AccScience Publishing / MSAM / Volume 4 / Issue 2 / DOI: 10.36922/MSAM025110016
ORIGINAL RESEARCH ARTICLE

Powder spreading behavior of bimodal ceramics in the binder jetting process

Kazi Safowan Shahed1 Willem Groeneveld-Meijer2 Matthew Lear3 Jeremy Schreiber3 Guha Manogharan1,2*
Show Less
1 Department of Industrial and Manufacturing Engineering, College of Engineering, The Pennsylvania State University, University Park, Pennsylvania, United States
2 Department of Mechanical Engineering, College of Engineering, The Pennsylvania State University, City, Pennsylvania, United States
3 The Applied Research Laboratory, The Pennsylvania State University, City, Pennsylvania, United States
MSAM 2025, 4(2), 025110016 https://doi.org/10.36922/MSAM025110016
Received: 15 March 2025 | Accepted: 28 April 2025 | Published online: 21 May 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Binder jetting (BJT) has been extensively explored for additive manufacturing of ceramics due to its ability to create complex structures by processing refractory and hard-to-machine materials. However, achieving a uniform powder bed with high packing density while processing ceramics in BJT remains a challenge. This study systematically examines the role of powder size, powder temperature, flow behavior, and powder size distribution on powder bed formation and resulting part properties. Four different alumina powder sizes (1 μm, 5 μm, 10 μm, and 20 μm) were investigated. Flowability characterizations reveal that 1 μm powder remains poorly flowable at both room and elevated temperatures, while 20 μm powder demonstrates excellent flowability at both temperatures. Smaller powders, especially 1 μm, exhibit around 25% loss in moisture, which results in pronounced agglomeration at room temperature. Discrete element method simulations were used to identify the ideal mixing ratio of the bimodal powder using 5 μm and 20 μm powders. For bimodal powder, both the simulation and the experiments exhibited a preferential deposition of smaller powders in the spreading direction. However, the 5 μm and 20 μm powders did not show any preferential deposition in the simulation, but experiments showed preferential deposition behavior. When using bimodal powder, packing density decreases by 7.65% along the spreading direction, which aligns with an 8.19% drop in part relative density. These findings offer valuable insights into the effects of bimodal powder distribution for controlling powder bed packing density and potentially leveraging spatial density variations for functional applications such as biomedical implants, heat exchangers, and gas filtration.

Graphical abstract
Keywords
Additive manufacturing
Binder jetting
Bimodal powder
Ceramics
Powder bed density
Powder spreading
Funding
This work was partially supported by NSF CMMI Award #1944120 and partially funded by Applied Research Laboratory, Penn State, through the Walker Student Fellowship.
Conflict of interest
Guha Manogharan serves as the Editorial Board Member of the journal, but was not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Other authors declare they have no competing interests.
References
  1. Lv X, Ye F, Cheng L, Fan S, Liu Y. Binder jetting of ceramics: Powders, binders, printing parameters, equipment, and post-treatment. Ceram Int. 2019;45(10):12609-12624. doi: 10.1016/J.CERAMINT.2019.04.012
  2. Zocca A, Colombo P, Gomes CM, Günster J. Additive manufacturing of ceramics: Issues, potentialities, and opportunities. J Am Ceram Soc. 2015;98(7):1983-2001. doi: 10.1111/JACE.13700
  3. Du W, Singh M, Singh D. Binder jetting additive manufacturing of silicon carbide ceramics: Development of bimodal powder feedstocks by modeling and experimental methods. Ceram Int. 2020;46(12):19701-19707. doi: 10.1016/J.CERAMINT.2020.04.098
  4. Jodati H, Yılmaz B, Evis Z. A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features. Ceram Int. 2020;46(10):15725-15739. doi: 10.1016/j.ceramint.2020.03.192
  5. ISO/ASTM 52900:2015(en), Additive Manufacturing- General Principles-Terminology. Available from: https:// www.iso.org/obp/ui/#iso: std:iso-astm:52900:ed-1:v1:en [Last accessed on 2025 Feb 07].
  6. Shahed KS, Manogharan G. Powder-binder interaction in binder jetting process: A simulation study on bimodal powders. In: Additive Manufacturing; Advanced Materials Manufacturing; Biomanufacturing; Life Cycle Engineering. Vol. 1. New York City: American Society of Mechanical Engineers; 2023. doi: 10.1115/MSEC2023-104366
  7. Clares AP, Gao Y, Stebbins R, Van Duin ACT, Manogharan G. Increasing density and mechanical performance of binder jetting processing through bimodal particle size distribution. Mater Sci Addit Manuf. 2022;1(3):20. doi: 10.18063/msam.v1i3.20
  8. Shrestha S, Manogharan G. Optimization of binder jetting using taguchi method. JOM. 2017;69(3):491-497. doi: 10.1007/S11837-016-2231-4/TABLES/4
  9. Mostafaei A, Elliott AM, Barnes JE, et al. Binder jet 3D printing-Process parameters, materials, properties, modeling, and challenges. Prog Mater Sci. 2021;119:100707. doi: 10.1016/J.PMATSCI.2020.100707
  10. Sarila V, Koneru HP, Pyatla S, Cheepu M, Kantumunchu VC, Ramachandran D. An overview on 3D printing of ceramics using binder jetting process. Eng Proc. 2024;61(1):44. doi: 10.3390/ENGPROC2024061044
  11. Huang S, Ye C, Zhao H, Fan Z. Additive manufacturing of thin alumina ceramic cores using binder-jetting. Addit Manuf. 2019;29:100802. doi: 10.1016/J.ADDMA.2019.100802
  12. Du W, Ren X, Pei Z, Ma C. Ceramic binder jetting additive manufacturing: A literature review on density. J Manuf Sci Eng Trans ASME. 2020;142(4):1074276. doi: 10.1115/1.4046248/1074276
  13. Clares AP, Manogharan G. Discrete-element simulation of powder spreading process in binder jetting, and the effects of powder size. In: Proceedings of the ASME 2021 16th International Manufacturing Science and Engineering Conference, MSEC 2021; 2021. p. 1. doi: 10.1115/MSEC2021-63351
  14. Zegzulka J, Gelnar D, Jezerska L, Prokes R, Rozbroj J. Characterization and flowability methods for metal powders. Sci Rep. 2020;10(1):21004. doi: 10.1038/s41598-020-77974-3
  15. Haferkamp L, Haudenschild L, Spierings A, et al. The influence of particle shape, powder flowability, and powder layer density on part density in laser powder bed fusion. Metals (Basel). 2021;11(3):418. doi: 10.3390/met11030418
  16. Garboczi EJ, Hrabe N. Particle shape and size analysis for metal powders used for additive manufacturing: Technique description and application to two gas-atomized and plasma-atomized Ti64 powders. Addit Manuf. 2020;31:100965. doi: 10.1016/j.addma.2019.100965
  17. Mussatto A, Groarke R, O’Neill A, Obeidi MA, Delaure Y, Brabazon D. Influences of powder morphology and spreading parameters on the powder bed topography uniformity in powder bed fusion metal additive manufacturing. Addit Manuf. 2021;38:101807. doi: 10.1016/j.addma.2020.101807
  18. Yim S, Bian H, Aoyagi K, Yamanaka K, Chiba A. Effect of powder morphology on flowability and spreading behavior in powder bed fusion additive manufacturing process: A particle-scale modeling study. Addit Manuf. 2023;72:103612. doi: 10.1016/j.addma.2023.103612
  19. Anderson IE, White EMH, Dehoff R. Feedstock powder processing research needs for additive manufacturing development. Curr Opin Solid State Mater Sci. 2018;22(1):8-15. doi: 10.1016/j.cossms.2018.01.002
  20. Freeman R. Measuring the flow properties of consolidated, conditioned and aerated powders -A comparative study using a powder rheometer and a rotational shear cell. Powder Technol. 2007;174(1-2):25-33. doi: 10.1016/j.powtec.2006.10.016
  21. Chan LCY, Page NW. Particle fractal and load effects on internal friction in powders. Powder Technol. 1997;90(3): 259-266. doi: 10.1016/S0032-5910(96)03228-7
  22. Jange CG, Ambrose RPK. Effect of surface compositional difference on powder flow properties. Powder Technol. 2019;344:363-372. doi: 10.1016/j.powtec.2018.12.027
  23. Qu Z, Zhang P, Lai Y, Wang Q, Song J, Liang S. Influence of powder particle size on the microstructure of a hot isostatically pressed superalloy. J Mater Res Technol. 2022;16:1283-1292. doi: 10.1016/j.jmrt.2021.12.081
  24. Diener S, Zocca A, Günster J. Literature review: Methods for achieving high powder bed densities in ceramic powder bed based additive manufacturing. Open Ceram. 2021;8:100191. doi: 10.1016/J.OCERAM.2021.100191
  25. Wang J, Jeong SG, Kim ES, Kim HS, Lee BJ. Material-agnostic machine learning approach enables high relative density in powder bed fusion products. Nat Commun. 2023;14(1):1-12. doi: 10.1038/s41467-023-42319-x
  26. Bai Y, Wagner G, Williams CB. Effect of bimodal powder mixture on powder packing density and sintered density binder jetting of metals. In: International Solid Freeform Fabrication Symposium. University of Texas at Austin; 2015. Available from: https://repositories.lib.utexas.edu/ handle/2152/89376 [Last accessed on 2022 Oct 19].
  27. Yao D, Wang J, Li M, et al. Segregation of 316L stainless steel powder during spreading in selective laser melting based additive manufacturing. Powder Technol. 2022;397:117096. doi: 10.1016/J.POWTEC.2021.117096
  28. Moghadasi M, Miao G, Li M, Pei Z, Ma C. Combining powder bed compaction and nanopowders to improve density in ceramic binder jetting additive manufacturing. Ceram Int. 2021;47(24):35348-35355. doi: 10.1016/J.CERAMINT.2021.09.077
  29. Miao G, Moghadasi M, Du W, Pei Z, Ma C. Experimental investigation on the effect of roller traverse and rotation speeds on ceramic binder jetting additive manufacturing. J Manuf Process. 2022;79:887-894. doi: 10.1016/J.JMAPRO.2022.05.039
  30. Li M, Wei X, Pei Z, Ma C. Binder jetting additive manufacturing: Observations of compaction-induced powder bed surface defects. Manuf Lett. 2021;28:50-53. doi: 10.1016/j.mfglet.2021.04.003
  31. Porter Q, Li M, Pei Z, Ma C. Binder jetting additive manufacturing: The effect of feed region density on resultant densities. J Manuf Sci Eng. 2022;144(9):1140557. doi: 10.1115/1.4054453/1140557
  32. Li M, Miao G, Moghadasi M, Pei Z, Ma C. Ceramic binder jetting additive manufacturing: Relationships among powder properties, feed region density, and powder bed density. Ceram Int. 2021;47(17):25147-25151. doi: 10.1016/j.ceramint.2021.05.175
  33. Chen H, Chen Y, Liu Y, Wei Q, Shi Y, Yan W. Packing quality of powder layer during counter-rolling-type powder spreading process in additive manufacturing. Int J Mach Tools Manuf. 2020;153:103553. doi: 10.1016/J.IJMACHTOOLS.2020.103553
  34. Haeri S. Optimisation of blade type spreaders for powder bed preparation in Additive Manufacturing using DEM simulations. Powder Technol. 2017;321:94-104. doi: 10.1016/J.POWTEC.2017.08.011
  35. Haeri S, Wang Y, Ghita O, Sun J. Discrete element simulation and experimental study of powder spreading process in additive manufacturing. Powder Technol. 2017;306:45-54. doi: 10.1016/J.POWTEC.2016.11.002
  36. Wang L, Yu A, Li E, Shen H, Zhou Z. Effects of spreader geometry on powder spreading process in powder bed additive manufacturing. Powder Technol. 2021;384:211-222. doi: 10.1016/J.POWTEC.2021.02.022
  37. Lee Y, Nandwana P, Simunovic S. Powder spreading, densification, and part deformation in binder jetting additive manufacturing. Prog Addit Manuf. 2022;7(1):111-125. doi: 10.1007/S40964-021-00214-1/FIGURES/13
  38. Chen H, Wei Q, Wen S, Li Z, Shi Y. Flow behavior of powder particles in layering process of selective laser melting: Numerical modeling and experimental verification based on discrete element method. Int J Mach Tools Manuf. 2017;123:146-159. doi: 10.1016/J.IJMACHTOOLS.2017.08.004
  39. Oh JW, Nahm S, Kim B, Choi H. Anisotropy in green body bending strength due to additive direction in the binder-jetting additive manufacturing process. J Korean Instit Metals Mater. 2019;57(4):227-235. doi: 10.3365/KJMM.2019.57.4.227
  40. Inkley CG, Lawrence JE, Crane NB. Impact of controlled prewetting on part formation in binder jet additive manufacturing. Addit Manuf. 2023;72:103619. doi: 10.1016/J.ADDMA.2023.103619
  41. Inkley C, Martin D, Clark B, Crane N. Controlled Wetting of Spread Powder and its Impact on Line Formation in Binder Jetting. In: Proceedings of ASME 2022 17th International Manufacturing Science and Engineering Conference, MSEC 2022; 2022. p. 1. doi: 10.1115/MSEC2022-85603
  42. Nan W, Pasha M, Ghadiri M. Numerical simulation of particle flow and segregation during roller spreading process in additive manufacturing. Powder Technol. 2020;364:811-821. doi: 10.1016/J.POWTEC.2019.12.023
  43. Phua A, Doblin C, Owen P, Davies CHJ, Delaney GW. The effect of recoater geometry and speed on granular convection and size segregation in powder bed fusion. Powder Technol. 2021;394:632-644. doi: 10.1016/J.POWTEC.2021.08.058
  44. Miao G, Du W, Pei Z, Ma C. A literature review on powder spreading in additive manufacturing. Addit Manuf. 2022;58:103029. doi: 10.1016/J.ADDMA.2022.103029
  45. Bierwisch C. DEM Powder Spreading and SPH Powder Melting Models for Additive Manufacturing Process Simulations; 2019. Available from: https://publica.fraunhofer.de/handle/ publica/406662 [Last accessed on 2025 Jan 29].
  46. Haeria S, Wangb Y, Ghitab O, Sunc J. Discrete element simulation and experimental study of powder spreading process in additive manufacturing. Powder Technol. 2016;306:45-54.
  47. Zocca A, Günster J. Towards a debinding-free additive manufacturing of ceramics: A development perspective of water-based LSD and LIS technologies. Open Ceram. 2024;19:100632. doi: 10.1016/J.OCERAM.2024.100632
  48. Oropeza D, Penny RW, Gilbert D, Hart AJ. Mechanized spreading of ceramic powder layers for additive manufacturing characterized by transmission x-ray imaging: Influence of powder feedstock and spreading parameters on powder layer density. Powder Technol. 2022;398:117053. doi: 10.1016/J.POWTEC.2021.117053
  49. Capozzi LC, Sivo A, Bassini E. Powder spreading and spreadability in the additive manufacturing of metallic materials: A critical review. J Mater Process Technol. 2022;308:117706. doi: 10.1016/J.JMATPROTEC.2022.117706
  50. Zinatlou Ajabshir S, Sofia D, Hare C, Barletta D, Poletto M. Experimental characterisation of the spreading of polymeric powders in powder bed fusion additive manufacturing process at changing temperature conditions. Adv Powder Technol. 2024;35(4):104412. doi: 10.1016/J.APT.2024.104412
  51. Haydari Z, Talebi F, Mehrabi M, et al. Insights into the assessment of spreadability of stainless steel powders in additive manufacturing. Powder Technol. 2024;439:119667. doi: 10.1016/J.POWTEC.2024.119667
  52. Cheng M, Tang J Bin, Zhao YH, et al. Validation of powder layering simulation via packing density measurement for laser-based powder bed fusion. IOP Conf Ser Mater Sci Eng. 2023;1296(1):012020. doi: 10.1088/1757-899X/1296/1/012020
  53. Tan P, Zhou M, Tang C, Su Y, Qi HJ, Zhou K. Multiphysics modelling of powder bed fusion for polymers. Virtual Phys Prototyp. 2023;18(1):e2257191. doi: 10.1080/17452759.2023.2257191
  54. Salehi H, Cummins J, Gallino E, et al. Optimising spread-layer quality in powder additive manufacturing: Assessing packing fraction and segregation tendency. Processes. 2023;11(8):2276. doi: 10.3390/PR11082276
  55. Li H, Elsayed H, Colombo P. Effect of particle size distribution and printing parameters on alumina ceramics prepared by Additive Manufacturing. Ceram Int. 2024;50(4):6340-6348. doi: 10.1016/J.CERAMINT.2023.11.365
  56. Marinucci F, Aversa A, Manfredi D, Lombardi M, Fino P. Evaluation of a laboratory-scale gas-atomized AlSi10Mg powder and a commercial-grade counterpart for laser powder bed fusion processing. Materials. 2022;15(21):7565. doi: 10.3390/MA15217565
  57. Morcos P, Shoukr D, Sundermann T, et al. An all-encompassing study on the joint effect of powder feedstock characteristics and manufacturing process parameters on the densification and mechanical properties of additively manufactured nickel alloy 718. Addit Manuf. 2023;78:103828. doi: 10.1016/J.ADDMA.2023.103828
  58. Zhao W, Chang J, Wei Q, Wu J, Ye C. Effect of sodium silicate solution combined yttrium oxide stabilized zirconia nanopowders on the properties of alumina ceramics fabricated by binder jetting additive manufacturing. J Mater Process Technol. 2024;330:118454. doi: 10.1016/J.JMATPROTEC.2024.118454
  59. Wu H, Jiang C, Tang C, et al. Binder jetting printed in situ mullite strengthened alumina ceramics with excellent mechanical and thermal properties through multi-phase infiltration. Virtual Phys Prototyp. 2024;19(1):e2427240. doi: 10.1080/17452759.2024.2427240
  60. Manotham S, Tesavibul P. Effect of particle size on mechanical properties of alumina ceramic processed by photosensitive binder jetting with powder spattering technique. J Eur Ceram Soc. 2022;42(4):1608-1617. doi: 10.1016/J.JEURCERAMSOC.2021.11.062
  61. Du W, Ren X, Chen Y, Ma C, Radovic M, Pei Z. Model guided mixing of ceramic powders with graded particle sizes in binder jetting additive manufacturing. In: ASME 2018 13th International Manufacturing Science and Engineering Conference, MSEC 2018; 2018. p. 1. doi: 10.1115/MSEC2018-6651
  62. C566 Standard Test Method for Total Evaporable Moisture Content of Aggregate by Drying. Available from: https://store. astm.org/c0566-19.html [Last accessed on 2025 May 08].
  63. Bui HM, Fischer R, Szesni N, et al. Development of a manufacturing process for Binder Jet 3D printed porous Al2O3 supports used in heterogeneous catalysis. Addit Manuf. 2022;50:102498. doi: 10.1016/J.ADDMA.2021.102498
  64. Yu AB, Zou RP, Standish N. Modifying the linear packing model for predicting the porosity of nonspherical particle mixtures. Ind Eng Chem Res. 1996;35(10):3730-3741. doi: 10.1021/IE950616A/ASSET/IMAGES/LARGE/ IE950616AF00016.JPEG
  65. Juarez-Enriquez E, Olivas GI, Zamudio-Flores PB, Ortega- Rivas E, Perez-Vega S, Sepulveda DR. Effect of water content on the flowability of hygroscopic powders. J Food Eng. 2017;205:12-17. doi: 10.1016/J.JFOODENG.2017.02.024
  66. Elliott AM, Nandwana P, Siddel D, Compton BG. A Method for Measuring Powder Bed Density in Binder Jet Additive Manufacturing Process and the Powder Feedstock Characteristics Influencing the Powder Bed Density. In: International Solid Freeform Fabrication Symposium. University of Texas at Austin; 2016. Available from: https:// hdl.handle.net/2152/89652 [Last accessed on 2025 May 08].
  67. Kaleem MA, Alam MZ, Khan M, Jaffery SHI, Rashid B. An experimental investigation on accuracy of Hausner Ratio and Carr Index of powders in additive manufacturing processes. Metal Powder Report. 2021;76:S50-S54. doi: 10.1016/J.MPRP.2020.06.061
  68. Shah RB, Tawakkul MA, Khan MA. Comparative evaluation of flow for pharmaceutical powders and granules. AAPS PharmSciTech. 2008;9(1):250-258. doi: 10.1208/S12249-008-9046-8/FIGURES/9
  69. Sandler N, Reiche K, Heinämäki J, Yliruusi J. Effect of moisture on powder flow properties of theophylline. Pharmaceutics. 2010;2(3):275. doi: 10.3390/PHARMACEUTICS2030275
  70. Martins GHB, Morgado WAM, Queirós SMD, Atman APF. Large-deviation quantification of boundary conditions on the Brazil nut effect. Phys Rev E. 2021;103(6):062901. doi: 10.1103/PHYSREVE.103.062901/FIGURES/10/ MEDIUM
  71. He Y, Hassanpour A, Bayly AE. Linking particle properties to layer characteristics: Discrete element modelling of cohesive fine powder spreading in additive manufacturing. Addit Manuf. 2020;36:101685. doi: 10.1016/J.ADDMA.2020.101685
  72. Xu R, Nan W. Analysis of the metrics and mechanism of powder spreadability in powder-based additive manufacturing. Addit Manuf. 2023;71:103596. doi: 10.1016/J.ADDMA.2023.103596
  73. Toth JR, Phillips AK, Rajupet S, Sankaran RM, Lacks DJ. Particle-size-dependent triboelectric charging in single-component granular materials: Role of humidity. Ind Eng Chem Res. 2017;56(35):9839-9845. doi: 10.1021/ACS.IECR.7B02328/ASSET/IMAGES/ LARGE/IE-2017-023286_0004.JPEG
  74. Wu Y, Fan Z, Lu Y. Bulk and interior packing densities of random close packing of hard spheres. J Mater Sci. 2003;38(9):2019-2025. doi: 10.1023/A:1023597707363/METRICS
  75. Wu Y, An X, Huang F. DEM simulation on packing densification of equal spheres under compression. Mater Res Innov. 2014;18:S41082-S41086. doi: 10.1179/1432891714Z.000000000825
  76. Zhou J, Zhang Y, Chen JK. Numerical simulation of random packing of spherical particles for powder-based additive manufacturing. J Manuf Sci Eng. 2009;131(3):0310041- 0310048. doi: 10.1115/1.3123324/47068
  77. Li M, Miao G, Du W, Pei Z, Ma C. Difference between powder bed density and green density for a free-flowing powder in binder jetting additive manufacturing. J Manuf Process. 2022;84:448-456. doi: 10.1016/J.JMAPRO.2022.10.030
  78. Huang X, Lang L, Wang G, Alexandrov S. Effect of powder size on microstructure and mechanical properties of 2A12Al compacts fabricated by hot isostatic pressing. Adv Mater Sci Eng. 2018;2018(1):1989754. doi: 10.1155/2018/1989754
  79. Du W, Roa J, Hong J, Liu Y, Pei Z, Ma C. Binder jetting additive manufacturing: Effect of particle size distribution on density. J Manuf Sci Eng Trans ASME. 2021;143(9):091002. doi: 10.1115/1.4050306/1100582
  80. Yim S, Bian H, Aoyagi K, Yamanaka K, Chiba A. Spreading behavior of Ti48Al2Cr2Nb powders in powder bed fusion additive manufacturing process: Experimental and discrete element method study. Addit Manuf. 2022;49:102489. doi: 10.1016/J.ADDMA.2021.102489
  81. Mariani M, Beltrami R, Brusa P, Galassi C, Ardito R, Lecis N. 3D printing of fine alumina powders by binder jetting. J Eur Ceram Soc. 2021;41(10):5307-5315. doi: 10.1016/j.jeurceramsoc.2021.04.006
  82. Rahman KM, Miyanaji H, Williams CB. Effects of binder droplet size and powder particle size on binder jetting part properties. Rapid Prototyp J. 2023;29(8):1715-1729. doi: 10.1108/RPJ-10-2022-0358/FULL/XML

 

Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing