AccScience Publishing / GPD / Online First / DOI: 10.36922/gpd.2827
Cite this article
82
Download
1688
Views
Journal Browser
Volume | Year
Issue
Search
News and Announcements
View All
REVIEW

Natural carotenoids as a potential chemopreventive agent for prostate cancer: A literature review

Maria Vasileiou1* Theodora Tatsiou2 Vasiliki Ioannidou3 Vasiliki Taxiarchoula Agiassoti4 Stergiani Telliou5
Show Less
1 Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
2 Department of Biology, University of Crete, Crete, Greece
3 Cancer Prevention Research Group in Greece, Athens, Greece
4 Department of Medicine, National and Kapodistrian University of Athens, Athens, Greece
5 Department of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
Submitted: 26 January 2024 | Accepted: 19 March 2024 | Published: 27 March 2024
© 2024 by the Author (s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Prostate cancer (PCa) is the most commonly diagnosed cancer in men and the second leading cause of cancer death among men worldwide. While the exact etiology of PCa remains unclear, various factors contribute to the onset of the disease. These factors include modifiable risk factors such as physical activity, diet, obesity, smoking, alcohol consumption, and exposure to environmental agents. In addition, unmodifiable risk factors such as age and ethnicity play a role, with men of African ancestry being more susceptible to the disease. Despite the availability of potential treatment options, prevention is of utmost importance in reducing the incidence of PCa. Researchers have turned their attention to carotenoids, which are natural compounds derived from fruit and vegetables such as citrus, tomato, and green leafy vegetables, due to their potential chemopreventive effects. Multiple phase II clinical trials have indicated a reduced incidence and progression of diagnosed PCa in patients. Laboratory studies on PCa cell lines have demonstrated that carotenoids induce apoptosis and reduce cellular accumulation and adhesion of PCa cells in a dose-dependent manner. In this literature review, we assess the chemopreventive potential of the most common carotenoids: α-carotene, β-carotene, lycopene, lutein, and β-cryptoxanthin, which are often found in a heterogeneous mixture. We also discuss their potential clinical use as well as challenges related to their safety and bioavailability. Overall, a better understanding of the etiology and pathophysiology of PCa will lead to the development of improved preventative strategies and treatments for the disease.

Keywords
Prostate cancer
Chemoprevention
Carotenoids
Natural products
Antioxidant properties
Apoptotic properties
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Sekhoacha M, Riet K, Motloung P, Gumenku L, Adegoke A, Mashele S. Prostate cancer review: Genetics, diagnosis, treatment options, and alternative approaches. Molecules. 2022;27(17):5730. doi: 10.3390/molecules27175730

 

  1. Tang DG. Understanding and targeting prostate cancer cell heterogeneity and plasticity. Semin Cancer Biol. 2022;82:68-93. doi: 10.1016/j.semcancer.2021.11.001

 

  1. Testa U, Castelli G, Pelosi E. Cellular and molecular mechanisms underlying prostate cancer development: Therapeutic implications. Medicines (Basel). 2019;6(3):82. doi: 10.3390/medicines6030082

 

  1. Losquadro WD. Anatomy of the skin and the pathogenesis of nonmelanoma skin cancer. Facial Plast Surg Clin North Am. 2017;25(3):283-289. doi: 10.1016/j.fsc.2017.03.001

 

  1. Wang G, Zhao D, Spring DJ, DePinho RA. Genetics and biology of prostate cancer. Genes Dev. 2018;32(17-18):1105-1140. doi: 10.1101/gad.315739.118

 

  1. Pernar CH, Ebot EM, Wilson KM, Mucci LA. The epidemiology of prostate cancer. Cold Spring Harbor Perspect Med. 2018;8(12):a030361. doi: 10.1101/cshperspect.a030361

 

  1. Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 2020;221:107753. doi: 10.1016/j.pharmthera.2020.107753

 

  1. Ralat LA, Manevich Y, Fisher AB, Colman RF. Direct evidence for the formation of a complex between 1-cysteine peroxiredoxin and glutathione S-transferase π with activity changes in both enzymes. Biochemistry. 2005;45(2):360-372. doi: 10.1021/bi0520737

 

