AccScience Publishing / GPD / Volume 3 / Issue 3 / DOI: 10.36922/gpd.4047
REVIEW

Advances and challenges in gene therapy for dystrophic epidermolysis bullosa: Insights from therapeutic strategies and animal models

Xianqing Wang1,2 Josie Ward2 Wei He1 Wenxin Wang2* Ming Li1*
Show Less
1 Department of Dermatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
2 Charles Institute of Dermatology, School of Medicine, University College Dubin, Dublin, Ireland
Submitted: 25 June 2024 | Accepted: 13 August 2024 | Published: 26 September 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Dystrophic epidermolysis bullosa (DEB) is a severe monogenic skin disorder resulting from mutations in the COL7A1 gene, which disrupts the synthesis of type VII collagen. This leads to impaired anchoring fibrils and results in dermoepidermal separation. The clinical manifestation of DEB varies significantly, ranging from localized blistering in milder forms to extensive blistering with subsequent severe complications such as vision loss and squamous cell carcinoma in more severe cases. Despite the recent approval of the first gene replacement therapy by the U.S. Food and Drug Administration, the majority of DEB patients still depend on palliative care, an indication of the continued unmet therapeutic needs. In the past two decades, there has been a rapid advancement of gene therapy techniques, extensive research efforts, and pre-clinical studies focusing on the correction of DNA, RNA, and protein defects specific to DEB. In this review, we provide a comprehensive update on the current state of gene engineering strategies for DEB, including gene replacement, pre-mRNA regulatory therapies, and gene editing techniques. In addition, this review critically evaluates the role and development of animal models in DEB research, which are crucial for the progression of therapeutic strategies. Our discussion aims to delineate the existing challenges and emphasize ongoing advancements in the gene therapy landscape for DEB, providing insights that may guide future research and clinical approaches.

Keywords
: Epidermolysis bullosa
Dystrophic epidermolysis bullosa
Gene therapy
Animal models
COL7A1
Type VII collagen
Funding
This work was supported by the Chinese Government – China Scholarship Council (CSC202008300001), and Science Foundation Ireland (SFI) Frontiers for the Future 2019 call (19/FFP/6522).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Has C, Bauer JW, Bodemer C, et al. Consensus reclassification of inherited epidermolysis bullosa and other disorders with skin fragility. Br J Dermatol. 2020;183(4):614-627. doi: 10.1111/bjd.18921

 

  1. Hou PC, Wang HT, Abhee S, Tu WT, McGrath JA, Hsu CK. Investigational treatments for epidermolysis bullosa. Am J Clin Dermatol. 2021;22(6):801-817. doi: 10.1007/s40257-021-00626-3

 

  1. Fine JD, Bruckner-Tuderman L, Eady RAJ, et al. Inherited epidermolysis bullosa: Updated recommendations on diagnosis and classification. J Am Acad Dermatol. 2014;70(6):1103-1126. doi: 10.1016/j.jaad.2014.01.903

 

  1. Fine JD. Epidemiology of inherited epidermolysis bullosa based on incidence and prevalence estimates from the national epidermolysis bullosa registry. JAMA Dermatol. 2016;152(11):1231. doi: 10.1001/jamadermatol.2016.2473

 

  1. Petrof G, Papanikolaou M, Martinez AE, et al. The epidemiology of epidermolysis bullosa in England and Wales: Data from the national epidermolysis bullosa database. Br J Dermatol. 2022;186(5):843-848. doi: 10.1111/bjd.20958

 

  1. Bardhan A, Bruckner-Tuderman L, Chapple ILC, et al. Epidermolysis bullosa. Nat Rev Dis Primers. 2020;6(1):78. doi: 10.1038/s41572-020-0210-0

 

  1. Eichstadt S, Tang JY, Solis DC, et al. From clinical phenotype to genotypic modelling: Incidence and prevalence of recessive dystrophic epidermolysis bullosa (RDEB). Clin Cosmet Investig Dermatol. 2019;12:933-942. doi: 10.2147/CCID.S232547

 

  1. Varki R, Sadowski S, Uitto J, Pfendner E. Epidermolysis bullosa. II. Type VII collagen mutations and phenotype-genotype correlations in the dystrophic subtypes. J Med Genet. 2006;44(3):181-192. doi: 10.1136/jmg.2006.045302

 

  1. Wertheim-Tysarowska K, Sobczyńska-Tomaszewska A, Kowalewski C, et al. The COL7A1 mutation database. Hum Mutat. 2012;33(2):327-331. doi: 10.1002/humu.21651

 

  1. Watanabe M, Natsuga K, Shinkuma S, Shimizu H. Epidermal aspects of Type VII collagen: Implications for dystrophic epidermolysis bullosa and epidermolysis bullosa acquisita. J Dermatol. 2018;45(5):515-521. doi: 10.1111/1346-8138.14222

 

  1. Van Den Akker PC, Jonkman MF, Rengaw T, et al. The international dystrophic epidermolysis bullosa patient registry: An online database of dystrophic epidermolysis bullosa patients and their COL7A1 mutations. Hum Mutat. 2011;32(10):1100-1107. doi: 10.1002/humu.21551

 

  1. Uitto J, Has C, Vahidnezhad H, Youssefian L, Bruckner- Tuderman L. Molecular pathology of the basement membrane zone in heritable blistering diseases: The paradigm of epidermolysis bullosa. Matrix Biol. 2017;57- 58:76-85. doi: 10.1016/j.matbio.2016.07.009

 

  1. Dang N, Murrell DF. Mutation analysis and characterization of COL7A1 mutations in dystrophic epidermolysis bullosa. Exp Dermatol. 2008;17(7):553-568. doi: 10.1111/j.1600-0625.2008.00723.x

 

  1. Bruckner-Tuderman L. Dystrophic epidermolysis bullosa: Pathogenesis and clinical features. Dermatol Clin. 2010;28(1):107-114. doi: 10.1016/j.det.2009.10.020

 

  1. Tang JY, Marinkovich MP, Lucas E, et al. A systematic literature review of the disease burden in patients with recessive dystrophic epidermolysis bullosa. Orphanet J Rare Dis. 2021;16(1):175. doi: 10.1186/s13023-021-01811-7

 

  1. Togo CCG, Zidorio APC, Gonçalves VSS, Hubbard L, de Carvalho KMB, Dutra ES. Quality of life in people with epidermolysis bullosa: A systematic review. Qual Life Res. 2020;29(7):1731-1745. doi: 10.1007/s11136-020-02495-5

 

  1. Krämer S, Lucas J, Gamboa F, et al. Clinical practice guidelines: Oral health care for children and adults living with epidermolysis bullosa. Spec Care Dentist. 2020;40(S1): 3-81. doi: 10.1111/scd.1251118.

 

  1. Papanikolaou M,Onoufriadis A, Mellerio JE, et al. Prevalence, pathophysiology and management of itch in epidermolysis bullosa. Br J Dermatol. 2021;184(5):816-825. doi: 10.1111/bjd.19496

 

  1. Condorelli AG, Dellambra E, Logli E, Zambruno G, Castiglia D. Epidermolysis bullosa-associated squamous cell carcinoma: From pathogenesis to therapeutic perspectives. IJMS. 2019;20(22):5707. doi: 10.3390/ijms20225707

 

  1. Badiavas EV, Abedi M, Butmarc J, Falanga V, Quesenberry P. Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol. 2003;196(2):245-250. doi: 10.1002/jcp.10260

 

  1. Petrof G, Lwin SM, Martinez-Queipo M, et al. Potential of systemic allogeneic mesenchymal stromal cell therapy for children with recessive dystrophic epidermolysis bullosa. J Invest Dermatol. 2015;135(9):2319-2321. doi: 10.1038/jid.2015.158

 

  1. Petrova A, Georgiadis C, Fleck RA, et al. Human mesenchymal stromal cells engineered to express collagen VII can restore anchoring fibrils in recessive dystrophic epidermolysis bullosa skin graft chimeras. J Invest Dermatol. 2020;140(1):121-131.e6. doi: 10.1016/j.jid.2019.05.031

 

  1. Ganier C, Titeux M, Gaucher S, et al. Intradermal injection of bone marrow mesenchymal stromal cells corrects recessive dystrophic epidermolysis bullosa in a xenograft model. J Invest Dermatol. 2018;138(11):2483-2486. doi: 10.1016/j.jid.2018.04.028

 

  1. Remington J, Wang X, Hou Y, et al. Injection of recombinant human type VII collagen corrects the disease phenotype in a murine model of dystrophic epidermolysis bullosa. Mol Ther. 2009;17(1):26-33. doi: 10.1038/mt.2008.234

 

  1. Gretzmeier C, Pin D, Kern JS, et al. Systemic collagen VII replacement therapy for advanced recessive dystrophic epidermolysis bullosa. J Invest Dermatol. 2022;142(4):1094- 1102.e3. doi: 10.1016/j.jid.2021.09.008

 

  1. Woodley DT, Wang X, Amir M, et al. Intravenously injected recombinant human Type VII collagen homes to skin wounds and restores skin integrity of dystrophic epidermolysis bullosa. J Invest Dermatol. 2013;133(7): 1910-1913. doi: 10.1038/jid.2013.10

 

  1. Wang X, Ghasri P, Amir M, et al. Topical application of recombinant Type VII collagen incorporates into the dermal-epidermal junction and promotes wound closure. Mol Ther. 2013;21(7):1335-1344. doi: 10.1038/mt.2013.87

 

  1. Eichstadt S, Barriga M, Ponakala A, et al. Phase 1/2a clinical trial of gene-corrected autologous cell therapy for recessive dystrophic epidermolysis bullosa. JCI Insight. 2019;4(19):e130554. doi: 10.1172/jci.insight.130554

 

  1. Lwin SM, Syed F, Di WL, et al. Safety and early efficacy outcomes for lentiviral fibroblast gene therapy in recessive dystrophic epidermolysis bullosa. JCI Insight. 2019;4(11):e126243. doi: 10.1172/jci.insight.126243

 

  1. Zhou D, Cutlar L, Gao Y, et al. The transition from linear to highly branched poly(β-amino ester)s: Branching matters for gene delivery. Sci Adv. 2016;2(6):e1600102. doi: 10.1126/sciadv.1600102

 

  1. Zhou D, Gao Y, Aied A, et al. Highly branched poly(β-amino ester)s for skin gene therapy. J Control Release. 2016;244: 336-346. doi: 10.1016/j.jconrel.2016.06.014

 

  1. Cutlar L, Zhou D, Hu X, et al. A non-viral gene therapy for treatment of recessive dystrophic epidermolysis bullosa. Exp Dermatol. 2016;25(10):818-820. doi: 10.1111/exd.13054

 

  1. Guide SV, Gonzalez ME, Bağcı IS, et al. Trial of beremagene geperpavec (B-VEC) for dystrophic epidermolysis bullosa. N Engl J Med. 2022;387(24):2211-2219. doi: 10.1056/NEJMoa2206663

 

  1. Tovar Vetencourt A, Sayed-Ahmed I, Gomez J, et al. Ocular gene therapy in a patient with dystrophic epidermolysis bullosa. N Engl J Med. 2024;390(6):530-535. doi: 10.1056/NEJMoa2301244

 

  1. Goto M, Sawamura D, Nishie W, et al. Targeted skipping of a single exon harboring a premature termination codon mutation: Implications and potential for gene correction therapy for selective dystrophic epidermolysis bullosa patients. J Invest Dermatol. 2006;126(12):2614-2620. doi: 10.1038/sj.jid.5700435

 

  1. Bremer J, Bornert O, Nyström A, et al. Antisense oligonucleotide-mediated exon skipping as a systemic therapeutic approach for recessive dystrophic epidermolysis bullosa. Mol Ther Nucleic Acids. 2016;5:e379. doi: 10.1038/mtna.2016.87

 

  1. Turczynski S, Titeux M, Tonasso L, Décha A, Ishida- Yamamoto A, Hovnanian A. Targeted exon skipping restores Type VII collagen expression and anchoring fibril formation in an in vivo RDEB model. J Invest Dermatol. 2016;136(12):2387-2395. doi: 10.1016/j.jid.2016.07.029

 

  1. Bornert O, Hogervorst M, Nauroy P, et al. QR-313, an antisense oligonucleotide, shows therapeutic efficacy for treatment of dominant and recessive dystrophic epidermolysis bullosa: A preclinical study. J Invest Dermatol. 2021;141(4):883-893.e6. doi: 10.1016/j.jid.2020.08.018

 

  1. García M, Bonafont J, Martínez-Palacios J, et al. Preclinical model for phenotypic correction of dystrophic epidermolysis bullosa by in vivo CRISPR-Cas9 delivery using adenoviral vectors. Mol Ther Methods Clin Dev. 2022;27:96-108. doi: 10.1016/j.omtm.2022.09.005

 

  1. Wu W, Lu Z, Li F, et al. Efficient in vivo gene editing using ribonucleoproteins in skin stem cells of recessive dystrophic epidermolysis bullosa mouse model. Proc Natl Acad Sci USA. 2017;114(7):1660-1665. doi: 10.1073/pnas.1614775114

 

  1. Kocher T, March OP, Bischof J, et al. Predictable CRISPR/ Cas9-mediated COL7A1 reframing for dystrophic epidermolysis bullosa. J Invest Dermatol. 2020;140(10):1985- 1993.e5. doi: 10.1016/j.jid.2020.02.012

 

  1. Kocher T, Wagner RN, Klausegger A, et al. Improved double-nicking strategies for COL7A1-editing by homologous recombination. Mol Ther Nucleic Acids. 2019;18:496-507. doi: 10.1016/j.omtn.2019.09.011

 

  1. Jacków J, Guo Z, Hansen C, et al. CRISPR/Cas9-based targeted genome editing for correction of recessive dystrophic epidermolysis bullosa using iPS cells. Proc Natl Acad Sci USA. 2019;116(52):26846-26852. doi: 10.1073/pnas.1907081116

 

  1. Osborn MJ, Newby GA, McElroy AN, et al. base editor correction of COL7A1 in recessive dystrophic epidermolysis bullosa patient-derived fibroblasts and iPSCs. J Invest Dermatol. 2020;140(2):338-347.e5. doi: 10.1016/j.jid.2019.07.701

 

  1. Naso G, Gkazi SA, Georgiadis C, et al. Cytosine deaminase base editing to restore COL7A1 in dystrophic epidermolysis bullosa human: Murine skin model. JID Innov. 2023;3(3):100191. doi: 10.1016/j.xjidi.2023.100191

 

  1. Hong SA, Kim SE, Lee AY, et al. Therapeutic base editing and prime editing of COL7A1 mutations in recessive dystrophic epidermolysis bullosa. Mol Ther. 2022;30(8):2664-2679. doi: 10.1016/j.ymthe.2022.06.005

 

  1. Bischof J, Hierl M, Koller U. Emerging gene therapeutics for epidermolysis bullosa under development. IJMS. 2024;25(4):2243. doi: 10.3390/ijms25042243

 

  1. Roth TL, Marson A. Genetic disease and therapy. Annu Rev Pathol. 2021;16(1):145-166. doi: 10.1146/annurev-pathmechdis-012419-032626

 

  1. Chen M, O’Toole EA, Muellenhoff M, Medina E, Kasahara N, Woodley DT. Development and characterization of a recombinant truncated Type VII collagen “minigene”. Implication for gene therapy of dystrophic epidermolysis bullosa. J Biol Chem. 2000;275(32):24429-24435. doi: 10.1074/jbc.M003440200

 

  1. Ortiz-Urda S, Thyagarajan B, Keene DR, et al. Stable nonviral genetic correction of inherited human skin disease. Nat Med. 2002;8(10):1166-1170. doi: 10.1038/nm766

 

  1. Gurevich I, Agarwal P, Zhang P, et al. In vivo topical gene therapy for recessive dystrophic epidermolysis bullosa: A phase 1 and 2 trial. Nat Med. 2022;28(4):780-788. doi: 10.1038/s41591-022-01737-y

 

  1. Wang X, Alshehri F, Manzanares D, et al. Development of minicircle vectors encoding COL7A1 gene with human promoters for non-viral gene therapy for recessive dystrophic epidermolysis bullosa. IJMS. 2021;22(23):12774. doi: 10.3390/ijms222312774

 

  1. Zeng M, Xu Q, Zhou D, et al. Highly branched poly(β- amino ester)s for gene delivery in hereditary skin diseases. Adv Drug Deliv Rev. 2021;176:113842. doi: 10.1016/j.addr.2021.113842

 

  1. Zeng M, Zhou D, Alshehri F, et al. Manipulation of Transgene expression in fibroblast cells by a multifunctional linear-branched hybrid poly(β-Amino Ester) synthesized through an oligomer combination approach. Nano Lett. 2019;19(1):381-391. doi: 10.1021/acs.nanolett.8b04098

 

  1. Jacków J, Titeux M, Portier S, et al. Gene-corrected fibroblast therapy for recessive dystrophic epidermolysis bullosa using a self-inactivating COL7A1 retroviral vector. J Invest Dermatol. 2016;136(7):1346-1354. doi: 10.1016/j.jid.2016.02.811

 

  1. Kern JS, Loeckermann S, Fritsch A, et al. Mechanisms of fibroblast cell therapy for dystrophic epidermolysis bullosa: High stability of collagen VII favors long-term skin integrity. Mol Ther. 2009;17(9):1605-1615. doi: 10.1038/mt.2009.144

 

  1. Woodley DT, Remington J, Huang Y, et al. Intravenously injected human fibroblasts home to skin wounds, deliver type VII collagen, and promote wound healing. Molecular Therapy. 2007;15(3):628-635. doi: 10.1038/sj.mt.6300041

 

  1. Woodley DT, Keene DR, Atha T, et al. Intradermal injection of lentiviral vectors corrects regenerated human dystrophic epidermolysis bullosa skin tissue in vivo. Mol Ther 2004;10(2):318-326. doi: 10.1016/j.ymthe.2004.05.016

 

  1. Payne AS. Topical gene therapy for epidermolysis bullosa. N Engl J Med. 2022;387(24):2281-2284. doi: 10.1056/NEJMe2213203

 

  1. Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther. 2021;6(1):53. doi: 10.1038/s41392-021-00487-6

 

  1. Tockner B, Kocher T, Hainzl S, et al. Construction and validation of an RNA trans-splicing molecule suitable to repair a large number of COL7A1 mutations. Gene Ther. 2016;23(11):775-784. doi: 10.1038/gt.2016.57

 

  1. Peking P, Koller U, Duarte B, et al. An RNA-targeted therapy for dystrophic epidermolysis bullosa. Nucleic Acids Res. 2017;45(17):10259-10269. doi: 10.1093/nar/gkx669

 

  1. Peking P, Koller U, Hainzl S, et al. A gene gun-mediated nonviral RNA trans-splicing strategy for Col7a1 repair. Mol Ther Nucleic Acids. 2016;5:e287. doi: 10.1038/mtna.2016.3

 

  1. Bremer J, van der Heijden EH, Eichhorn DS, et al. Natural exon skipping sets the stage for exon skipping as therapy for dystrophic epidermolysis bullosa. Mol Ther Nucleic Acids. 2019;18:465-475. doi: 10.1016/j.omtn.2019.09.009

 

  1. Bornert O, Kühl T, Bremer J, van den Akker PC, Pasmooij AM, Nyström A. Analysis of the functional consequences of targeted exon deletion in COL7A1 reveals prospects for dystrophic epidermolysis bullosa therapy. Mol Ther. 2016;24(7):1302-1311. doi: 10.1038/mt.2016.92

 

  1. Mencía Á, Chamorro C, Bonafont J, et al. Deletion of a pathogenic mutation-containing exon of COL7A1 allows clonal gene editing correction of RDEB Patient epidermal stem cells. Mol Ther Nucleic Acids. 2018;11:68-78. doi: 10.1016/j.omtn.2018.01.009

 

  1. Wang X, Wang X, Li Y, et al. CRISPR-Cas9-based non-viral gene editing therapy for topical treatment of recessive dystrophic epidermolysis bullosa. Mol Ther Methods Clin Dev. 2023;31:101134. doi: 10.1016/j.omtm.2023.101134

 

  1. Bonafont J, Mencía Á, García M, et al. Clinically relevant correction of recessive dystrophic epidermolysis bullosa by dual sgRNA CRISPR/Cas9-mediated gene editing. Mol Ther. 2019;27(5):986-998. doi: 10.1016/j.ymthe.2019.03.007

 

  1. Du Rand A, Hunt J, Samson C, et al. Highly efficient CRISPR/ Cas9‐mediated exon skipping for recessive dystrophic epidermolysis bullosa. Bioeng Transl Med. 2024;9:e10640. doi: 10.1002/btm2.10640

 

  1. Takashima S, Shinkuma S, Fujita Y, et al. Efficient gene reframing therapy for recessive dystrophic epidermolysis bullosa with CRISPR/Cas9. J Invest Dermatol. 2019;139(8):1711-1721.e4. doi: 10.1016/j.jid.2019.02.015

 

  1. Osborn MJ, Starker CG, McElroy AN, et al. TALEN-based gene correction for epidermolysis bullosa. Mol Ther. 2013;21(6):1151-1159. doi: 10.1038/mt.2013.56

 

  1. Izmiryan A, Danos O, Hovnanian A. Meganuclease-mediated COL7A1 gene correction for recessive dystrophic epidermolysis bullosa. J Invest Dermatol. 2016;136(4): 872-875. doi: 10.1016/j.jid.2015.11.028

 

  1. Itoh M, Kawagoe S, Tamai K, Nakagawa H, Asahina A, Okano HJ. Footprint-free gene mutation correction in Induced Pluripotent Stem Cell (iPSC) derived from Recessive Dystrophic Epidermolysis Bullosa (RDEB) using the CRISPR/Cas9 and piggyBac transposon system. J Dermatol Sci. 2020;98(3):163-172. doi: 10.1016/j.jdermsci.2020.04.004

 

  1. Kocher T, Bischof J, Haas SA, et al. A non-viral and selection-free COL7A1 HDR approach with improved safety profile for dystrophic epidermolysis bullosa. Mol Ther Nucleic Acids. 2021;25:237-250. doi: 10.1016/j.omtn.2021.05.015

 

  1. Bonafont J, Mencía A, Chacón-Solano E, et al. Correction of recessive dystrophic epidermolysis bullosa by homology-directed repair-mediated genome editing. Mol Ther. 2021;29(6):2008-2018. doi: 10.1016/j.ymthe.2021.02.019

 

  1. Berthault C, Gaucher S, Gouin O, et al. Highly efficient ex vivo correction of COL7A1 through ribonucleoprotein-based CRISPR/Cas9 and homology-directed repair to treat recessive dystrophic epidermolysis bullosa. J Invest Dermatol. 2024;144(6):1322-1333.e13. doi: 10.1016/j.jid.2023.10.035

 

  1. Rees HA, Liu DR. Base editing: Precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. 2018;19(12):770-788. doi: 10.1038/s41576-018-0059-1

 

  1. Sheriff A, Guri I, Zebrowska P, et al. ABE8e adenine base editor precisely and efficiently corrects a recurrent COL7A1 nonsense mutation. Sci Rep. 2022;12(1):19643. doi: 10.1038/s41598-022-24184-8

 

  1. Taha EA, Lee J, Hotta A. Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges. J Control Release. 2022;342:345-361. doi: 10.1016/j.jconrel.2022.01.013

 

  1. Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020;38(7):824-844. doi: 10.1038/s41587-020-0561-9

 

  1. Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576(7785):149-157. doi: 10.1038/s41586-019-1711-4

 

  1. Steinbeck BJ, Gao XD, McElroy AN, et al. Twin prime editing mediated exon skipping/reinsertion for restored collagen VII expression in recessive dystrophic epidermolysis bullosa. J Invest Dermatol. 2024:S0022202X24003725. doi: 10.1016/j.jid.2024.04.013

 

  1. Chen M, Kasahara N, Keene DR, et al. Restoration of type VII collagen expression and function in dystrophic epidermolysis bullosa. Nat Genet. 2002;32(4):670-675. doi: 10.1038/ng1041

 

  1. Murauer EM, Gache Y, Gratz IK, et al. Functional correction of type VII collagen expression in dystrophic epidermolysis bullosa. J Invest Dermatol. 2011;131(1):74-83. doi: 10.1038/jid.2010.249

 

  1. Gache Y, Baldeschi C, Del Rio M, et al. Construction of skin equivalents for gene therapy of recessive dystrophic epidermolysis bullosa. Hum Gene Ther. 2004;15(10): 921-933. doi: 10.1089/hum.2004.15.921

 

  1. Bremer J, Kramer D, Eichhorn DS, et al. Murine Type VII collagen distorts outcome in human skin graft mouse model for dystrophic epidermolysis bullosa. Exp Dermatol. 2019;28(10):1153-1155. doi: 10.1111/exd.13744

 

  1. Liemberger B, Bischof J, Ablinger M, et al. COL7A1 editing via RNA trans-splicing in RDEB-derived skin equivalents. Int J Mol Sci. 2023;24(5):4341. doi: 10.3390/ijms24054341

 

  1. Titeux M, Pendaries V, Zanta-Boussif MA, et al. SIN retroviral vectors expressing COL7A1 under human promoters for ex vivo gene therapy of recessive dystrophic epidermolysis bullosa. Mol Ther. 2010;18(8):1509-1518. doi: 10.1038/mt.2010.91

 

  1. Siprashvili Z, Nguyen NT, Gorell ES, et al. Safety and wound outcomes following genetically corrected autologous epidermal grafts in patients with recessive dystrophic epidermolysis bullosa. JAMA. 2016;316(17):1808. doi: 10.1001/jama.2016.15588

 

  1. Bruckner-Tuderman L, Guscetti F, Ehrensperger F. Animal model for dermolytic mechanobullous disease: Sheep with recessive dystrophic epidermolysis bullosa Lack collagen VII. J Invest Dermatol. 1991;96(4):452-458. doi: 10.1111/1523-1747.ep12470130

 

  1. Pérez V, Benavides J, Delgado L, Reyes LE, García Marín JF, Ferreras MC. Dystrophic epidermolysis bullosa in assaf lambs. J Comp Pathol. 2011;145(2-3):226-230. doi: 10.1016/j.jcpa.2010.12.002

 

  1. White SD, Dunstan RW, Olivry T, Naydan DK, Richter K. Dystrophic (dermolytic) epidermolysis bullosa in a cat. Vet Dermatol. 1993;4(2):91-95. doi: 10.1111/j.1365-3164.1993.tb00197.x

 

  1. Palazzi X, Marchal T, Chabanne L, Spadafora A, Meneguzzi G, Magnol JP. Inherited dystrophic epidermolysis bullosa in inbred dogs: A spontaneous animal model for somatic gene therapy. J Invest Dermatol. 2000;115(1):135-137. doi: 10.1046/j.1523-1747.2000.00031-5.x

 

  1. Jiang QJ, Uitto J. Animal models of epidermolysis bullosa--Targets for gene therapy. J Invest Dermatol. 2005;124(3):xi-xiii. doi: 10.1111/j.0022-202X.2005.23652.x

 

  1. Menoud A, Welle M, Tetens J, Lichtner P, Drögemüller C. A COL7A1 mutation causes dystrophic epidermolysis bullosa in rotes höhenvieh cattle. PLoS One. 2012;7(6):e38823. doi: 10.1371/journal.pone.0038823

 

  1. Bruckner-Tuderman L, McGrath JA, Clare Robinson E, Uitto J. Animal models of epidermolysis bullosa: Update 2010. J Invest Dermatol. 2010;130(6):1485-1488. doi: 10.1038/jid.2010.75

 

  1. Medeiros GX, Riet-Correa F, Barros SS, et al. Dystrophic epidermolysis bullosa in goats. J Comp Pathol. 2013;148(4):354-360. doi: 10.1016/j.jcpa.2012.09.002

 

  1. Nyström A, Buttgereit J, Bader M, et al. Rat model for dominant dystrophic epidermolysis bullosa: Glycine substitution reduces collagen VII stability and shows gene-dosage effect. PLoS One. 2013;8(5):e64243. doi: 10.1371/journal.pone.0064243

 

  1. Heinonen S, Mannikko M, Klement JF, Whitaker-Menezes D, Murphy GF, Uitto J. Targeted inactivation of the type VII collagen gene (Col7a1) in mice results in severe blistering phenotype: A model for recessive dystrophic epidermolysis bullosa. J Cell Sci. 1999;112(21):3641-3648. doi: 10.1242/jcs.112.21.3641

 

  1. Fritsch A, Loeckermann S, Kern JS, et al. A hypomorphic mouse model of dystrophic epidermolysis bullosa reveals mechanisms of disease and response to fibroblast therapy. J Clin Invest. 2008;118(5):1669-1679. doi: 10.1172/JCI34292

 

  1. Chen VM, Southwell K, Huynh E, Gavett S, Richey L, Esmail M. Corneal changes and strategies to improve survival of hypomorphic collagen VII-deficient mice for the study of ocular dystrophic epidermolysis bullosa. Comp Med. 2022;72(1):14-21. doi: 10.30802/AALAS-CM-21-000063

 

  1. Nyström A, Velati D, Mittapalli VR, Fritsch A, Kern JS, Bruckner-Tuderman L. Collagen VII plays a dual role in wound healing. J Clin Invest. 2013;123(8):3498-3509. doi: 10.1172/JCI68127

 

  1. Smith BRC, Nyström A, Nowell CJ, et al. Mouse models for dominant dystrophic epidermolysis bullosa carrying common human point mutations recapitulate the human disease. Dis Model Mech. 2021;14(6):dmm048082. doi: 10.1242/dmm.048082

 

  1. Takaki S, Shimbo T, Ikegami K, et al. Generation of a recessive dystrophic epidermolysis bullosa mouse model with patient-derived compound heterozygous mutations. Lab Invest. 2022;102(6):574-580. doi: 10.1038/s41374-022-00735-5
Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing