AccScience Publishing / GPD / Volume 3 / Issue 4 / DOI: 10.36922/gpd.2971
ORIGINAL RESEARCH ARTICLE

Pre-metastatic niche in oral squamous cell carcinoma: Insights from a transcriptomic meta-analysis

Ana Kelly Fernandes Duarte1† Heloisa de Almeida Freitas1† Genilda Castro de Omena Neta2 Rodger Marcel Lima Rocha1 Thaysa Kelly Barbosa Vieira2 Karol Fireman de Farias2 Bruna Del Vechio Koike3 Carolinne de Sales Marques4 Carlos Alberto de Carvalho Fraga2*
Show Less
1 Institute of Pharmaceutical Sciences, Federal University of the Alagoas, Maceió, Alagoas, Brazil
2 Medical and Nursing Science Complex, Federal University of the Alagoas, Arapiraca, Alagoas, Brazil
3 Medical College, Federal University of the San Francisco Valley, Petrolina, Pernambuco, Brazil
4 Department of Genetics, Institute of Biological and Health Sciences, Federal University of the Alagoas, Maceió, Alagoas, Brazil
Submitted: 19 February 2024 | Accepted: 16 July 2024 | Published: 20 November 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Primary tumors can precondition a pre-metastatic niche, promoting the colonization of circulating neoplastic cells and influencing the secondary tumor microenvironment. Nevertheless, the mechanisms underlying the formation of this niche, as well as perineural invasion in oral squamous cell carcinoma (OSCC), are not well-elucidated. The study aims to identify differentially expressed genes (DEGs) and related pathways associated with pre-metastatic niche and perineural invasion in OSCC. We evaluated metastatic and non-metastatic primary tumor samples, healthy oral tissues, OSCC samples, metastatic lymph nodes from patients with OSCC, and normal lymph node samples. The GEO2R tool was applied to identify mRNAs differentially expressed between tissues exhibiting features of a pre-metastatic niche and normal tissue samples, including selected non-metastatic and metastatic OSCC samples. We also performed an analysis of perineural invasion-negative and perineural invasion-positive tumor samples. Our data revealed that SERPINE1, SPP1, CALCA, and MMP13 genes were upregulated. These upregulated genes are associated with several cancer-related pathways, while downregulated genes are mainly associated with immune responses, axon guidance, and the neurotrophin signaling pathway. Given the upregulation of the circadian rhythm pathway in metastatic lymph nodes, we also performed a correlation analysis that allows users to compute function-specific parameters, with resulting figures dynamically displayed to conveniently access the tumor’s immunological, clinical, and genomic features. Downregulation of the circadian rhythm gene PER3 and upregulation of Bhlhe40 were associated with poor survival outcomes. In conclusion, we postulate that during lymph node invasion, OSCCs activate axonal guidance genes, such as SERPENE1, L1AM, CXCR4, and SPP1. As neoplastic cells establish themselves, circadian rhythm genes are upregulated, contributing to immune evasion and promoting tumor growth.

Keywords
Metastasis
Circadian rhythm
Oral cancer
Cancer microenvironment
Funding
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Pastushenko I, Brisebarre A, Sifrim A, et al. Identification of the tumour transition states occurring during EMT. Nature. 2018;556(7702):463-468. doi: 10.1038/s41586-018-0040-3

 

  1. Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989;8:98-101.

 

  1. Marchesi F, Piemonti L, Mantovani A, Allavena P. Molecular mechanisms of perineural invasion, a forgotten pathway of dissemination and metastasis. Cytokine Growth Factor Rev. 2010;21(1):77-82. doi: 10.1016/j.cytogfr.2009.11.001

 

  1. Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature. 2005;438(7069):820-827. doi: 10.1038/nature04186

 

  1. De Paula AM, Souza LR, Farias LC, et al. Analysis of 724 cases of primary head and neck squamous cell carcinoma (HNSCC) with a focus on young patients and p53 immunolocalization. Oral Oncol. 2009;45(9):777-782. doi: 10.1016/j.oraloncology.2008.11.015

 

  1. Fraga CA, Sousa A, Correa G, et al. High hypoxia-inducible factor-1a expression genotype associated with Eastern Cooperative Oncology Group performance in head and neck squamous cell carcinoma. Head Neck Oncol. 2012;4:77.

 

  1. Silva VM, Gomes JA, Tenório LP, et al. Schwann cell reprogramming and lung cancer progression: A meta-analysis of transcriptome data. Oncotarget. 2019;10(68):7288. doi: 10.18632/oncotarget.27204

 

  1. Fraga CA, de Oliveira MV, de Oliveira ÉS, et al. A high HIF-1α expression genotype is associated with poor prognosis of upper aerodigestive tract carcinoma patients. Oral Oncol. 2012;48(2):130-135. doi: 10.1016/j.oraloncology.2011.08.023

 

  1. Deborde S, Wong RJ. How Schwann cells facilitate cancer progression in nerves. Cell Mol Life Sci. 2017;74(24): 4405-4420. doi: 10.1007/s00018-017-2578-x

 

  1. Deborde S, Omelchenko T, Lyubchik A, et al. Schwann cells induce cancer cell dispersion and invasion. J Clin Invest. 2016;126(4):1538-1554. doi: 10.1172/JCI82658

 

  1. Binmadi NO, Basile JR. Perineural invasion in oral squamous cell carcinoma: A discussion of significance and review of the literature. Oral Oncol. 2011;47(11):1005-1010. doi: 10.1016/j.oraloncology.2011.08.002

 

  1. Fagan JJ, Collins B, Barnes L, D’Amico F, Myers EN, Johnson JT. Perineural invasion in squamous cell carcinoma of the head and neck. Arch Otolaryngol Head Neck Surg. 1998;124(6):637-640. doi: 10.1001/archotol.124.6.637

 

  1. D’Souza G, Kreimer AR, Viscidi R, et al. Case-control study of human papillomavirus and oropharyngeal cancer. N Engl J Med. 2007;356(19):1944-1956. doi: 10.1056/NEJMoa065497

 

  1. Dillekås H, Rogers MS, Straume O. Are 90% of deaths from cancer caused by metastases? Cancer Med. 2019;8(12): 5574-5576. doi: 10.1002/cam4.2474

 

  1. Mascolo M, Siano M, Ilardi G, et al. Epigenetic disregulation in oral cancer. Int J Mol Sci. 2012;13(2):2331-2353. doi: 10.3390/ijms13022331

 

  1. Guimarães TA, Farias LC, Santos ES, et al. Metformin increases PDH and suppresses HIF-1α under hypoxic conditions and induces cell death in oral squamous cell carcinoma. Oncotarget. 2016;7:55057. doi: 10.18632/oncotarget.10842

 

  1. Guimaraes TA, Farias LC, Fraga CA, et al. Evaluation of the antineoplastic activity of gallic acid in oral squamous cell carcinoma under hypoxic conditions. Anticancer Drugs. 2016;27(5):407. doi: 10.1097/CAD.0000000000000342

 

  1. Alves L, Fraga CA, Oliveira MV, et al. High HIF-1α expression genotypes increase odds ratio of oral cancer. Head Neck Oncol. 2012;4:87.

 

  1. Fraga CA, Oliveira MV, Domingos PL, et al. Infiltrating CD57+ inflammatory cells in head and neck squamous cell carcinoma: Clinicopathological analysis and prognostic significance. Appl Immunohistochem Mol Morphol. 2012;20(3):285. doi: 10.1097/PAI.0b013e318228357b

 

  1. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2024;74(3):229-263. doi: 10.3322/caac.21834

 

  1. Pereira LX, Alves da Silva LC, de Oliveira Feitosa A, et al. Correlation between renin-angiotensin system (RAS) related genes, type 2 diabetes, and cancer: Insights from metanalysis of transcriptomics data. Mol Cell Endocrinol. 2019;493:110455. doi: 10.1016/j.mce.2019.110455

 

  1. Colaprico A, Silva TC, Olsen C, et al. TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016;44(8):e71. doi: 10.1093/nar/gkv1507

 

  1. Zhou Y, Shurin GV, Zhong H, Bunimovich YL, HanB, Shurin MR. Schwann cells augment cell spreading and metastasis of lung cancer. Cancer Res. 2018;78(20): 5927-5939. doi: 10.1158/0008-5472.CAN-18-1702

 

  1. Lo HC, Zhang XH. EMT in metastasis: Finding the right balance. Dev Cell. 2018;45(6):663-665. doi: 10.1016/j.devcel.2018.05.033

 

  1. Rana S, Mahmood S. Circadian rhythm and its role in malignancy. J Circad Rhythms. 2010;8(1):3. doi: 10.1186/1740-3391-8-3

 

  1. Kuo SJ, Chen ST, Yeh KT, et al. Disturbance of circadian gene expression in breast cancer. Virchows Arch. 2009;454(4): 467-474.doi: 10.1007/s00428-009-0761-7

 

  1. Hua H, Wang Y, Wan C, et al. Circadian gene mPer2 overexpression induces cancer cell apoptosis. Cancer Sci. 2006;97(7):589-596. doi: 10.1111/j.1349-7006.2006.00225.x

 

  1. Humans I. Painting, firefighting, and shiftwork. In: Iarc Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 98. France: IARC; 2010. p. 9-764.

 

  1. Golombek DA, Casiraghi LP, Agostino PV, et al. The times they’re a-changing: Effects of circadian desynchronization on physiology and disease. J Physiol Paris. 2013;107(4): 310-322. doi: 10.1016/j.jphysparis.2013.03.007

 

  1. Berger J. A two-clock model of circadian timing in the immune system of mammals. Pathol Biol. 2008;56(5): 286-291. doi: 10.1016/j.patbio.2007.10.001

 

  1. Zhu L, Zee PC. Circadian rhythm sleep disorders. Neurol Clin. 2012;30(4):1167-1191. doi: 10.1016/j.ncl.2012.08.011

 

  1. de Castro TB, Bordin-Junior NA, de Almeida EA, de Campos Zuccari DA. Evaluation of melatonin and AFMK levels in women with breast cancer. Endocrine. 2018;62(1):242-249. doi: 10.1007/s12020-018-1624-2

 

  1. Wang Y, Sun N, Lu C, Bei Y, Qian R, Hua L. Upregulation of circadian gene ‘hClock’ contribution to metastasis of colorectal cancer. Int J Oncol. 2017;50(6):2191-2199. doi: 10.3892/ijo.2017.3987

 

  1. Chen L, Diao L, Yang Y, et al. CD38-mediated immunosuppression as a mechanism of tumor cell escape from PD-1/PD-L1 blockade. Cancer Discov. 2018;8(9): 1156-1175. doi: 10.1158/2159-8290.CD-17-1033

 

  1. Cermakian N, Lange T, Golombek D, et al. Crosstalk between the circadian clock circuitry and the immune system. Chronobiol Int. 2013;30(7):870-888. doi: 10.3109/07420528.2013.782315

 

  1. Denkert C, Loibl S, Noske A, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010;28(1):105-113. doi: 10.1200/JCO.2009.23.7370

 

  1. Li Z, Dong P, Ren M, et al. PD-L1 Expression is associated with tumor FOXP3+ regulatory T-cell infiltration of breast cancer and poor prognosis of patient. J Cancer. 2016;7(7):784-793. doi: 10.7150/jca.14549

 

  1. Arjona A, Silver AC, Walker WE, Fikrig E. Immunity’s fourth dimension: Approaching the circadian-immune connection. Trends Immunol. 2012;33(12):607-612. doi: 10.1016/j.it.2012.08.007

 

  1. Webber CA, Christie KJ, Cheng C, et al. Schwann cells direct peripheral nerve regeneration through the Netrin-1 receptors, DCC and Unc5H2. Glia. 2011;59(10):1503-1517. doi: 10.1002/glia.21194

 

  1. Li Z, Zhou J, Zhang J, Li S, Wang H, Du J. Cancer-associated fibroblasts promote PD-L1 expression in mice cancer cells via secreting CXCL5. Int J Cancer. 2019;145(7):1946-1957. doi: 10.1002/ijc.32278
Share
Back to top
Gene & Protein in Disease, Electronic ISSN: 2811-003X Published by AccScience Publishing