  1. Conteduca V, Hess J, Yamada Y, Ku SY, Beltran H. Epigenetics in prostate cancer: Clinical implications. Transl Androl Urol. 2021;10(7):3104-3116. doi: 10.21037/tau-20-1339

 

  1. Adjakly M, Ngollo M, Dagdemir A, et al. Prostate cancer: The main risk and protective factors - epigenetic modifications. Ann Endocrinol (Paris). 2015;76(1):25-41. doi: 10.1016/j.ando.2014.09.001

 

  1. Grozescu T, Popa F. Prostate cancer between prognosis and adequate/proper therapy. J Med Life. 2017;10:5-12.

 

  1. Watts EL, Perez‐Cornago A, Fensom GK, et al. Circulating free testosterone and risk of aggressive prostate cancer: Prospective and mendelian randomisation analyses in international consortia. Int J Cancer. 2022;51(7):1033-1046. doi: 10.1002/ijc.34116

 

  1. Li J, Coates RJ, Gwinn M, Khoury MJ. Steroid 5- -reductase type 2 (SRD5a2) gene polymorphisms and risk of prostate cancer: A HuGE review. Am J Epidemiol. 2009;171(1):1-13. doi: 10.1093/aje/kwp318

 

  1. Liu WJ, Zhao G, Zhang CY, et al. Comparison of the roles of estrogens and androgens in breast cancer and prostate cancer. J Cell Biochem. 2020;121(4):2756-2769. doi: 10.1002/jcb.29515

 

  1. Hu X, Wang YH, Yang ZQ, et al. Association of 5-alpha-reductase inhibitor and prostate cancer incidence and mortality: A meta-analysis. Transl Androl Urol. 2020;9(6):2519-2532. doi: 10.21037/tau-20-843

 

  1. Perdana NR, Mochtar CA, Umbas R, Hamid ARA. The risk factors of prostate cancer and its prevention: A literature review. Acta Med Indones. 2016;48(3):228-238.

 

  1. Bergengren O, Pekala KR, Matsoukas K, et al. Update on prostate cancer epidemiology and risk factors-a systematic review. Eur Urol. 2023;84(2):191-206. doi: 10.1016/j.eururo.2023.04.021

 

  1. Johns LE, Houlston RS. A systematic review and meta-analysis of familial prostate cancer risk. BJU Int. 2003;91(9):789-794. doi: 10.1046/j.1464-410x.2003.04232.x

 

  1. Hemminki K, Czene K. Age specific and attributable risks of familial prostate carcinoma from the family-cancer database. Cancer. 2002;95(6):1346-1353. doi: 10.1002/cncr.10819

 

  1. Beebe-Dimmer JL, Kapron AL, Fraser AM, Smith KR, Cooney KA. Risk of prostate cancer associated with familial and hereditary cancer syndromes. J Clin Oncol. 2020;38(16):1807-1813. doi: 10.1200/jco.19.02808

 

  1. Gandaglia G, Leni R, Bray F, et al. Epidemiology and prevention of prostate cancer. Eur Urol Oncol. 2021;4(6):877-892. doi: 10.1016/j.euo.2021.09.006

 

  1. Wu I, Modlin CS. Disparities in prostate cancer in African American men: What primary care physicians can do. Cleve Clin J Med. 2012;79(5):313-320. doi: 10.3949/ccjm.79a.11001

 

  1. Powell IJ, Bollig-Fischer A. Minireview: The molecular and genomic basis for prostate cancer health disparities. Mol Endocrinol. 2013;27(6):879-891. doi: 10.1210/me.2013-1039

 

  1. Pourmand G, Salem S, Mehrsai A, et al. The risk factors of prostate cancer: A multicentric case-control study in Iran. Asian Pac J Cancer Prev. 2007;8(3):422-428.

 

  1. Benke IN, Leitzmann MF, Behrens G, Schmid D. Physical activity in relation to risk of prostate cancer: A systematic review and meta-analysis. Ann Oncol. 2018;29(5):1154-1179. doi: 10.1093/annonc/mdy073

 

  1. Krstev S, Knutsson A. Occupational risk factors for prostate cancer: A meta-analysis. J Cancer Prev. 2019;24(2):91-111. doi: 10.15430/jcp.2019.24.2.91

 

  1. Oczkowski M, Dziendzikowska K, Pasternak-Winiarska A, Włodarek D, Gromadzka-Ostrowska J. Dietary factors and prostate cancer development, progression, and reduction. Nutrients. 2021;13(2):496. doi: 10.3390/nu13020496

 

  1. Kimura T, Egawa S. Epidemiology of prostate cancer in Asian countries. Int J Urol. 2018;25(6):524-531. doi: 10.1111/iju.13593

 

  1. Masuda H, Kagawa M, Kawakami S, et al. Body mass index influences prostate cancer risk at biopsy in Japanese men. Int J Urol. 2013;20(7):701-707. doi: 10.1111/iju.12023

 

  1. Cerhan JR, Torner JC, Lynch CF, et al. Association of smoking, body mass, and physical activity with risk of prostate cancer in the Iowa 65+ rural health study (United States). Cancer Causes Control. 1997;8(2):229-238. doi: 10.1023/a:1018428531619

 

  1. Fujita K, Hayashi T, Matsushita M, Uemura M, Nonomura N. Obesity, inflammation, and prostate cancer. J Clin Med. 2019;8(2):201. doi: 10.3390/jcm8020201

 

  1. Muir CS, Nectoux J, Staszewski J. The epidemiology of prostatic cancer: Geographical distribution and time-trends. Acta Oncol. 1991;30(2):133-140.

 

  1. Strom SS, Yamamura Y, Forman MR, Pettaway CA, Barrera SL, DiGiovanni J. Saturated fat intake predicts biochemical failure after prostatectomy. Int J Cancer. 2008;122(11):2581-2585.

 

  1. Desgrandchamps F, Bastien L. Nutrition, dietary supplements and prostate cancer. Prog Urol. 2010;20(8):560-565. doi: 10.1016/j.purol.2010.03.010

 

  1. Matsushita M, Fujita K, Nonomura N. Influence of diet and nutrition on prostate cancer. Int J Mol Sci. 2020;21(4):1447. doi: 10.3390/ijms21041447

 

  1. Huang Y, Cao D, Chen Z, et al. Red and processed meat consumption and cancer outcomes: Umbrella review. Food Chem. 2021;356:129697.

 

  1. Gathirua-Mwangi WG, Zhang J. Dietary factors and risk for advanced prostate cancer. Eur J Cancer Prev. 2014;23(2):96-109. doi: 10.1097/CEJ.0b013e3283647394

 

  1. Rowland GW, Schwartz GG, John EM, Ingles SA. Calcium intake and prostate cancer among African Americans: Effect modification by vitamin D receptor calcium absorption genotype. J Bone Miner Res. 2012;27(1):187-194. doi: 10.1002/jbmr.505

 

  1. Al-Fayez S, El-Metwally A. Cigarette smoking and prostate cancer: A systematic review and meta-analysis of prospective cohort studies. Tob Induc Dis. 2023;21:1-12. doi: 10.18332/tid/157231

 

  1. Liu Y, Chen Z, Wei Q, et al. Poly (AT) polymorphism in the XPC gene and smoking enhance the risk of prostate cancer in a low-risk Chinese population. Cancer Genet. 2012;205(5):205-211. doi: 10.1016/j.cancergen.2012.01.013

 

  1. Bagnardi V, Rota M, Botteri E, et al. Alcohol consumption and site-specific cancer risk: A comprehensive dose-response meta-analysis. Br J Cancer. 2014;112(3):580-593. doi: 10.1038/bjc.2014.579

 

  1. Macke AJ, Petrosyan A. Alcohol and prostate cancer: Time to draw conclusions. Biomolecules. 2022;12(3):375. doi: 10.3390/biom12030375

 

  1. Mullins JK, Loeb S. Environmental exposures and prostate cancer. Urol Oncol. 2012;30(2):216-219. doi: 10.1016/j.urolonc.2011.11.014

 

  1. Lynch SM, Mahajan R, Freeman LEB, Hoppin JA, Alavanja MCR. Cancer incidence among pesticide applicators exposed to butylate in the Agricultural Health Study (AHS). Environ Res. 2009;109(7):860-868. doi: 10.1016/j.envres.2009.06.006

 

  1. Mahajan R, Bonner MR, Hoppin JA, Alavanja MC. Phorate exposure and incidence of cancer in the agricultural health study. Environ Health Perspect. 2006;114(8):1205-1209. doi: 10.1289/ehp.8911

 

  1. Christensen CH, Platz EA, Andreotti G, et al. Coumaphos exposure and incident cancer among male participants in the agricultural health study (AHS). Environ Health Perspect. 2010;118(1):92-96. doi: 10.1289/ehp.0800446

 

  1. Koutros S, Beane Freeman LE, Berndt SI, et al. Pesticide use modifies the association between genetic variants on chromosome 8q24 and prostate cancer. Cancer Res. 2010;70(22):9224-9233. doi: 10.1158/0008-5472.can-10-1078

 

  1. Schwartz GG. VITAMIN D in HEALTH and DISEASE: Vitamin D and the epidemiology of prostate cancer. Semin Dial. 2005;18(4):276-289. doi: 10.1111/j.1525-139x.2005.18403.x

 

  1. Elinder CG, Kjellström T, Hogstedt C, Andersson K, Spång G. Cancer mortality of cadmium workers. Occup Environ Med. 1985;42(10):651-655.

 

  1. Kjellström T, Friberg L, Rahnster B. Mortality and cancer morbidity among cadmium-exposed workers. Environ Health Perspect. 1979;28:199-204. doi: 10.1289/ehp.28-1637490

 

  1. Sorahan T, Waterhouse JA. Mortality study of nickel-cadmium battery workers by the method of regression models in life tables. Occup Environ Med. 1983;40(3):293-300.

 

  1. Vella V, Malaguarnera R, Lappano R, Maggiolini M, Belfiore A. Recent views of heavy metals as possible risk factors and potential preventive and therapeutic agents in prostate cancer. Mol Cell Endocrinol. 2017;457:57-72. doi: 10.1016/j.mce.2016.10.020

 

  1. Wagner SE, Burch JB, Hussey J, et al. Soil zinc content, groundwater usage, and prostate cancer incidence in South Carolina. Cancer Causes Control. 2008;20(3):345-353. doi: 10.1007/s10552-008-9248-0

 

  1. Siddiqui MK, Srivastava S, Mehrotra PK. Environmental exposure to lead as a risk for prostate cancer. Biomed Environ Sci. 2002;15(4):298-305.

 

  1. Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: An overview. Int J Cancer. 2021;149(4):778-789. doi: 10.1002/ijc.33588

 

  1. Hu F, Wang Yi B, Zhang W, et al. Carotenoids and breast cancer risk: A meta-analysis and meta-regression. Breast Cancer Res Treat. 2011;131(1):239-253. doi: 10.1007/s10549-011-1723-8

 

  1. Eliassen AH, Hendrickson SJ, Brinton LA, et al. Circulating carotenoids and risk of breast cancer: Pooled analysis of eight prospective studies. J Natl Cancer Inst. 2012;104(24):1905-1916. doi: 10.1093/jnci/djs461

 

  1. Wang Y, Gapstur SM, Gaudet MM, Furtado JD, Campos H, McCullough ML. Plasma carotenoids and breast cancer risk in the cancer prevention study II nutrition cohort. Cancer Causes Control. 2015;26(9):1233-1244. doi: 10.1007/s10552-015-0614-4

 

  1. Eliassen AH, Liao X, Rosner B, Tamimi RM, Tworoger SS, Hankinson SE. Plasma carotenoids and risk of breast cancer over 20 y of follow-up. Am J Clin Nutr. 2015;101(6):1197-205. doi: 10.3945/ajcn.114.105080

 

  1. Gallicchio L, Boyd K, Matanoski G, Tao X, Chen L, Lam TK. Carotenoids and the risk of developing lung cancer: A systematic review. Am J Clin Nutr. 2008;88(2):372-383. doi: 10.1093/ajcn/88.2.372

 

  1. Abar L, Vieira AR, Aune D, et al. Blood concentrations of carotenoids and retinol and lung cancer risk: An update of the WCRF-AICR systematic review of published prospective studies. Cancer Med. 2016;5(8):2069-2083. doi: 10.1002/cam4.676

 

  1. Männistö S, Yaun SS, Hunter DJ, et al. Dietary carotenoids and risk of colorectal cancer in a pooled analysis of 11 cohort studies. Am J Epidemiol. 2007;165(3):246-255. doi: 10.1093/aje/kwk009

 

  1. Panic N, Nedovic D, Pastorino R, Boccia S, Leoncini E. Carotenoid intake from natural sources and colorectal cancer. Eur J Cancer Prev. 2017;26(1):27-37. doi: 10.1097/cej.0000000000000251

 

  1. Wang X, Yang HH, Liu Y, Zhou Q, Chen ZH. Lycopene consumption and risk of colorectal cancer: A meta-analysis of observational studies. Nutr Cancer. 2016;68(7):1083-1096. doi: 10.1080/01635581.2016.1206579

 

  1. Leoncini E, Nedovic D, Panic N, Pastorino R, Edefonti V, Boccia S. Carotenoid intake from natural sources and head and neck cancer: A systematic review and meta-analysis of epidemiological studies. Cancer Epidemiol Biomarkers Prev. 2015;24(7):1003-1011. doi: 10.1158/1055-9965.epi-15-0053

 

  1. Leoncini E, Edefonti V, Hashibe M, et al. Carotenoid intake and head and neck cancer: A pooled analysis in the international head and neck cancer epidemiology consortium. Eur J Epidemiol. 2015;31(4):369-383. doi: 10.1007/s10654-015-0036-3

 

  1. Wu K, Erdman JW Jr., Schwartz SJ, et al. Plasma and dietary carotenoids, and the risk of prostate cancer: A nested case-control study. Cancer Epidemiol Biomarkers. 2004;13(2):260-269. doi: 10.1158/1055-9965.epi-03-0012

 

  1. Chang S, Erdman JW, Clinton SK, et al. Relationship between plasma carotenoids and prostate cancer. Nutr Cancer. 2005;53(2):127-134. doi: 10.1207/s15327914nc5302_1

 

  1. Zhang J, Ishwori D, Stone A, et al. Plasma carotenoids and prostate cancer: A population-based case-control study in Arkansas. Nutr Cancer. 2007;59(1):46-53. doi: 10.1080/01635580701385900

 

  1. Umesawa M, Iso H, Mikami K, et al. Relationship between vegetable and carotene intake and risk of prostate cancer: The JACC study. Br J Cancer. 2014;110(3):792-796. doi: 10.1038/bjc.2013.685

 

  1. Schuurman AG, Goldbohm RA, Brants HAM, van den Brandt PA. A prospective cohort study on intake of retinol, vitamins C and E, and carotenoids and prostate cancer risk (Netherlands). Cancer Causes Control. 2002;13(6):573-582. doi: 10.1023/a:1016332208339

 

  1. Langi P, Kiokias S, Varzakas T, Proestos C. Carotenoids: From plants to food and feed industries. Methods Mol Biol. 2018;1852:57-71. doi: 10.1007/978-1-4939-8742-9_3

 

  1. Johnson EJ. The role of carotenoids in human health. Nutr Clin Care. 2002;5(2):56-65. doi: 10.1046/j.1523-5408.2002.00004.x

 

  1. Gong M, Bassi A. Carotenoids from microalgae: A review of recent developments. Biotechnol Adv. 2016;34(8):1396-1412. doi: 10.1016/j.biotechadv.2016.10.005

 

  1. Jomova K, Valko M. Health protective effects of carotenoids and their interactions with other biological antioxidants. Eur J Med Chem. 2013;70:102-110. doi: 10.1016/j.ejmech.2013.09.054

 

  1. Zakynthinos G, Varzakas T. Carotenoids: From plants to food industry. Curr Res Nutr Food Sci J. 2015;4(1):38-51. doi: 10.12944/crnfsj.4.special-issue1.04

 

  1. Fernández-García E, Carvajal-Lérida I, Jarén-Galán M, Garrido-Fernández J, Pérez-Gálvez A, Hornero-Méndez D. Carotenoids bioavailability from foods: From plant pigments to efficient biological activities. Food Res Int. 2012;46(2):438-450. doi: 10.1016/j.foodres.2011.06.007

 

  1. García-Closas R, Berenguer A, Tormo MJ, et al. Dietary sources of vitamin C, vitamin E and specific carotenoids in Spain. Br J Nutr. 2004;91(6):1005-1011. doi: 10.1079/BJN20041130

 

  1. Vandenlangenberg GM, Brady WE, Nebeling LC, et al. Influence of Using different sources of carotenoid data in epidemiologic studies. J Am Diet Assoc. 1996;96(12):1271-1275. doi: 10.1016/s0002-8223(96)00332-x

 

  1. Shao A, Hathcock JN. Risk assessment for the carotenoids lutein and lycopene. Regul Toxicol Pharmacol. 2006;45(3):289-298. doi: 10.1016/j.yrtph.2006.05.007

 

  1. Cervantes-Paz B, de Jesús Ornelas-Paz J, Ruiz-Cruz S, et al. Effects of pectin on lipid digestion and possible implications for carotenoid bioavailability during pre-absorptive stages: A review. Food Res Int. 2017;99:917-927. doi: 10.1016/j.foodres.2017.02.012

 

  1. Krinsky NI, Johnson EJ. Carotenoid actions and their relation to health and disease. Mol Aspects Med. 2005;26(6):459-516. doi: 10.1016/j.mam.2005.10.001

 

  1. Cervantes-Paz B, Victoria-Campos CI, de Jesús Ornelas- Paz J. Absorption of carotenoids and mechanisms involved in their health-related properties. Subcell Biochem. 2016;79:415-454. doi: 10.1007/978-3-319-39126-7_16

 

  1. Riedl J, Linseisen J, Hoffmann J, Wolfram G. Some dietary fibers reduce the absorption of carotenoids in women. J Nutr. 1999;129(12):2170-2176. doi: 10.1093/jn/129.12.2170

 

  1. Verrijssen TAJ, Verkempinck SHE, Christiaens S, Van Loey AM, Hendrickx ME. The effect of pectin on in vitro β-carotene bioaccessibility and lipid digestion in low fat emulsions. Food Hydrocolloids. 2015;49:73-81. doi: 10.1016/j.foodhyd.2015.02.040

 

  1. Verrijssen TAJ, Balduyck LG, Christiaens S, Van Loey AM, Van Buggenhout S, Hendrickx ME. The effect of pectin concentration and degree of methyl-esterification on the in vitro bioaccessibility of β-carotene-enriched emulsions. Food Res Int. 2014;57:71-78. doi: 10.1016/j.foodres.2014.01.031

 

  1. Bohn T, Desmarchelier C, Dragsted LO, et al. Host-related factors explaining interindividual variability of carotenoid bioavailability and tissue concentrations in humans. Mol Nutr Food Res. 2017;61(6):1600685. doi: 10.1002/mnfr.201600685

 

  1. McLernon PC, Wood LG, Murphy VE, Hodyl NA, Clifton VL. Circulating antioxidant profile of pregnant women with asthma. Clin Nutr. 2012;31(1):99-107. doi: 10.1016/j.clnu.2011.09.006

 

  1. Aktuna D, Buchinger W, Langsteger W, et al. Beta-carotene, vitamin A and carrier proteins in thyroid diseases. Acta Med Aust. 1993;20(1-2):17-20.

 

  1. Wang L, Gaziano JM, Norkus EP, Buring JE, Sesso HD. Associations of plasma carotenoids with risk factors and biomarkers related to cardiovascular disease in middle-aged and older women. Am J Clin Nutr. 2008;88:747-754. doi: 10.1093/ajcn/88.3.747

 

  1. Kitamura Y, Tanaka K, Kiyohara C, et al. Relationship of alcohol use, physical activity and dietary habits with serum carotenoids, retinol and alpha-tocopherol among male Japanese smokers. Int J Epidemiol. 1997;26(2):307-314. doi: 10.1093/ije/26.2.307

 

  1. Brady WJ, Mares-Perlman JA, Bowen PE, Stacewicz- Sapuntzakis M. Human serum carotenoid concentrations are related to physiologic and lifestyle factors. J Nutr. 1996;126(1):129-137. doi: 10.1093/jn/126.1.129

 

  1. Casso D, White E, Patterson RE, Agurs-Collins T, Kooperberg C, Haines PS. Correlates of serum lycopene in older women. Nutr Cancer. 2000;36(2):163-169. doi: 10.1207/s15327914nc3602_4

 

  1. Das BS, Thurnham DI, Das DB. Plasma alpha-tocopherol, retinol, and carotenoids in children with falciparum malaria. Am J Clin Nutr. 1996;64:94-100.

 

  1. Friis H, Gomo E, Koestel P, et al. HIV and other predictors of serum beta-carotene and retinol in pregnancy: A cross-sectional study in Zimbabwe. Am J Clin Nutr. 2001;73:1058-1065. doi: 10.1093/ajcn/73.6.1058

 

  1. Leung WC, Hessel S, Méplan C, et al. Two common single nucleotide polymorphisms in the gene encoding β-carotene 15,15′-monoxygenase alter β-carotene metabolism in female volunteers. FASEB J. 2009;23(4):1041-1053. doi: 10.1096/fj.08-121962

 

  1. Borel P, Desmarchelier C, Nowicki M, Bott RA. Combination of single-nucleotide polymorphisms is associated with interindividual variability in dietary β-carotene bioavailability in healthy men. J Nutr. 2015;145(8):1740-1747. doi: 10.3945/jn.115.212837

 

  1. Borel P, Desmarchelier C, Nowicki M, Bott R. Lycopene bioavailability is associated with a combination of genetic variants. Free Radic Biol Med. 2015;83:238-244. doi: 10.1016/j.freeradbiomed.2015.02.033

 

  1. Borel P, Desmarchelier C, Nowicki M, Bott R, Morange S, Lesavre N. Interindividual variability of lutein bioavailability in healthy men: characterization, genetic variants involved, and relation with fasting plasma lutein concentration. Am J Clin Nutr. 2014;100:168-175. doi: 10.3945/ajcn.114.085720

 

  1. Boon CS, McClements DJ, Weiss J, Decker EA. Factors influencing the chemical stability of carotenoids in foods. Crit Rev Food Sci Nutr. 2010;50(6):515-532. doi: 10.1080/10408390802565889

 

  1. Soares NDCP, Machado CL, Trindade BB, et al. Lycopene extracts from different tomato-based food products induce apoptosis in cultured human primary prostate cancer cells and regulate TP53, Bax and Bcl-2 transcript expression. Asian Pac J Cancer Prev. 2017;18(2):339-345. doi: 10.22034/APJCP.2017.18.2.339

 

  1. Assar EA, Vidalle MC, Chopra M, Hafizi S. Lycopene acts through inhibition of IκB kinase to suppress NF-ΚB signaling in human prostate and breast cancer cells. Tumour Biol. 2016;37(7):9375-9385. doi: 10.1007/s13277-016-4798-3

 

  1. Kolberg M, Pedersen S, Bastani NE, Carlsen H, Blomhoff R, Paur I. Tomato paste alters NF-ΚB and cancer-related MRNA expression in prostate cancer cells, xenografts, and xenograft microenvironment. Nutr Cancer. 2015;67(2):305-315. doi: 10.1080/01635581.2015.990575

 

  1. Yang CM, Lu IH, Chen HY, Hu ML. Lycopene inhibits the proliferation of androgen-dependent human prostate tumor cells through activation of PPARγ-LXRα-ABCA1 pathway. J Nutr Biochem. 2012;23(1):8-17. doi: 10.1016/j.jnutbio.2010.10.006

 

  1. Elgass S, Cooper A, Chopra M. Lycopene treatment of prostate cancer cell lines inhibits adhesion and migration properties of the cells. Int J Med Sci. 2014;11(9):948-954. doi: 10.7150/ijms.9137

 

  1. Alpha-Tocopherol, Beta Carotene Cancer Prevention Study Group. The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. N Engl J Med. 1994;330(15):1029-1035. doi: 10.1056/NEJM199404143301501

 

  1. Omenn GS, Goodman GE, Thornquist MD, et al. Effects of a combination of beta carotene and vitamin a on lung cancer and cardiovascular disease. N Engl J Med. 1996;334(18):1150-1155. doi: 10.1056/NEJM199605023341802

 

  1. Gorelik S, Lapidot T, Shaham I, et al. Lipid peroxidation and coupled vitamin oxidation in simulated and human gastric fluid inhibited by dietary polyphenols: Health implications. J Agric Food Chem. 2005;53(9):3397-3402. doi: 10.1021/jf040401o

 

  1. Santamaria L, Bianchi-Santamaria A. Carotenoids in cancer chemoprevention and therapeutic interventions. J Nutr Sci Vitaminol. 1992;38:321-326. doi: 10.3177/jnsv.38.special_321

 

  1. Linnewiel-Hermoni K, Khanin M, Danilenko M, et al. The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity. Arch Biochem Biophys. 2015;572:28-35. doi: 10.1016/j.abb.2015.02.018

 

  1. Soares NDCP, Elias MB, Machado CL, Trindade BB, Borojevic R, Teodoro AJ. Comparative analysis of lycopene content from different tomato-based food products on the cellular activity of prostate cancer cell lines. Foods. 2019;8(6):201. doi: 10.3390/foods8060201

 

  1. Clinton SK, Emenhiser C, Schwartz SJ, et al. Cis-trans lycopene isomers, carotenoids, and retinol in the human prostate. Cancer Epidemiol Biomarkers Prev. 1996;5(10):823-833.

 

  1. Kucuk O, Sarkar FH, Sakr W, et al. Phase II randomized clinical trial of lycopene supplementation before radical prostatectomy. Cancer Epidemiol Biomarkers Prev. 2001;10(8):861-868.

 

  1. Ansari MS, Gupta NPA. Comparison of lycopene and orchidectomy vs orchidectomy alone in the management of advanced prostate cancer. BJU Int. 2003;92(4):375-378. doi: 10.1046/j.1464-410x.2003.04370.x

 

  1. Kucuk O, Sarkar FH, Djuric Z, et al. Effects of lycopene supplementation in patients with localized prostate cancer. Exp Biol Med. 2002;227(10):881-885. doi: 10.1177/153537020222701007

 

  1. Ansari MS, Gupta NP. Lycopene: A Novel drug therapy in hormone refractory metastatic prostate cancer. Urol Oncol. 2004;22(5):415-420. doi: 10.1016/j.urolonc.2004.05.009

 

  1. Vaishampayan U, Hussain M, Banerjee M, et al. Lycopene and soy isoflavones in the treatment of prostate cancer. Nutr Cancer. 2007;59(1):1-7. doi: 10.1080/01635580701413934

 

  1. Paur I, Lilleby W, Bøhn SK, et al. Tomato-based randomized controlled trial in prostate cancer patients: Effect on PSA. Clin Nutr. 2017;36(3):672-679. doi: 10.1016/j.clnu.2016.06.014

 

  1. Chacón-Ordóñez T, Carle R, Schweiggert RM. Bioaccessibility of carotenoids from plant and animal foods. J Sci Food Agric. 2019;99(7):3220-3239. doi: 10.1002/jsfa.9525

 

  1. Young AJ, Lowe GM. Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys. 2001;385(1):20-27. doi: 10.1006/abbi.2000.2149

 

  1. Burton GW, Ingold KU. Beta-carotene: An unusual type of lipid antioxidant. Science. 1984;224(4649):569-573. doi: 10.1126/science.6710156

 

  1. Druesne-Pecollo N, Latino-Martel P, Norat T, et al. Beta- Carotene supplementation and cancer risk: A systematic review and metaanalysis of randomized controlled trials. Int J Cancer. 2010;127(1):172-184. doi: 10.1002/ijc.25008

 

  1. Takahashi H, Ogata H, Nishigaki R, Broide DH, Karin M. Tobacco smoke promotes lung tumorigenesis by triggering IKKβ- and JNK1-dependent inflammation. Cancer Cell. 2010;17(1):89-97. doi: 10.1016/j.ccr.2009.12.008

 

  1. Parker RS. Absorption, metabolism, and transport of carotenoids. FASEB J. 1996;10(5):542-551. doi: 10.1096/fasebj.10.5.8621054

 

  1. Castenmiller JJ, West CE. Bioavailability and bioconversion of carotenoids. Annu Rev Nutr. 1998;18:19-38. doi: 10.1146/annurev.nutr.18.1.19

 

  1. Siems W, Salerno C, Crifò C, Sommerburg O, Wiswedel I. Beta-carotene degradation products - formation, toxicity and prevention of toxicity. Forum Nutr. 2009;61:75-86. doi: 10.1159/000212740
Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing