AccScience Publishing / GPD / Volume 3 / Issue 4 / DOI: 10.36922/gpd.4418
REVIEW

The environmental impact on aging: Insights from buccal mucosa and molecular biomarkers

Sima Ataollahi Eshkoor1* Sara Fanijavadi2
Show Less
1 Department of Neurology, Medicin 3, Slagelse Hospital, Slagelse, Denmark
2 Department of Oncology, Vejle Hospital, Vejle, Denmark
Submitted: 2 August 2024 | Accepted: 13 September 2024 | Published: 23 October 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Buccal epithelial cells serve as a primary barrier against the inhalation and ingestion of harmful substances, working alongside immune system cells such as natural killer cells to protect the body from health-damaging factors. These epithelial cells can also be used as an alternative tissue source for monitoring the genotoxic effects of external factors such as chemical exposure. This assessment can be performed using molecular biomarkers of aging, which reflect biological age and indicate cellular aging acceleration due to internal and external damage factors, such as environmental hazards. In contrast to chronological age, which merely reflects the passage of time, biological age accounts for individual variation in aging processes. Molecular biomarkers are crucial for distinguishing between normal and pathological processes in the body and for identifying the effects of external factors such as chemical exposures. The identification of specific biomarkers enhances the ability to detect and monitor adverse biological responses and accelerated aging. This review aims to highlight the routes through which environmental hazards enter the body, the application of buccal epithelial cells in assessing genetic modifications, and the introduction of potential molecular biomarkers. However, further research is necessary to elucidate the roles of these biomarkers in determining aging rates and individual variability. Understanding their implications may also help identify new therapeutic targets for preventing premature aging, treating age-related diseases, and developing potential treatments.

Keywords
Aging
Buccal cell
Biomarkers
DNA damage
Exposure
Hazards
Funding
None.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Rodríguez-Rodero S, Fernández-Morera JL, Menéndez- Torre E, Calvanese V, Fernández AF, Fraga MF. Aging genetics and aging. Aging Dis. 2011;2(3):186-195.

 

  1. Tulchinsky TH, Varavikova EA. Environmental and occupational health. In: The New Public Health. Amsterdam: Elsevier; 2014. p. 471.

 

  1. Chen R, Wang Y, Zhang S, et al. Biomarkers of ageing: Current state‐of‐art, challenges, and opportunities. MedComm Futur Med. 2023;2:e50. doi: 10.1002/mef2.50

 

  1. Cherrie JW, Semple S, Christopher Y, Saleem A, Hughson GW, Philips A. How important is inadvertent ingestion of hazardous substances at work? Ann Occup Hyg. 2006;50(7):693-704. doi: 10.1093/annhyg/mel035

 

  1. Groeger S, Meyle J. Oral mucosal epithelial cells. Front Immunol. 2019;10:208. doi: 10.3389/fimmu.2019.00208

 

  1. Farah R, Haraty H, Salame Z, Fares Y, Ojcius DM, Sadier NS. Salivary biomarkers for the diagnosis and monitoring of neurological diseases. Biomed J. 2018;41(2):63-87. doi: 10.1016/j.bj.2018.03.004

 

  1. Langie SA, Moisse M, Declerck K, et al. Salivary DNA methylation profiling: Aspects to consider for biomarker identification. Basic Clin Pharmacol Toxicol. 2017;121:93-101. doi: 10.1111/bcpt.12721

 

  1. Li H, Reeves RK. Functional perturbation of classical natural killer and innate lymphoid cells in the oral mucosa during SIV infection. Front Immunol. 2013;3:417. doi: 10.3389/fimmu.2012.00417

 

  1. Handajani J, Tabtila U, Auliawati NR, Rohman A. Characterization of buccal cell DNA after exposure to azo compounds: A cross-sectional study. F1000Res. 2020;9:1053. doi: 10.12688/f1000research.25798.2

 

  1. Celik A, Cavas T, Ergene-Gozukara S. Cytogenetic biomonitoring in petrol station attendants: Micronucleus test in exfoliated buccal cells. Mutagenesis. 2003;18(5):417-421. doi: 10.1093/mutage/geg022

 

  1. Surralles J, Autio K, Nylund L, et al. Molecular cytogenetic analysis of buccal cells and lymphocytes from benzene-exposed workers. Carcinogenesis. 1997;18(4):817-823. doi: 10.1093/carcin/18.4.817

 

  1. Holland N, Bolognesi C, Kirsch-Volders M, et al. The micronucleus assay in human buccal cells as a tool for biomonitoring DNA damage: The HUMN project perspective on current status and knowledge gaps. Mutat Res. 2008;659(1):93-108. doi: 10.1016/j.mrrev.2008.03.007

 

  1. Papagerakis S, Pannone G, Zheng L, et al. Oral epithelial stem cells - Implications in normal development and cancer metastasis. Exp Cell Res. 2014;325(2):111-129. doi: 10.1016/j.yexcr.2014.04.021

 

  1. Eshkoora SA, Ismail P, Rahman SA, Moin S, Adon MY. The association of DNA damage level with early age at the occupational exposure in the mechanical workshops workers. Asian J Biotechnol. 2012;4(2):83-91. doi: 10.3923/ajbkr.2012.83.91

 

  1. Motgi AA, Chavan MS, Diwan NN, Chowdhery A, Channe PP, Shete MV. Assessment of cytogenic damage in the form of micronuclei in oral epithelial cells in patients using smokeless and smoked form of tobacco and non-tobacco users and its relevance for oral cancer. J Cancer Res Ther. 2014;10(1):165-170. doi: 10.4103/0973-1482.131454

 

  1. Pradeep M, Guruprasad Y, Jose M, Saxena K, Deepa K, Prabhu V. Comparative Study of genotoxicity in different tobacco related habits using micronucleus assay in exfoliated buccal epithelial cells. J Clin Diagn Res. 2014;8(5):ZC21-ZC24. doi: 10.7860/JCDR/2014/8733.4357

 

  1. Spivack SD, Hurteau GJ, Jain R, et al. Gene-environment interaction signatures by quantitative mRNA profiling in exfoliated buccal mucosal cells. Cancer Res. 2004;64(18):6805-6813. doi: 10.1158/0008-5472.CAN-04-1771

 

  1. Chen C, Arjomandi M, Qin H, Balmes J, Tager I, Holland N. Cytogenetic damage in buccal epithelia and peripheral lymphocytes of young healthy individuals exposed to ozone. Mutagenesis. 2006;21(2):131-137. doi: 10.1093/mutage/gel007

 

  1. Manikantan P, Balachandar V, Sasikala K, Mohanadevi S. DNA damage in viscose factory workers occupationally exposed to carbon di-sulfide using buccal cell comet assay. Braz J Oral Sci. 2009;8(4):197-200. doi: 10.20396/bjos.v8i4.8642078

 

  1. Rajkokila K, Shajithanoop S, Usharani MV. Nuclear anomalies in exfoliated buccal epithelial cells of petrol station attendants in Tamilnadu, South India. J Med Genet Genomics. 2010;2(2):18-22.

 

  1. Lorenzoni DC, Pinheiro LP, Nascimento HS, et al. Could formaldehyde induce mutagenic and cytotoxic effects in buccal epithelial cells during anatomy classes? Med Oral Patol Oral Cir Bucal. 2017;22(1):e58. doi: 10.4317/medoral.21492

 

  1. Salama SA, Serrana M, Au WW. Biomonitoring using accessible human cells for exposure and health risk assessment. Mutat Res. 1999;436(1):99-112. doi: 10.1016/s1383-5742(98)00021-0

 

  1. Eshkoor SA, Ismail P, Rahman SA, Moin S, Adon MY. Occupational exposure as a risk factor to enhance the risk of early ageing. Asian J Biotechnol. 2011;3(6):573-580. doi: 10.3923/ajbkr.2011.573.580

 

  1. Heuser VD, Erdtmann B, Kvitko K, Rohr P, da Silva J. Evaluation of genetic damage in Brazilian footwear-workers: Biomarkers of exposure, effect, and susceptibility. Toxicology. 2007;232(3):235-247. doi: 10.1016/j.tox.2007.01.011

 

  1. Borthakur G, Butryee C, Stacewicz-Sapuntzakis M, Bowen PE. Exfoliated buccal mucosa cells as a source of DNA to study oxidative stress. Cancer Epidemiol Biomarkers Prev. 2008;17(1):212-219. doi: 10.1158/1055-9965.EPI-07-0706

 

  1. Hearn R, Arblaster K. DNA extraction techniques for use in education. Biochem Mol Biol Educ. 2010;38(3):161-166. doi: 10.1002/bmb.20351

 

  1. Toy E, Yuksel S, Ozturk F, Karatas OH, Yalcin M. Evaluation of the genotoxicity and cytotoxicity in the buccal epithelial cells of patients undergoing orthodontic treatment with three light-cured bonding composites by using micronucleus testing. Korean J Orthod. 2014;44(3):128-135. doi: 10.4041/kjod.2014.44.3.128

 

  1. Franzke B, Schober-Halper B, Hofmann M, et al. Chromosomal stability in buccal cells was linked to age but not affected by exercise and nutrients-Vienna Active Ageing Study (VAAS), a randomized controlled trial. Redox Biol. 2020;28:101362. doi: 10.1016/j.redox.2019.101362

 

  1. Michalczyk A, Varigos G, Smith L, Ackland ML. Fresh and cultured buccal cells as a source of mRNA and protein for molecular analysis. Biotechniques. 2004;37(2):262-269. doi: 10.2144/04372RR03

 

  1. Martino-Roth MG, Viegas J, Amaral M, Oliveira L, Ferreira FLS, Erdtmann B. Evaluation of genotoxicity through micronuclei test in workers of car and battery repair garages. Genet Mol Biol. 2002;25(4):495-500. doi: 10.1590/S1415-47572002000400021

 

  1. Herber RFM, Duffus JH, Christensen JM, Olsen E, Park MV. Risk assessment for occupational exposure to chemicals. A review of current methodology (IUPAC technical report). Pure Appl Chem. 2001;73(6):993-1031. doi: 10.1351/pac200173060993

 

  1. Fairhurst S. Hazard and risk assessment of industrial chemicals in the occupational context in Europe: Some current issues. Food Chem Toxicol. 2003;41(11):1453-1462. doi: 10.1016/S0278-6915(03)00193-5

 

  1. Hassim MH, Hurme M. Occupational chemical exposure and risk estimation in process development and design. Process Saf Environ Prot. 2010;88(4):225-235. doi: 10.1016/j.psep.2010.03.011

 

  1. Dinman BD, Dinman JD. The mode of absorption, distribution, and elimination of toxic materials. In: Harris RL, editor. Patty’s Industrial Hygiene. New York: John Wiley & Son Inc.; 2000. doi: 10.1002/0471435139.hyg003

 

  1. Borm PJA, Robbins D, Haubold S, et al. The potential risks of nanomaterials: A review carried out for ECETOC. Part Fibre Toxicol. 2006;3:11. doi: 10.1186/1743-8977-3-11

 

  1. Nielsen GD, Ovrebo S. Background, approaches and recent trends for setting health-based occupational exposure limits: A minireview. Regul Toxicol Pharmacol. 2008;51(3):253-269. doi: 10.1016/j.yrtph.2008.04.002

 

  1. Artik S, Haarhuis K, Wu X, Begerow J, Gleichmann E. Tolerance to nickel: Oral nickel administration induces a high frequency of anergic T cells with persistent suppressor activity. J Immunol. 2001;167(12):6794-6803. doi: 10.4049/jimmunol.167.12.6794

 

  1. Rustemeyer T, de Groot J, von Blomberg BME, Frosch PJ, Scheper RJ. Induction of tolerance and cross-tolerance to methacrylate contact sensitizers. Toxicol Appl Pharmacol. 2001;176(3):195-202. doi: 10.1006/taap.2001.9266.

 

  1. Moller P, Knudsen LE, Loft S, Wallin H. The Comet assay as a rapid test in biomonitoring occupational exposure to DNA-damaging agents and effect of confounding factors. Cancer Epidemiol Biomarkers Prev. 2000;9(10):1005-1015.

 

  1. Keshava N, Ong TM. Occupational exposure to genotoxic agents. Mutat Res. 1999;437(2):175-194. doi: 10.1016/s1383-5742(99)00083-6

 

  1. Benites CI, Amado LL, Vianna RAP, Martino-Roth MG. Micronucleus test on gas station attendants. Genet Mol Res. 2006;5(1):45-54.

 

  1. Conaway CC, Schreiner CA, Cragg ST. Mutagenicity Evaluation of Petroleum Hydrocarbons. Vol. 7. New Jersey: Princeton Scientific Publishers Inc.; 1984. p. 1-302.

 

  1. Loury DJ, Smith-Oliver T, Strom S, Jirtle R, Michalopoulos G, Butterworth BE. Assessment of unscheduled and replicative DNA synthesis in hepatocytes treated in vivo and in vitro with unleaded gasoline or 2,2,4-trimethylpentane. Toxicol Appl Pharmacol. 1986;85(1):11-23. doi: 10.1016/0041-008x(86)90383-2

 

  1. Nylander PO, Olofsson H, Rasmuson B, Svahlin H. Mutagenic effects of petrol in Drosophila melanogaster I. Effects of benzene and 1, 2-dichloroethane. Mutat Res. 1978;57(2):163-167. doi: 10.1016/0027-5107(78)90263-4

 

  1. Pitarque M, Carbonell E, Xamena N, Creus A, Marcos R. Genotoxicity of commercial petrol samples in cultured human lymphocytes. Rev Int Contam Ambient. 1997;13(1):15-21.

 

  1. Garcia PV, Linhares D, Amaral AFS, Rodrigues AA. Exposure of thermoelectric power-plant workers to volatile organic compounds from fuel oil: Genotoxic and cytotoxic effects in buccal epithelial cells. Mutat Res. 2012;747(2):197-201. doi: 10.1016/j.mrgentox.2012.05.008

 

  1. Thomas RD. Age-specific carcinogenesis: Environmental exposure and susceptibility. Environ Health Perspect. 1995;103(Suppl 6):45-48. doi: 10.1289/ehp.95103s645

 

  1. Yin D, Chen K. The essential mechanisms of aging: Irreparable damage accumulation of biochemical side-reactions. Exp Gerontol. 2005;40(6):455-465. doi: 10.1016/j.exger.2005.03.012

 

  1. Tsao T, Tsai M, Hwang J, et al. Health effects of a forest environment on natural killer cells in humans: An observational pilot study. Oncotarget. 2018;9(23):16501-16511. doi: 10.18632/oncotarget.24741

 

  1. De Celis R, Feria-Velasco A, Bravo-Cuellar A, et al. Expression of NK cells activation receptors after occupational exposure to toxics: A preliminary study. Immunol Lett. 2008;118(2):125-131. doi: 10.1016/j.imlet.2008.03.010

 

  1. Unnikrishnan S, Hegde DS. An analysis of cleaner production and its impact on health hazards in the workplace. Environ Int. 2006;32(1):87-94. doi: 10.1016/j.envint.2005.05.023

 

  1. Stokinger HE. Concepts of thresholds in standards setting. An analysis of the concept and its application to industrial air limits (TLVs). Arch Environ Health. 1972;25(3):153-157. doi: 10.1080/00039896.1972.10666154

 

  1. Zielhuis RL, Notten WRF. Permissible levels for occupational exposure; Basic concepts. Int Arch Occup Environ Health. 1979;42(3-4):269-281. doi: 10.1007/BF00377781

 

  1. Henschler D. Exposure limits: History, philosophy, future developments. Ann Occup Hyg. 1984;28(1):79-92. doi: 10.1093/annhyg/28.1.79

 

  1. Hunter WJ, Aresini G, Haigh R, Papadopoulos P, von der Hude W. Occupational exposure limits for chemicals in the European Union. Occup Environ Med. 1997;54(4):217-222. doi: 10.1136/oem.54.4.217

 

  1. Semsei I. On the nature of aging. Mech Ageing Dev. 2000;117(1):93-108. doi: 10.1016/s0047-6374(00)00147-0

 

  1. Baker GT 3rd, Sprott RL. Biomarkers of aging. Exp Gerontol. 1988;23(4-5):223-239. doi: 10.1016/0531-5565(88)90025-3

 

  1. Crews DE. Human Senescence Evolutionary and Biocultural Perspectives. Columbus, Ohio, U.S.A: Ohio State University, Cambridge University Press; 2004. p. 302.

 

  1. Bowen RL, Atwood CS. Living and dying for sex. A theory of aging based on the modulation of cell cycle signaling by reproductive hormones. Gerontology. 2004;50(5):265-290. doi: 10.1159/000079125

 

  1. Mattson MP, Duan W, Maswood N. How does the brain control lifespan? Ageing Res Rev. 2002;1(2):155-165. doi: 10.1016/s1568-1637(01)00003-4

 

  1. Kowald A, Kirkwood TB. Towards a network theory of ageing: A model combining the free radical theory and the protein error theory. J Theor Biol. 1994;168(1):75-94. doi: 10.1006/jtbi.1994.1089

 

  1. Wojda A, Witt M. Manifestations of ageing at the cytogenetic level. J Appl Genet. 2003;44(3):383-399.

 

  1. Yadav JS, Chhillar AK. Cytogenetic damage in individuals exposed to vehicular pollution. Int J Hum Genet. 2002;2(2):113-117. doi: 10.1080/09723757.2002.11885797

 

  1. Shawi M, Autexier C. Telomerase, senescence and ageing. Mech Ageing Dev. 2008;129(1-2):3-10. doi: 10.1016/j.mad.2007.11.007

 

  1. Getof N. Anti-aging and aging factors in life. The role of free radicals. Radiat Phys Chem. 2007;76(10):1577-1586. doi: 10.1016/j.radphyschem.2007.01.002

 

  1. Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev. 1998;78(2):547-581. doi: 10.1152/physrev.1998.78.2.547

 

  1. Vijg J. Somatic mutations and aging: A re-evaluation. Mutat Res. 2000;447(1):117-135. doi: 10.1016/s0027-5107(99)00202-x

 

  1. da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC, Rocha-Santos T. A synopsis on aging-Theories, mechanisms and future prospects. Ageing Res Rev. 2016;29:90-112. doi: 10.1016/j.arr.2016.06.005

 

  1. Qi C, Liu Q. Natural killer cells in aging and age-related diseases. Neurobiol Dis. 2023;183:106156. doi: 10.1016/j.nbd.2023.106156

 

  1. Brauning A, Rae M, Zhu G, et al. Aging of the immune system: Focus on natural killer cells phenotype and functions. Cells. 2022;11(6):1017. doi: 10.3390/cells11061017

 

  1. Wojcik A, Brzeski Z, Kolodziej K, Lojko W, Letkiewicz D, Sieklucka-Dziuba M. Evaluation of toxicological threat to health caused by some carcinogenic factors in the working environment of an industrial plant. Pol J Environ Stud. 2000;9(6):531-536.

 

  1. Adamus T, Mikulenkova I, Dobias L, Havrankova J, Pek T. Cytogenetic methods and biomonitoring of occupational exposure to genotoxic factors. J Appl Biomed. 2006;4:197-203. doi: 10.32725/jab.2006.022

 

  1. Verger A, Crossley M. Chromatin modifiers in transcription and DNA repair. Cell Mol Life Sci. 2004;61(17):2154-2162. doi: 10.1007/s00018-004-4176-y

 

  1. Powell CL, Swenberg JA, Rusyn I. Expression of base excision DNA repair genes as a biomarker of oxidative DNA damage. Cancer Lett. 2005;229(1):1-11. doi: 10.1016/j.canlet.2004.12.002

 

  1. Friedberg EC, McDaniel LD, Schultz RA. The role of endogenous and exogenous DNA damage and mutagenesis. Curr Opin Genet Dev. 2004;14(1):5-10. doi: 10.1016/j.gde.2003.11.001

 

  1. Hoeijmakers JHJ. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411(6835):366-374. doi: 10.1038/35077232

 

  1. Bolognesi C, Lando C, Forni A, et al. Chromosomal damage and ageing: Effect on micronuclei frequency in peripheral blood lymphocytes. Age Aging. 1999;28:393-397. doi: 10.1093/ageing/28.4.393

 

  1. Ono T, Uehara Y, Saito Y, Ikehata H. Mutation theory of aging, assessed in transgenic mice and knockout mice. Mech Ageing Dev. 2002;123(12):1543-1552. doi: 10.1016/s0047-6374(02)00090-8

 

  1. Zhang L, Eastmond DA, Smith MT. The nature of chromosomal aberrations detected in humans exposed to benzene. Crit Rev Toxicol. 2002;32(1):1-42. doi: 10.1080/20024091064165

 

  1. Yadav AS, Jaggi S. Buccal micronucleus cytome assay-A biomarker of genotoxicity. J Mol Biomarkers Diagn. 2015;6:236. doi: 10.4172/2155-9929.1000236

 

  1. Smith MT, Zhang L. Biomarkers of leukemia risk: Benzene as a model. Environ Health Perspect. 1998;106:937-946. doi: 10.1289/ehp.98106s4937

 

  1. Nordberg GF. Biomarkers of exposure, effects and susceptibility in humans and their application in studies of interactions among metals in China. Toxicol Lett. 2010;192(1):45-49. doi: 10.1016/j.toxlet.2009.06.859

 

  1. Dusinska M, Collins AR. The comet assay in human biomonitoring: Gene-environment interactions. Mutagenesis. 2008;23(3):191-205. doi: 10.1093/mutage/gen007

 

  1. Ada AO, Yilmazer M, Suzen S, et al. Cytochrome P450 (CYP) and glutathione S-transferases (GST) polymorphisms (CYP1A1, CYP1B1, GSTM1, GSTP1 and GSTT1) and urinary levels of 1-hydroxypyrene in Turkish coke oven workers. Genet Mol Biol. 2007;30(3):511-519. doi: 10.1590/S1415-47572007000400002

 

  1. Bukvic N, Gentile M, Susca F, et al. Sex chromosome loss, micronuclei, sister chromatid exchange and aging: A study including 16 centenarians. Mutat Res. 2001;498(1):159-167. doi: 10.1016/s1383-5718(01)00279-0

 

  1. Offer T, Ho E, Traber MG, Bruno RS, Kuypers FA, Ames BN. A simple assay for frequency of chromosome breaks and loss (micronuclei) by flow cytometry of human reticulocytes. FASEB J. 2005;19(3):485-487. doi: 10.1096/fj.04-2729fje

 

  1. Mussali-Galante P, Tovar-Sánchez E, Valverde M, Rojas del Castillo E. Biomarkers of exposure for assessing environmental metal pollution: From molecules to ecosystems. Rev Int Contam Ambient. 2013;29:117-140.

 

  1. Morla M, Busquets X, Pons J, Sauleda J, MacNee W, Agusti AGN. Telomere shortening in smokers with and without COPD. Eur Respir J. 2006;27(3):525-528. doi: 10.1183/09031936.06.00087005

 

  1. Pacheco KA. Epigenetics mediate environment: Gene effects on occupational sensitization. Curr Opin Allergy Clin Immunol. 2012;12(2):111-118. doi: 10.1097/ACI.0b013e328351518f

 

  1. Kasuba V, Rozgaj R, Sentija K. Cytogenetic changes in subjects occupationally exposed to benzene. Chemosphere. 2000;40(3):307-310. doi: 10.1016/s0045-6535(99)00265-9

 

  1. Cakir S. Genetics and some aging-related mechanisms. Turk J Zool. 2000;24(2):183-190.

 

  1. Yu M, Zhang H, Wang B, et al. Key signaling pathways in aging and potential interventions for healthy aging. Cells. 2021;10(3):660. doi: 10.3390/cells10030660

 

  1. Mantovani C, Terenghi G, Magnaghi V. Senescence in adipose-derived stem cells and its implications in nerve regeneration. Neural Regen Res. 2014;9(1):10-15. doi: 10.4103/1673-5374.125324

 

  1. Lu W, Tang S, Li A, et al. The role of PKC/PKR in aging, Alzheimer’s disease, and perioperative neurocognitive disorders. Front Aging Neurosci. 2022;14:973068. doi: 10.3389/fnagi.2022.973068

 

  1. Balistreri CR, Madonna R, Melino G, Caruso C. The emerging role of Notch pathway in ageing: Focus on the related mechanisms in age-related diseases. Ageing Res Rev. 2016;29:50-65. doi: 10.1016/j.arr.2016.06.004

 

  1. Ukraintseva S, Duan M, Arbeev K, et al. Interactions between genes from aging pathways may influence human lifespan and improve animal to human translation. Front Cell Dev Biol. 2021;9:692020. doi: 10.3389/fcell.2021.692020

 

  1. Ronen A, Glickman BW. Human DNA repair genes. Environ Mol Mutagen. 2001;37(3):241-283. doi: 10.1002/em.1033

 

  1. Wood RD, Mitchell M, Sgouros J, Lindahl T. Human DNA repair genes. Science. 2001;291(5507):1284-1289. doi: 10.1126/science.1056154

 

  1. Kirsch-Volders M, Fenech M. Inclusion of micronuclei in non-divided mononuclear lymphocytes and necrosis/ apoptosis may provide a more comprehensive cytokinesis block micronucleus assay for biomonitoring purposes. Mutagenesis. 2001;16(1):51-58. doi: 10.1093/mutage/16.1.51

 

  1. LLeonart ME, Carnero A, Paciucci R, Wang ZQ, Shomron N. Cancer, senescence, and aging: Translation from basic research to clinics. J Aging Res. 2011;2011:692301. doi: 10.4061/2011/692301

 

  1. Eshkoora SA, Ismail P, Abdul Rahman S. Gene expression of CDK6 and CCND1 genes in basal cell carcinoma. J Med Biol Sci. 2008;2(2):1-9.

 

  1. Han X, Zheng T, Foss FM, et al. Genetic polymorphisms in the metabolic pathway and non‐Hodgkin lymphoma survival. Am J Hematol. 2010;85(1):51-56. doi: 10.1002/ajh.21580

 

  1. Eshkoorb SA, Marashi SJ, Ismail P, et al. Association of GSTM1 and GSTT1 with ageing in auto repair shop workers. Genet Mol Res. 2012;11(2):1486-1496. doi: 10.4238/2012.May.21.5

 

  1. Eshkoor SA, Ismail P, Rahman SA. Does CYP1A1 gene polymorphism affect cell damage biomarkers and ageing? Turk J Biol. 2014;38:219-225. doi: 10.3906/biy-1308-61

 

  1. Eshkoora SA, Ismail P, Rahman SA, Moin S. Role of the CYP1A2 gene polymorphism on early ageing from occupational exposure. Balkan J Med Genet. 2013;16(2):45-52. doi: 10.2478/bjmg-2013-0031

 

  1. Smith GB, Harper PA, Wong JM, et al. Human lung microsomal cytochrome P4501A1 (CYP1A1) activities: Impact of smoking status and CYP1A1, aryl hydrocarbon receptor, and glutathione S-transferase M1 genetic polymorphisms. Cancer Epidemiol Biomarkers Prev. 2001;10:839-853.

 

  1. Eshkoorb SA, Ismail P, Rahman SA, Adon MY, Devan RV. Contribution of CYP2E1 polymorphism to aging in the mechanical workshop workers. Toxicol Mech Methods. 2013;23(4):217-222. doi: 10.3109/15376516.2012.743637

 

  1. Lucas D, Ferrara R, Gonzales E, Albores A, Manno M, Berthou F. Cytochrome CYP2E1 phenotyping and genotyping in the evaluation of health risks from exposure to polluted environments. Toxicol Lett. 2001;124(1):71-81. doi: 10.1016/s0378-4274(00)00287-3
  2. Guengerich FP, Shimada T. Activation of procarcinogens by human cytochrome P450 enzymes. Mutat Res. 1998;400(1):201-213. doi: 10.1016/s0027-5107(98)00037-2

 

  1. Pande M, Amos CI, Osterwisch DR, et al. Genetic variation in genes for the xenobiotic-metabolizing enzymes CYP1A1, EPHX1, GSTM1, GSTT1, and GSTP1 and susceptibility to colorectal cancer in Lynch syndrome. Cancer Epidemiol Biomarkers Prev. 2008;17(9):2393-2401. doi: 10.1158/1055-9965.EPI-08-0326

 

  1. Da Silva J, Moraes CR, Heuser VD, et al. Evaluation of genetic damage in a Brazilian population occupationally exposed to pesticides and its correlation with polymorphisms in metabolizing genes. Mutagenesis. 2008;23(5):415-422. doi: 10.1093/mutage/gen031

 

  1. Pérez-Cadahía B, Laffon B, Valdiglesias V, Pásaro E, Méndez J. Cytogenetic effects induced by Prestige oil on human populations: The role of polymorphisms in genes involved in metabolism and DNA repair. Mutat Res. 2008;653(1):117-123. doi: 10.1016/j.mrgentox.2008.04.002

 

  1. Eshkoorb SA, Ismail P, Rahman SA, Moin S. Does GSTP1 polymorphism contribute to genetic damage caused by ageing and occupational exposure? Arh Hig Rada Toksikol. 2011;62(4):291-298. doi: 10.2478/10004-1254-62-2011-2088

 

  1. Wu X, Amos CI, Zhu Y, et al. Telomere dysfunction: A potential cancer predisposition factor. J Natl Cancer Inst. 2003;95(16):1211-1218. doi: 10.1093/jnci/djg011

 

  1. Li J, Zhang Y, You Y, et al. Unraveling the mechanisms of NK cell dysfunction in aging and Alzheimer’s disease: Insights from GWAS and single-cell transcriptomics. Front Immunol. 2024;15:1360687. doi: 10.3389/fimmu.2024.1360687

 

  1. Weber S, Menees KB, Park J, et al. Distinctive CD56dim NK subset profiles and increased NKG2D expression in blood NK cells of Parkinson’s disease patients. NPJ Parkinsons Dis. 2024;10(1):36. doi: 10.1038/s41531-024-00652-y

 

  1. Chidrawar SM, Khan N, Chan YLT, Nayak L, Moss PAH. Ageing is associated with a decline in peripheral blood CD56bright NK cells. Immun Ageing. 2006;3:10. doi: 10.1186/1742-4933-3-10

 

  1. Hazeldine J, Lord JM. The impact of ageing on natural killer cell function and potential consequences for health in older adults. Ageing Res Rev. 2013;12(4):1069-1078. doi: 10.1016/j.arr.2013.04.003

 

  1. Chini CC, Peclat TR, Warner GM, et al. CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD+ and NMN levels. Nature Metab. 2020;2(11):1284-1304. doi: 10.1038/s42255-020-00298-z

 

  1. Xia M, Wang B, Wang Z, Zhang X, Wang X. Epigenetic regulation of NK cell-mediated antitumor immunity. Front Immunol. 2021;12:672328. doi: 10.3389/fimmu.2021.672328

 

  1. Lv L, Chen Q, Lu J, et al. Potential regulatory role of epigenetic modifications in aging-related heart failure. Int J Cardiol. 2024;401:131858. doi: 10.1016/j.ijcard.2024.131858

 

  1. Moskalev AA, Aliper AM, Smit-McBride Z, Buzdin A, Zhavoronkov A. Genetics and epigenetics of aging and longevity. Cell Cycle. 2014;13:1063-1077. doi: 10.4161/cc.28433

 

  1. Colită CI, Udristoiu I, Ancuta DL, et al. Epigenetics of ageing and psychiatric disorders. J Integr Neurosci. 2024;23(1):13. doi: 10.31083/j.jin2301013

 

  1. Johnson AA, Akman K, Calimport SRG, Wuttke D, Stolzing A, de Magalhaes JP. The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res. 2012;15(5):483-494. doi: 10.1089/rej.2012.1324

 

  1. Olden K, Freudenberg N, Dowd J, Shields AE. Discovering how environmental exposures alter genes could lead to new treatments for chronic illnesses. Health Aff (Millwood). 2011;30(5):833-841. doi: 10.1377/hlthaff.2011.0078

 

  1. Kanherkar RR, Bhatia-Dey N, Csoka AB. Epigenetics across the human lifespan. Front Cell Dev Biol. 2014;2:49. doi: 10.3389/fcell.2014.00049

 

  1. Haigis MC, Yankner BA. The aging stress response. Mol Cell. 2010;40(2):333-344. doi: 10.1016/j.molcel.2010.10.002

 

  1. Zampieri M, Ciccarone F, Guastafierro T, et al. Validation of suitable internal control genes for expression studies in aging. Mech Ageing Dev. 2010;131(2):89-95. doi: 10.1016/j.mad.2009.12.005

 

  1. Hernandez‐Segura A, Rubingh R, Demaria M. Identification of stable senescence‐associated reference genes. Aging Cell. 2019;18(2):e12911. doi: 10.1111/acel.12911

 

  1. Pal S, Tyler JK. Epigenetics and aging. Sci Adv. 2016;2(7):e1600584. doi: 10.1126/sciadv.1600584

 

  1. Laroni A, Uccelli A. CD56bright natural killer cells: A possible biomarker of different treatments in multiple sclerosis. J Clin Med. 2020;9(5):1450. doi: 10.3390/jcm9051450

 

  1. Abel AM, Yang C, Thakar MS, Malarkannan S. Natural killer cells: Development, maturation, and clinical utilization. Front Immunol. 2018;9:1869. doi: 10.3389/fimmu.2018.01869

 

  1. Shi FD, Ljunggren HG, La Cava A, Van Kaer L. Organ-specific features of natural killer cells. Nat Rev Immunol. 2011;11(10):658-671. doi: 10.1038/nri3065

 

  1. Almeida-Oliveira A, Smith-Carvalho M, Porto LC, et al. Age-related changes in natural killer cell receptors from childhood through old age. Hum Immunol. 2011;72(4):319-329. doi: 10.1016/j.humimm.2011.01.009

 

  1. Campos C, Pera A, Pita-Lopez ML, et al. Natural Killer Cells in Human Aging. Cham: Springer; 2018. doi: 10.1007/978-3-319-64597-1_27-1

 

  1. Poli A, Michel T, Thérésine M, Andrès E, Hentges F, Zimmer J. CD56bright natural killer (NK) cells: An important NK cell subset. Immunology. 2009;126(4):458-465. doi: 10.1111/j.1365-2567.2008.03027.x

 

  1. Berahovich RD, Lai NL, Wei Z, Lanier LL, Schall TJ. Evidence for NK cell subsets based on chemokine receptor expression. J Immunol. 2006;177(11):7833-7840. doi: 10.4049/jimmunol.177.11.7833
Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing