Mitigating neglected zoonotic infections: A One Health approach on avian influenza in humans and animals
Avian influenza viruses pose a great challenge to both animal and human health. This viral disease, mainly affecting chickens and birds, poses a substantial zoonotic threat, particularly with the highly pathogenic avian influenza strain. The avian population is a key vector for viral transmission and fosters genetic changes and reassortment events that amplify the infectivity besides broadening the spectrum of host species. Infected animals shed viral particles into the environment, contributing to the widespread dissemination of the viral disease and perpetuating the persistence of viral strains. Given these factors, it is imperative to strengthen monitoring and prevention measures to curb the spread of the virus. Implementing vaccination and testing programs within the animal population, along with stringent biosecurity measures in agricultural environments, including adequate hygiene practices, controlled access to farms, and the separation of different animal species, could effectively mitigate the prevalence of circulating viruses. The measures not only reduce the risk of environmental spread but also mitigate the risk of viral transmission to humans through the One Health approach.
- Kim JH, Cho CH, Shin JH, et al. Highly sensitive and label-free detection of influenza H5N1 viral proteins using affinity peptide and porous BSA/MXene nanocomposite electrode. Anal Chim Acta. 2023;1251:341018. doi: 10.1016/J.ACA.2023.341018
- Charostad J, Rezaei Zadeh Rukerd M, Mahmoudvand S, et al. A comprehensive review of highly pathogenic avian influenza (HPAI) H5N1: An imminent threat at doorstep. Travel Med Infect Dis. 2023;55:102638. doi: 10.1016/J.TMAID.2023.102638
- Wiramus S, Martin C. Rianimazione e influenza grave: Pandemia influenzale a (H1N1). EMC Anest Rianim. 2013;18(2):1-9. doi: 10.1016/S1283-0771(13)64502-8
- Xie R, Edwards KM, Wille M, et al. The episodic resurgence of highly pathogenic avian influenza H5 virus. Nature. 2023;622(7984):810-817. doi: 10.1038/S41586-023-06631-2
- Chatziprodromidou IP, Arvanitidou M, Guitian J, Apostolou T, Vantarakis G, Vantarakis A. Global avian influenza outbreaks 2010-2016: A systematic review of their distribution, avian species and virus subtype. Syst Rev. 2018;7(1):17. doi: 10.1186/S13643-018-0691-Z
- Rzymski P. Avian influenza outbreaks in domestic cats: Another reason to consider slaughter-free cell-cultured poultry? Front Microbiol. 2023;14:1283361. doi: 10.3389/FMICB.2023.1283361
- Mashaal D, Mahmoud SH, Müller C, et al. Differential impact of specific amino acid residues on the characteristics of Avian Influenza viruses in Mammalian systems. Pathogens. 2022;11(11):1385. doi: 10.3390/PATHOGENS11111385
- Peacock TP, Sheppard CM, Lister MG, et al. Mammalian ANP32A and ANP32B proteins drive differential polymerase adaptations in Avian Influenza virus. J Virol. 2023;97(5):e0021323. doi: 10.1128/JVI.00213-23
- Du R, Cui Q, Chen Z, Zhao X, Lin X, Rong L. Revisiting influenza A virus life cycle from a perspective of genome balance. Virol Sin. 2023;38(1):1-8. doi: 10.1016/J.VIRS.2022.10.005
- Alexander DJ. An overview of the epidemiology of avian influenza. Vaccine. 2007;25(30):5637-5644. doi: 10.1016/J.VACCINE.2006.10.051
- Sonnberg S, Webby RJ, Webster RG. Natural history of highly pathogenic avian influenza H5N1. Virus Res. 2013;178(1):63-77. doi: 10.1016/J.VIRUSRES.2013.05.009
- Islam A, Amin E, Munro S, et al. Potential risk zones and climatic factors influencing the occurrence and persistence of avian influenza viruses in the environment of live bird markets in Bangladesh. One Health. 2023;17:100644. doi: 10.1016/J.ONEHLT.2023.100644
- Gabriel G, Czudai-Matwich V, Klenk HD. Adaptive mutations in the H5N1 polymerase complex. Virus Res. 2013;178(1):53-62. doi: 10.1016/J.VIRUSRES.2013.05.010
- Buthelezi NM, Mtambo SE, Amoako DG, et al. Molecular dynamic investigation of H5N1 influenza virus dual H274Y-I222K mutation resistance to peramivir. bioRxiv. 2022. doi: 10.1101/2022.03.08.483396
- Krammer F, Schultz-Cherry S. We need to keep an eye on avian influenza. Nat Rev Immunol. 2023;23(5):267-268. doi: 10.1038/S41577-023-00868-8
- Hill NJ, Bishop MA, Trovão NS, et al. Ecological divergence of wild birds drives avian influenza spillover and global spread. PLoS Pathog. 2022;18(5):e1010062. doi: 10.1371/JOURNAL.PPAT.1010062
- Fu X, Wang Q, Ma B, et al. Advances in detection techniques for the H5N1 avian influenza virus. Int J Mol Sci. 2023;24(24):17157. doi: 10.3390/IJMS242417157
- Zhou X, Wang S, Ma Y, et al. Rapid detection of avian influenza virus based on CRISPR-Cas12a. Virol J. 2023;20(1):261. doi: 10.1186/S12985-023-02232-7
- Wu LT, Curran MD, Ellis JS, et al. Nucleic acid dipstick test for molecular diagnosis of pandemic H1N1. J Clin Microbiol. 2010;48(10):3608-3613. doi: 10.1128/JCM.00981-10/ASSET/B74B74BE-454D- 4226-BDDF-1441F411EBB1/ASSETS/GRAPHIC/ ZJM9990900970002.JPEG
- Ramos KC, Nishiyama K, Maeki M, et al. Rapid, sensitive, and selective detection of H5 hemagglutinin from avian influenza virus using an immunowall device. ACS Omega. 2019;4(15):16683-16688. doi: 10.1021/acsomega.9b02788
- Ip HS, Uhm S, Killian ML, Torchetti MK. An evaluation of avian influenza virus whole-genome sequencing approaches using nanopore technology. Microorganisms. 2023;11(2):529. doi: 10.3390/MICROORGANISMS11020529
- Wei-Wen Hsiao W, Fadhilah G, Lee CC, et al. Nanomaterial-based biosensors for avian influenza virus: A new way forward. Talanta. 2023;265:124892. doi: 10.1016/J.TALANTA.2023.124892
- Tilocca B, Britti D, Urbani A, Roncada P. Computational immune proteomics approach to target COVID-19. J Proteome Res. 2020;19(11):4233-4241. doi: 10.1021/acs.jproteome.0c00553/asset/images/large/ pr0c00553_0001.jpeg
- Sims LD, Peiris M. One health: The Hong Kong experience with avian influenza. Curr Top Microbiol Immunol. 2013;365:281-298. doi: 10.1007/82_2012_254
- Franklin SI. Can one health fight H5N1 avian influenza? Lancet Planet Health. 2023;7(6):e442-e443. doi: 10.1016/S2542-5196(23)00086-4
- Hoye BJ, Munster VJ, Nishiura H, Klaassen M, Fouchier RA. Surveillance of wild birds for avian influenza virus. Emerg Infect Dis. 2010;16(12):1827-1834. doi: 10.3201/EID1612.100589
- Vandalen KK, Shriner SA, Sullivan HJ, Root JJ, Franklin AB. Monitoring exposure to avian influenza viruses in wild mammals. Mamm Rev. 2009;39(3):167-177. doi: 10.1111/J.1365-2907.2009.00144.X
- Kibenge FS. A one health approach to mitigate the impact of influenza A virus (IAV) reverse zoonosis is by vaccinating humans and susceptible farmed and pet animals. Am J Vet Res. 2023;84(6):ajvr.23.03.0053. doi: 10.2460/AJVR.23.03.0053
- Furey C, Ye N, Kercher L, et al. Development of a nucleoside-modified mRNA vaccine against clade 2.3.4.4b H5 highly pathogenic avian influenza virus. bioRxiv. 2023:1-13. doi: 10.1101/2023.04.30.538854