

 

  1. Lee CF, Chern Y. Adenosine receptors and Huntington’s disease. Int Rev Neurobiol. 2014;119:195-232. doi: 10.1016/B978-0-12-801022-8.00010-6

 

  1. Augusto E, Matos M, Sévigny J, et al. Ecto-5’-nucleotidase (CD73)-mediated formation of adenosine is critical for the striatal adenosine A2A receptor functions. J Neurosci. 2013;33(28):11390-11399. doi: 10.1523/JNEUROSCI.5817-12.2013

 

  1. Carmo M, Gonçalves FQ, Canas PM, et al. Enhanced ATP release and CD73-mediated adenosine formation sustain adenosine A2A receptor over-activation in a rat model of Parkinson’s disease. Br J Pharmacol. 2019;176(18):3666-3680. doi: 10.1111/bph.14771

 

  1. Gonçalves FQ, Lopes JP, Silva HB, et al. Synaptic and memory dysfunction in a β-amyloid model of early Alzheimer’s disease depends on increased formation of ATP-derived extracellular adenosine. Neurobiol Dis. 2019;132:104570. doi: 10.1016/j.nbd.2019.104570

 

  1. Augusto E, Gonçalves FQ, Real JE, et al. Increased ATP release and CD73-mediated adenosine A2A receptor activation mediate convulsion-associated neuronal damage and hippocampal dysfunction. Neurobiol Dis. 2021;157:105441. doi: 10.1016/j.nbd.2021.105441

 

  1. Dias L, Pochmann D, Lemos C, et al. Increased synaptic ATP release and CD73-mediated formation of extracellular adenosine in the control of behavioral and electrophysiological modifications caused by chronic stress. ACS Chem Neurosci. 2023;14(7):1299-1309. doi: 10.1021/acschemneuro.2c00810

 

  1. Canas PM, Porciúncula LO, Cunha GMA, et al. Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. J Neurosci. 2009;29(47):14741-14751. doi: 10.1523/JNEUROSCI.3728-09.2009

 

  1. Laurent C, Burnouf S, Ferry B, et al. A2A adenosine receptor deletion is protective in a mouse model of Tauopathy. Mol Psychiatry. 2016;21(1):97-107. doi: 10.1038/mp.2014.151

 

  1. Ramesh S, Arachchige ASPM. Depletion of dopamine in Parkinson’s disease and relevant therapeutic options: A review of the literature. AIMS Neurosci. 2023;10(3):200-231. doi: 10.3934/Neuroscience.2023017

 

  1. Cieślak M, Komoszyński M, Wojtczak A. Adenosine A(2A) receptors in Parkinson’s disease treatment. Purinergic Signal. 2008;4(4):305-312. doi: 10.1007/s11302-008-9100-8

 

  1. Trincavelli ML, Daniele S, Orlandini E, et al. A new D2 dopamine receptor agonist allosterically modulates A(2A) adenosine receptor signalling by interacting with the A(2A)/ D2 receptor heteromer. Cell Signal. 2012;24(4):951-960. doi: 10.1016/j.cellsig.2011.12.018

 

  1. Trincavelli ML, Cuboni S, Catena Dell’Osso M, et al. Receptor crosstalk: Haloperidol treatment enhances A(2A) adenosine receptor functioning in a transfected cell model. Purinergic Signal. 2010;6(4):373-381. doi: 10.1007/s11302-010-9201-z

 

  1. Chen JF, Cunha RA. The belated US FDA approval of the adenosine A2A receptor antagonist istradefylline for treatment of Parkinson’s disease. Purinergic Signal. 2020;16(2):167-174. doi: 10.1007/s11302-020-09694-2

 

  1. Dunwiddie TV, Masino SA. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci. 2001;24(1):31-55. doi: 10.1146/annurev.neuro.24.1.31

 

  1. Beamer E, Kuchukulla M, Boison D, Engel T. ATP and adenosine-two players in the control of seizures and epilepsy development. Prog Neurobiol. 2021;204:102105. doi: 10.1016/j.pneurobio.2021.102105

 

  1. Canas PM, Porciúncula LO, Simões AP, et al. Neuronal adenosine A2A receptors are critical mediators of neurodegeneration triggered by convulsions. eNeuro. 2018;5(6):1-12. doi: 10.1523/ENEURO.0385-18.2018

 

  1. Tescarollo FC, Rombo DM, DeLiberto LK, et al. Role of adenosine in epilepsy and seizures. J Caffeine Adenosine Res. 2020;10(2):45-60. doi: 10.1089/caff.2019.0022

 

  1. Moreira-de-Sá A, Gonçalves FQ, Lopes JP, et al. Adenosine A2A receptors format long-term depression and memory strategies in a mouse model of Angelman syndrome. Neurobiol Dis. 2020;146:105137. doi: 10.1016/j.nbd.2020.105137

 

  1. Bevilacqua LM, Da Silveira Neto F, Kaster MP. Adenosine A2A signaling in mood disorders: How far have we come? IBRO Neurosci Rep. 2024. doi: 10.1016/j.ibneur.2024.08.006

 

  1. Childs E, Hohoff C, Deckert J, Xu K, Badner J, De Wit H. Association between ADORA2A and DRD2 polymorphisms and caffeine-induced anxiety. Neuropsychopharmacology. 2008;33(12):2791-2800. doi: 10.1038/npp.2008.17

 

  1. Freitag CM, Agelopoulos K, Huy E, et al. Adenosine A(2A) receptor gene (ADORA2A) variants may increase autistic symptoms and anxiety in autism spectrum disorder. Eur Child Adolesc Psychiatry. 2010;19(1):67-74. doi: 10.1007/s00787-009-0043-6

 

  1. Rogers PJ, Hohoff C, Heatherley SV, et al. Association of the anxiogenic and alerting effects of caffeine with ADORA2A and ADORA1 Polymorphisms and habitual level of caffeine consumption. Neuropsychopharmacology. 2010;35(9):1973-1983. doi: 10.1038/npp.2010.71

 

  1. Hohoff C, Mullings EL, Heatherley SV, et al. Adenosine A(2A) receptor gene: Evidence for association of risk variants with panic disorder and anxious personality. J Psychiatr Res. 2010;44(14):930-937. doi: 10.1016/j.jpsychires.2010.02.006

 

  1. Lam P, Hong CJ, Tsai SJ. Association study of A2a adenosine receptor genetic polymorphism in panic disorder. Neurosci Lett. 2005;378(2):98-101. doi: 10.1016/j.neulet.2004.12.012

 

  1. Hohoff C, Domschke K, Schwarte K, et al. Sympathetic activity relates to adenosine A(2A) receptor gene variation in blood-injury phobia. J Neural Transm (Vienna). 2009;116(6):659-662. doi: 10.1007/s00702-008-0089-5

 

  1. Boncler M, Wzorek J, Wolska N, Polak D, Watala C, Rozalski M. Adenosine receptor agonists deepen the inhibition of platelet aggregation by P2Y12 antagonists. Vascul Pharmacol. 2019;113:47-56. doi: 10.1016/j.vph.2018.11.005

 

  1. Simões JLB, Braga G de C, Fontana M, Assmann CE, Bagatini MD. The neuroprotective role of A2A adenosine purinoceptor modulation as a strategy against glioblastoma. Brain Sci. 2024;14(12):1286. doi: 10.3390/brainsci14121286

 

  1. Taliani S, La Motta C, Mugnaini L, et al. Novel N2-substituted pyrazolo[3,4-d]pyrimidine adenosine A3 receptor antagonists: Inhibition of A3-mediated human glioblastoma cell proliferation. J Med Chem. 2010;53(10):3954-3963. doi: 10.1021/jm901785w

 

  1. Basaran KE, Korkmaz S, Satır-Basaran G, Salkın H. Short and long-term blockades of adenosine 2A, 5-HT2A, and 5-HT7 receptors induce apoptosis, reduce proliferation, and show differential effects on miR-27b-3p expression in neuroblastoma cell lines. Neuroscience. 2024;563:212-221. doi: 10.1016/j.neuroscience.2024.11.032

 

  1. Lyu A, Fan Z, Clark M, et al. Evolution of myeloid-mediated immunotherapy resistance in prostate cancer. Nature. 2024;637:1207-1217. doi: 10.1038/s41586-024-08290-3

 

  1. Cohen HB, Ward A, Hamidzadeh K, Ravid K, Mosser DM. IFN-γ Prevents adenosine receptor (A2bR) upregulation to sustain the macrophage activation response. J Immunol. 2015;195(8):3828-3837. doi: 10.4049/jimmunol.1501139

 

  1. Yang L, Zhang Y, Yang L. Adenosine signaling in tumor-associated macrophages and targeting adenosine signaling for cancer therapy. Cancer Biol Med. 2024;21(11):995-1011. doi: 10.20892/j.issn.2095-3941.2024.0228

 

  1. Turcotte M, Spring K, Pommey S, et al. CD73 is associated with poor prognosis in high-grade serous ovarian cancer. Cancer Res. 2015;75(21):4494-4503. doi: 10.1158/0008-5472.CAN-14-3569

 

  1. Khoo HE, Ho CL, Chhatwal VJS, Chan STF, Ngoi SS, Moochhala SM. Differential expression of adenosine A1 receptors in colorectal cancer and related mucosa. Cancer Lett. 1996;106(1):17-21. doi: 10.1016/0304-3835(96)04289-9

 

  1. Asgharkhah E, Jazi MS, Asadi J, Jafari SM. Role of A1 adenosine receptor in survival of human lung cancer. Gene Rep. 2022;28:101649. doi: 10.1016/j.genrep.2022.101649

 

  1. Dimension Market Research. Nutraceutical Market Is Expected To Reach A Revenue Of USD 863.7 Bn By 2033, At 10.0 % CAGR: Dimension Market Research. Dimension Market Research; 2024. Available from: https://www.globenewswire.com/news-release/2024/05/13/2880647 /0/en/nutraceutical-market-is-expected-to-reach-a-revenue-of-usd-863-7-bn-by-2033-at-10-0-cagr-dimension-market-research.html [Last accessed on 2025 Mar 13].

 

  1. Lim LT, Zwicker M, Wang X. Coffee: One of the most consumed beverages in the world. In: Comprehensive Biotechnology. Amsterdam, Netherlands: Elsevier; 2019. p. 275-285. doi: 10.1016/B978-0-444-64046-8.00462-6

 

  1. Daly JW, Shi D, Nikodijevic O, Jacobson KA. The role of adenosine receptors in the central action of caffeine. Pharmacopsychoecologia. 1994;7(2):201-213.

 

  1. Lopes CR, Cunha RA. Impact of coffee intake on human aging: Epidemiology and cellular mechanisms. Ageing Res Rev. 2024;102:102581. doi: 10.1016/j.arr.2024.102581

 

  1. Unsal S, Sanlier N. Longitudinal effects of lifetime caffeine consumption on levels of depression, anxiety, and stress: A comprehensive review. Curr Nutr Rep. 2025;14(1):26. doi: 10.1007/s13668-025-00616-5

 

  1. Huang L, Sperlágh B. Caffeine consumption and schizophrenia: A highlight on adenosine receptor-independent mechanisms. Curr Opin Pharmacol. 2021;61:106-113. doi: 10.1016/j.coph.2021.09.003

 

  1. Peleli M, Fredholm BB, Sobrevia L, Carlström M. Pharmacological targeting of adenosine receptor signaling. Mol Aspects Med. 2017;55:4-8. doi: 10.1016/j.mam.2016.12.002

 

  1. Kaster MP, Machado NJ, Silva HB, et al. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress. Proc Natl Acad Sci U S A. 2015;112(25):7833-7838. doi: 10.1073/pnas.1423088112

 

  1. Wang M, Li P, Li Z, et al. Lateral septum adenosine A2A receptors control stress-induced depressive-like behaviors via signaling to the hypothalamus and habenula. Nat Commun. 2023;14(1):1880. doi: 10.1038/s41467-023-37601-x

 

  1. Shively CA, Tarka SM Jr. Methylxanthine composition and consumption patterns of cocoa and chocolate products. Prog Clin Biol Res. 1984;158:149-178.

 

  1. Travassos M, Santana I, Baldeiras I, et al. Does caffeine consumption modify cerebrospinal fluid amyloid-β levels in patients with Alzheimer’s disease? J Alzheimers Dis. 2015;47(4):1069-1078. doi: 10.3233/JAD-150374

 

  1. Bracesco N, Sanchez AG, Contreras V, Menini T, Gugliucci A. Recent advances on Ilex paraguariensis research: Minireview. J Ethnopharmacol. 2011;136(3):378-384. doi: 10.1016/j.jep.2010.06.032

 

  1. Liang W, Xu W, Zhu J, et al. Ginkgo biloba extract improves brain uptake of ginsenosides by increasing blood-brain barrier permeability via activating A1 adenosine receptor signaling pathway. J Ethnopharmacol. 2020;246:112243. doi: 10.1016/j.jep.2019.112243

 

  1. Motawi TK, Sadik NAH, Hamed MA, Ali SA, Khalil WKB, Ahmed YR. Potential therapeutic effects of antagonizing adenosine A2A receptor, curcumin and niacin in rotenone-induced Parkinson’s disease mice model. Mol Cell Biochem. 2020;465(1-2):89-102. doi: 10.1007/s11010-019-03670-0

 

  1. Stollenwerk TM, Pollock S, Hillard CJ. Contribution of the adenosine 2A receptor to behavioral effects of tetrahydrocannabinol, cannabidiol and PECS-101. Mol Basel Switz. 2021;26(17):5354. doi: 10.3390/molecules26175354

 

  1. Köfalvi A, Moreno E, Cordomí A, et al. Control of glutamate release by complexes of adenosine and cannabinoid receptors. BMC Biol. 2020;18(1):9. doi: 10.1186/s12915-020-0739-0

 

  1. Pandolfo P, Silveirinha V, dos Santos-Rodrigues AD, et al. Cannabinoids inhibit the synaptic uptake of adenosine and dopamine in the rat and mouse striatum. Eur J Pharmacol. 2011;655(1-3):38-45. doi: 10.1016/j.ejphar.2011.01.013

 

  1. Sacramento JF, Martins FO, Rodrigues T, et al. A2 adenosine receptors mediate whole-body insulin sensitivity in a prediabetes animal model: Primary effects on skeletal muscle. Front Endocrinol (Lausanne). 2020;11:262. doi: 10.3389/fendo.2020.00262

 

  1. Basheer R, Strecker RE, Thakkar MM, McCarley RW. Adenosine and sleep-wake regulation. Prog Neurobiol. 2004;73(6):379-396. doi: 10.1016/j.pneurobio.2004.06.004

 

  1. Zhou X, He Y, Xu T, et al. 40 Hz light flickering promotes sleep through cortical adenosine signaling. Cell Res. 2024;34(3):214-231. doi: 10.1038/s41422-023-00920-1

 

  1. Sun X, Dias L, Peng C, et al. 40 Hz light flickering facilitates the glymphatic flow via adenosine signaling in mice. Cell Discov. 2024;10(1):81. doi: 10.1038/s41421-024-00701-z

 

  1. Alonso-Andrés P, Martín M, Albasanz JL. Modulation of adenosine receptors and antioxidative effect of beer extracts in in vitro models. Nutrients. 2019;11(6):1258. doi: 10.3390/nu11061258

 

  1. Huang SY, Su ZY, Han YY, et al. Cordycepin improved the cognitive function through regulating adenosine A2A receptors in MPTP induced Parkinson’s disease mice model. Phytomedicine. 2023;110:154649. doi: 10.1016/j.phymed.2023.154649

 

Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing