AccScience Publishing / MSAM / Volume 4 / Issue 2 / DOI: 10.36922/MSAM025130020
REVIEW ARTICLE

Unraveling the roles of fibrous silk in biomedical applications: A review

Mingzheng Zhao1† Shixuan Guo1† Fengqi Cheng1† Wenhan Tian2 Weishi Liang1,3 Jing Su1 Yong Hai1,3* Juan Guan2* Yuzeng Liu1*
Show Less
1 Department of Orthopedic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
2 School of Materials Science and Engineering, Beihang University, Beijing 100083, China
3 Joint Laboratory for Research and Treatment of Spinal Cord Injury in Spinal Deformity, Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China
†These authors contributed equally to this work.
MSAM 2025, 4(2), 025130020 https://doi.org/10.36922/MSAM025130020
Received: 26 March 2025 | Accepted: 28 April 2025 | Published online: 30 May 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Biomedical materials have become essential for diagnosing, treating, and repairing diseased tissues, with applications ranging from hard dental implants to soft artificial blood vessels. Among these, fibrous silk (FS) – a naturally assembled material with exceptional mechanical and biological properties – has recently emerged as a promising candidate for advancing biomedical technologies, particularly with the advent of additive manufacturing and three-dimensional (3D) printing. This review comprehensively explores the advancements in FS-based materials for biomedical applications over the past two decades (2004 – 2024). FS, a unique material derived from silkworm silk fibers, exhibits exceptional mechanical properties, biocompatibility, controlled biodegradability, and antimicrobial characteristics, positioning it as a versatile candidate for various biomedical applications. The review begins with a detailed analysis of FS structure and morphology, covering natural FS, derived FS, and assembled FS. It then delves into the critical properties relevant to biomedical applications, such as mechanical resilience, biointegration, controlled degradation profiles, and antimicrobial performance. Subsequently, the review examines the extensive applications of FS-based materials across various biomedical fields, particularly in tissue engineering and regenerative medicine. Special emphasis is placed on the role of additive manufacturing and 3D printing in enhancing the design complexity and functional performance of FS-based scaffolds, highlighting their potential for developing customized implants and tissue-engineered constructs. Finally, the review provides insights into the future potential of FS-based materials, addressing current limitations and proposing strategies to further optimize their functionality in biomedical contexts.

Graphical abstract
Keywords
Fibrous silk
Biomedical applications
Additive manufacturing
3D printing
Funding
This study was supported by the National Clinical Medical Research Center of Orthopedics and Sports Rehabilitation Innovation Fund (2021-NCRC-CXJJPY-17) and the Clinical Research Incubation Program of Beijing Chao- Yang Hospital (CYFH202316).
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
  1. Hench LL, Polak JM. Third-generation biomedical materials. Science. 2002;295(5557):1014-1017. doi: 10.1126/science.1067404
  2. Bowles RD, Setton LA. Biomaterials for intervertebral disc regeneration and repair. Biomaterials. 2017;129:54-67. doi: 10.1016/j.biomaterials.2017.03.013
  3. Zhang J, Guo Y, Bai Y, Wei Y. Application of biomedical materials in the diagnosis and treatment of myocardial infarction. J Nanobiotechnol. 2023;21(1):298. doi: 10.1186/s12951-023-02063-2
  4. Fan L, Chen S, Yang M, Liu Y, Liu J. Metallic materials for bone repair. Adv Healthc Mater. 2024;13(3):e2302132. doi: 10.1002/adhm.202302132
  5. Saghazadeh S, Rinoldi C, Schot M, et al. Drug delivery systems and materials for wound healing applications. Adv Drug Deliv Rev. 2018;127:138-166. doi: 10.1016/j.addr.2018.04.008
  6. Balmayor ER, van Griensven M. Drug delivery to bony tissue. Adv Drug Deliv Rev. 2015;94:1-2. doi: 10.1016/j.addr.2015.10.018
  7. Belbéoch C, Lejeune J, Vroman P, Salaün F. Silkworm and spider silk electrospinning: A review. Environ Chem Lett. 2021;19(2):1737-1763. doi: 10.1007/s10311-020-01147-x
  8. Huang W, Ling S, Li C, Omenetto FG, Kaplan DL. Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem Soc Rev. 2018;47(17):6486-6504. doi: 10.1039/c8cs00187a
  9. Li B, Sun Q, Yu X, et al. Molecular mechanisms of silk gland damage caused by phoxim exposure and protection of phoxim-induced damage by cerium chloride in Bombyx mori. J Appl Toxicol. 2015;30(9):1102-1111. doi: 10.1002/tox.21983
  10. Numata K, Cebe P, Kaplan DL. Mechanism of enzymatic degradation of beta-sheet crystals. Biomaterials. 2010;31(10):2926-2933. doi: 10.1016/j.biomaterials.2009.12.026
  11. Keten S, Xu Z, Ihle B, Buehler MJ. Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nat Mater. 2010;9(4):359-367. doi: 10.1038/nmat2704
  12. Moy RL, Lee A, Zalka A. Commonly used suture materials in skin surgery. Am Fam Physician. 1991;44(6):2123-2128.
  13. Guo C, Li C, Kaplan DL. Enzymatic degradation of Bombyx mori silk materials: A review. Biomacromolecules. 2020;21(5):1678-1686. doi: 10.1021/acs.biomac.0c00090
  14. Holland C, Numata K, Rnjak-Kovacina J, Seib FP. The biomedical use of silk: Past, present, future. Adv Healthc Mater. 2019;8(1):e1800465. doi: 10.1002/adhm.201800465
  15. Zhang X, Yang Z, Yang X, Zhang F, Pan Z. Sustainable antibacterial surgical suture based on recycled silk resource by an internal combination of inorganic nanomaterials. ACS Appl Mater Interfaces. 2023;15(25):29971-29981. doi: 10.1021/acsami.3c05054
  16. Wei W, Liu J, Peng Z, Liang M, Wang Y, Wang X. Gellable silk fibroin-polyethylene sponge for hemostasis. Artif Cells Nanomed Biotechnol. 2020;48(1):28-36. doi: 10.1080/21691401.2019.1699805
  17. Li C, Zhang Q, Lan D, et al. ε-Poly-l-lysine-modified natural silk fiber membrane wound dressings with improved antimicrobial properties. Int J Biol Macromol. 2022;220:1049-1059. doi: 10.1016/j.ijbiomac.2022.08.140
  18. Kuang H, Wang Y, Shi Y, et al. Construction and performance evaluation of Hep/silk-PLCL composite nanofiber small-caliber artificial blood vessel graft. Biomaterials. 2020;259:120288. doi: 10.1016/j.biomaterials.2020.120288
  19. Indalkar AB, Kandasubramanian B. Additive Manufacturing of Silk. Engineering Natural Silk: Applications and Future Directions. Berlin: Springer; 2024. p. 71-90.
  20. Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc. 2011;6(10):1612-1631. doi: 10.1038/nprot.2011.379
  21. Kaplan D, Adams WW, Farmer B, Viney C. Silk Polymers: Materials Science and Biotechnology. Washington, D.C: ACS Publications; 1993.
  22. Bini E, Knight DP, Kaplan DL. Mapping domain structures in silks from insects and spiders related to protein assembly. J Mol Biol. 2004;335(1):27-40. doi: 10.1016/j.jmb.2003.10.043
  23. Craig CL, Hsu M, Kaplan D, Pierce NE. A comparison of the composition of silk proteins produced by spiders and insects. Int J Biol Macromol. 1999;24(2-3):109-118. doi: 10.1016/s0141-8130(99)00006-9
  24. Cenis JL, Madurga R, Aznar-Cervantes SD, et al. Mechanical behaviour and formation process of silkworm silk gut. Soft Matter. 2015;11(46):8981-8991. doi: 10.1039/c5sm01877c
  25. Wang X, Zhao P, Li Y, et al. Modifying the mechanical properties of silk fiber by genetically disrupting the ionic environment for silk formation. Biomacromolecules. 2015;16(10):3119-3125. doi: 10.1021/acs.biomac.5b00724
  26. Liu Q, Wang X, Zhou Y, et al. Dynamic changes and characterization of the metal ions in the silk glands and silk fibers of silkworm. Int J Mol Sci. 2023;24(7):6556. doi: 10.3390/ijms24076556
  27. Lewis R. Unraveling the weave of spider silk. Chem Eng News. 1996;46(9):636-638.
  28. Altman GH, Diaz F, Jakuba C, et al. Silk-based biomaterials. Biomaterials. 2003;24(3):401-416.
  29. Wang C, Xia K, Zhang Y, Kaplan DL. Silk-based advanced materials for soft electronics. Acc Chem Res. 2019;52(10):2916-2927. doi: 10.1021/acs.accounts.9b00333
  30. Wu R, Ma L, Liu XY. From mesoscopic functionalization of silk fibroin to smart fiber devices for textile electronics and photonics. Adv Sci. 2022;9(4):e2103981. doi: 10.1002/advs.202103981
  31. Liu B, Song YW, Jin L, et al. Silk structure and degradation. Colloids Surf B Biointerfaces. 2015;131:122-128. doi: 10.1016/j.colsurfb.2015.04.040
  32. Mori K, Tanaka K, Kikuchi Y, Waga M, Waga S, Mizuno S. Production of a chimeric fibroin light-chain polypeptide in a fibroin secretion-deficient naked pupa mutant of the silkworm Bombyx mori. J Mol Biol. 1995;251(2):217-228. doi: 10.1006/jmbi.1995.0429
  33. Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S. Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem. 2000;275(51):40517-40528. doi: 10.1074/jbc.M006897200
  34. Tanaka K, Inoue S, Mizuno S. Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the H-L complex of silk fibroin produced by Bombyx mori. Insect Biochem Mol Biol. 1999;29(3):269-276. doi: 10.1016/s0965-1748(98)00135-0
  35. Sahoo JK, Hasturk O, Falcucci T, Kaplan DL. Silk chemistry and biomedical material designs. Nat Rev Chem. 2023;7(5):302-318. doi: 10.1038/s41570-023-00486-x
  36. Tanaka K, Kajiyama N, Ishikura K, et al. Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori. Biochim Biophys Acta. 1999;1432(1):92-103. doi: 10.1016/s0167-4838(99)00088-6
  37. Hakimi O, Knight DP, Vollrath F, Vadgama P. Spider and mulberry silkworm silks as compatible biomaterials. J Cell Plast Biomed Eng. 2007;38(3):324-337.
  38. Ha SW, Gracz HS, Tonelli AE, Hudson SM. Structural study of irregular amino acid sequences in the heavy chain of Bombyx mori silk fibroin. Biomacromolecules. 2005;6(5):2563-2569. doi: 10.1021/bm050294m
  39. Drummy LF, Farmer BL, Naik RR. Correlation of the β-sheet crystal size in silk fibers with the protein amino acid sequence. Soft Matter. 2007;3(7):877-882. doi: 10.1039/b701220a
  40. Kundu S, Kundu B, Talukdar S, et al. Nonmulberry silk biopolymers. Biopolymers. 2012;97(6):455-467.
  41. Zhong J, Liu Y, Ren J, et al. Understanding secondary structures of silk materials via micro- and nano-infrared spectroscopies. ACS Biomater Sci Eng. 2019;5(7):3161-3183. doi: 10.1021/acsbiomaterials.9b00305
  42. Kaplan D, Adams WW, Farmer B, Viney C. Silk: Biology, Structure, Properties, and Genetics. Washington, D.C: ACS Publications; 1994.
  43. Foelix R. Biology of Spiders. Oxford: Oxford University Press; 2010.
  44. Omenetto FG, Kaplan DL. New opportunities for an ancient material. Science. 2010;329(5991):528-531. doi: 10.1126/science.1188936
  45. Vollrath F, Knight DP. Liquid crystalline spinning of spider silk. Nat Biotechnol. 2001;410(6828):541-548. doi: 10.1038/35069000
  46. Liu Y, Shao Z, Vollrath F. Relationships between supercontraction and mechanical properties of spider silk. Nat Mater. 2005;4(12):901-905. doi: 10.1038/nmat1534
  47. Yonemura N, Sehnal F, Mita K, Tamura T. Protein composition of silk filaments spun under water by caddisfly larvae. Biomacromolecules. 2006;7(12):3370-3378. doi: 10.1021/bm060663u
  48. Asakura T, Okonogi M, Naito A. Toward understanding the silk fiber structure: 13C solid-state NMR studies of the packing structures of alanine oligomers before and after trifluoroacetic acid treatment. J Phys Chem B. 2019;123(31):6716-6727. doi: 10.1021/acs.jpcb.9b04565
  49. Du N, Liu XY, Narayanan J, Li L, Lim MLM, Li D. Design of superior spider silk: From nanostructure to mechanical properties. Biophys J. 2006;91(12):4528-4535. doi: 10.1529/biophysj.106.089144
  50. Rajkhowa R, Levin B, Redmond SL, et al. Structure and properties of biomedical films prepared from aqueous and acidic silk fibroin solutions. J Biomed Mater Res A. 2011;97(1):37-45. doi: 10.1002/jbm.a.33021
  51. Zhang C, Song D, Lu Q, Hu X, Kaplan DL, Zhu H. Flexibility regeneration of silk fibroin in vitro. Biomacromolecules. 2012;13(7):2148-2153. doi: 10.1021/bm300541g
  52. Shao Z, Vollrath F. Surprising strength of silkworm silk. Nat Biotechnol. 2002;418(6899):741. doi: 10.1038/418741a
  53. Sirichaisit J, Brookes VL, Young RJ, Vollrath F. Analyis of structure/property relationships in silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks using Raman spectroscopy. Biomacromolecules. 2003;4(2):387-394. doi: 10.1021/bm0256956
  54. Vollrath F, Porter D. Silks as ancient models for modern polymers. Polymer. 2009;50(24):5623-5632.
  55. Pins GD, Christiansen DL, Patel R, Silver FH. Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties. Biophys J. 1997;73(4):2164-2172. doi: 10.1016/s0006-3495(97)78247-x
  56. Yang L, Werf KO, Fitié CFC, Bennink ML, Dijkstra PJ, Feijen J. Mechanical properties of native and cross-linked type I collagen fibrils. Biophys J. 2008;94(6):2204-2211. doi: 10.1529/biophysj.107.111013
  57. Engelberg I, Kohn J. Physico-mechanical properties of degradable polymers used in medical applications: A comparative study. Biomaterials. 1991;12(3):292-304. doi: 10.1016/0142-9612(91)90037-b
  58. Fang G, Huang Y, Tang Y, et al. Insights into silk formation process: Correlation of mechanical properties and structural evolution during artificial spinning of silk fibers. ACS Biomater Sci Eng. 2016;2(11):1992-2000. doi: 10.1021/acsbiomaterials.6b00392
  59. Gosline JM, Guerette PA, Ortlepp CS, Savage KN. The mechanical design of spider silks: From fibroin sequence to mechanical function. J Exp Biol. 1999;202(23):3295-3303. doi: 10.1242/jeb.202.23.3295
  60. Guan J, Zhu W, Liu B, Yang K, Vollrath F, Xu J. Comparing the microstructure and mechanical properties of Bombyx mori and Antheraea pernyi cocoon composites. Acta Biomater. 2017;47:60-70. doi: 10.1016/j.actbio.2016.09.042
  61. Gellynck K, Verdonk PCM, Nimmen EV, et al. Silkworm and spider silk scaffolds for chondrocyte support. J Mater Sci Mater Med. 2008;19(11):3399-3409. doi: 10.1007/s10856-008-3474-6
  62. Altman GH, Horan RL, Lu HH, et al. Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials. 2002;23(20):4131-4141. doi: 10.1016/s0142-9612(02)00156-4
  63. Semmrich C, Bausch AR. Protein crystals: How the weak become strong. Nat Mater. 2010;9(4):293-295. doi: 10.1038/nmat2735
  64. Yazawa K, Malay AD, Ifuku N, et al. Combination of amorphous silk fiber spinning and postspinning crystallization for tough regenerated silk fibers. Biomacromolecules. 2018;19(6):2227-2237. doi: 10.1021/acs.biomac.8b00232
  65. Yao Y, Allardyce BJ, Rajkhowa R, et al. Improving the tensile properties of wet spun silk fibers using rapid Bayesian algorithm. ACS Biomater Sci Eng. 2020;6(5):3197-3207. doi: 10.1021/acsbiomaterials.0c00156
  66. Yan J, Zhou G, Knight DP, Shao Z, Chen X. Wet-spinning of regenerated silk fiber from aqueous silk fibroin solution: Discussion of spinning parameters. Biomacromolecules. 2010;11(1):1-5. doi: 10.1021/bm900840h
  67. Marsano E, Corsini P, Arosio C, Boschi A, Mormino M, Freddi G. Wet spinning of Bombyx mori silk fibroin dissolved in N-methyl morpholine N-oxide and properties of regenerated fibres. Int J Biol Macromol. 2005;37(4):179-188. doi: 10.1016/j.ijbiomac.2005.10.005
  68. Cheng Y, Koh LD, Li D, et al. Peptide-graphene interactions enhance the mechanical properties of silk fibroin. ACS Appl Mater Interfaces. 2015;7(39):21787-21796. doi: 10.1021/acsami.5b05615
  69. Zhao HP, Feng XQ, Shi HJ. Variability in mechanical properties of Bombyx mori silk. Mater Sci Eng C. 2007; 27(4):675-683.
  70. Zhang X, Licon AL, Harris TI, et al. Silkworms with spider silklike fibers using synthetic silkworm chow containing calcium lignosulfonate, carbon nanotubes, and graphene. ACS Omega. 2019;4(3):4832-4838.
  71. Ayutsede J, Gandhi M, Sukigara S, Ye H, Hsu CM, Gogotsi Y. Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process. Biomacromolecules. 2006; 7(1):208-214. doi: 10.1021/bm0505888
  72. Wang Q, Wang C, Zhang M, Jian M. Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers. Nano Lett. 2016;16(10):6695-6700. doi: 10.1021/acs.nanolett.6b03597
  73. Ling S, Li C, Adamcik J, et al. Directed growth of silk nanofibrils on graphene and their hybrid nanocomposites. ACS Macro Lett. 2014;3(2):146-152. doi: 10.1021/mz400639y
  74. Guo Z, Xie W, Gao Q, et al. In situ biomineralization by silkworm feeding with ion precursors for the improved mechanical properties of silk fiber. Int J Biol Macromol. 2018;109:21-26. doi: 10.1016/j.ijbiomac.2017.12.029
  75. Gao ZF, Zheng LL, Fu WL, Zhang L, Li JZ, Chen P. Feeding alginate-coated liquid metal nanodroplets to silkworms for highly stretchable silk fibers. Nanomaterials. 2022;12(7):1177. doi: 10.3390/nano12071177
  76. Lu H, Jian M, Gan L, et al. Highly strong and tough silk by feeding silkworms with rare earth ion-modified diets. Sci Bull. 2023;68(23):2973-2981.
  77. Kardestuncer T, McCarthy MB, Karageorgiou V, Kaplan D, Gronowicz G. RGD-tethered silk substrate stimulates the differentiation of human tendon cells. Clin Orthop Relat Res. 2006;448:234-239. doi: 10.1097/01.blo.0000205879.50834.fe
  78. Leem JW, Allcca AEL, Kim YJ, et al. Photoelectric silk via genetic encoding and bioassisted plasmonics. Adv Biol. 2020;4(7):e2000040. doi: 10.1002/adbi.202000040
  79. Teramoto H, Iga M, Tsuboi H, Nakajima K. Characterization and scaled-up production of azido-functionalized silk fiber produced by transgenic silkworms with an expanded genetic code. Int J Mol Sci. 2019;20(3):616. doi: 10.3390/ijms20030616
  80. Yarger JL, Cherry BR, Van Der Vaart A. Uncovering the structure-function relationship in spider silk. Nat Rev Mater. 2018;3(3):1-11.
  81. Zhang W, Ye C, Zheng K, et al. Tensan silk-inspired hierarchical fibers for smart textile applications. ACS Nano. 2018;12(7):6968-6977.
  82. Rajkhowa R, Gupta V, Kothari V. Tensile stress-strain and recovery behavior of Indian silk fibers and their structural dependence. J Appl Polym Sci. 2000;77(11):2418-2429.
  83. Lundmark K, Westermark GT, Olsén A, Westermark P. Protein fibrils in nature can enhance amyloid protein A amyloidosis in mice: Cross-seeding as a disease mechanism. Proc Natl Acad Sci U S A. 2005;102(17):6098-6102. doi: 10.1073/pnas.0501814102
  84. Lee OJ, Lee JM, Kim JH, et al. Biodegradation behavior of silk fibroin membranes in repairing tympanic membrane perforations. J Biomed Mater Res B Appl Biomater. 2012;100(8):2018-2026.
  85. Zhou L, Hu C, Chen Y, Xia S, Yan J. Investigations of silk fiber/calcium phosphate cement biocomposite for radial bone defect repair in rabbits. J Orthop Surg Res. 2017;12:1-8.
  86. Liu H, Fan H, Wang Y, Toh SL, Goh JCH. The interaction between a combined knitted silk scaffold and microporous silk sponge with human mesenchymal stem cells for ligament tissue engineering. Biomaterials. 2008;29(6):662-674. doi: 10.1016/j.biomaterials.2007.10.035
  87. Gellynck K, Verdonk P, Forsyth R, et al. Biocompatibility and biodegradability of spider egg sac silk. J Mater Sci Mater Med. 2008;19(8):2963-2970. doi: 10.1007/s10856-007-3330-0
  88. Zarbin MA. Accelerated in vitro degradation of optically clear low-β sheet silk films by enzyme-mediated pretreatment. JAMA Ophthalmol. 2013;131(5):676. doi: 10.1001/jamaophthalmol.2013.4319
  89. Horan RL, Antle K, Collette AL, et al. In vitro degradation of silk fibroin. Biomaterials. 2005;26(17):3385-3393. doi: 10.1016/j.biomaterials.2004.09.020
  90. Lu Q, Hu X, Wang X, et al. Water-insoluble silk films with silk I structure. Acta Biomater. 2010;6(4):1380-1387. doi: 10.1016/j.actbio.2009.10.041
  91. Wang Y, Rudym DD, Walsh A, et al. In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials. 2008;29(24-25):3415-3428. doi: 10.1016/j.biomaterials.2008.05.002
  92. Zhang L, Liu X, Li G, Wang P, Yang Y. Tailoring degradation rates of silk fibroin scaffolds for tissue engineering. J Biomed Mater Res A. 2019;107(1):104-113. doi: 10.1002/jbm.a.36537
  93. Mandal BB, Kundu SC. Biospinning by silkworms: Silk fiber matrices for tissue engineering applications. Acta Biomater. 2010;6(2):360-371. doi: 10.1016/j.actbio.2009.08.035
  94. Kim HS, Sun X, Lee JH, Kim HW, Fu X, Leong KW. Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev. 2019;146:209-239. doi: 10.1016/j.addr.2018.12.014
  95. Simões D, Miguel SP, Ribeiro MP, Coutinho P, Mendonça AG, Correia IJ. Recent advances on antimicrobial wound dressing: A review. Eur J Pharm Biopharm. 2018;127:130-141. doi: 10.1016/j.ejpb.2018.02.022
  96. Peng W, Li D, Dai K, et al. Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications. Int J Biol Macromol. 2022;208:400-408. doi: 10.1016/j.ijbiomac.2022.03.002
  97. Li YY, Ji SF, Fu XB, Jiang YF, Sun XY. Biomaterial-based mechanical regulation facilitates scarless wound healing with functional skin appendage regeneration. Mil Med Res. 2024;11(1):13. doi: 10.1186/s40779-024-00519-6
  98. Liu T, Wang Y, Liu J, et al. An injectable photocuring silk fibroin-based hydrogel for constructing an antioxidant microenvironment for skin repair. J Mater Chem B. 2024;12(9):2282-2293. doi: 10.1039/d3tb02214e
  99. Haug S, Roll A, Schmid-Grendelmeier P, et al. Coated textiles in the treatment of atopic dermatitis. Curr Probl Dermatol. 2006;33:144-151. doi: 10.1159/000093941
  100. Park YR, Sultan MT, Park HJ, et al. NF-κB signaling is key in the wound healing processes of silk fibroin. Acta Biomater. 2018;67:183-195. doi: 10.1016/j.actbio.2017.12.006
  101. Schneider A, Wang XY, Kaplan DL, Garlick JA, Egles C. Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomater. 2009;5(7):2570-2578. doi: 10.1016/j.actbio.2008.12.013
  102. Fathi A, Khanmohammadi M, Goodarzi A, et al. Fabrication of chitosan-polyvinyl alcohol and silk electrospun fiber seeded with differentiated keratinocyte for skin tissue regeneration in animal wound model. J Biol Eng. 2020;14(1):27. doi: 10.1186/s13036-020-00249-y
  103. Qin K, Pereira RFP, Coradin T, Bermudez VZ, Fernandes FM. Biomimetic silk macroporous materials for drug delivery obtained via ice-templating. ACS Appl Bio Mater. 2022;5(6):2556-2566. doi: 10.1021/acsabm.2c00020
  104. Sapru S, Das S, Mandal M, Ghosh AK, Kundu SC. Prospects of nonmulberry silk protein sericin-based nanofibrous matrices for wound healing-in vitro and in vivo investigations. Acta Biomater. 2018;78:137-150. doi: 10.1016/j.actbio.2018.07.047
  105. Wu M, Huang S, Ye X, et al. Human epidermal growth factor-functionalized cocoon silk with improved cell proliferation activity for the fabrication of wound dressings. J Biomater Appl. 2021;36(4):722-730. doi: 10.1177/0885328221997981
  106. Wang Y, Wang F, Xu S, et al. Genetically engineered bi-functional silk material with improved cell proliferation and anti-inflammatory activity for medical application. Acta Biomater. 2019;86:148-157. doi: 10.1016/j.actbio.2018.12.036
  107. Wang F, Wang Y, Tian C, et al. Fabrication of the FGF1- functionalized sericin hydrogels with cell proliferation activity for biomedical application using genetically engineered Bombyx mori (B. mori) silk. Acta Biomater. 2018;79:239-252. doi: 10.1016/j.actbio.2018.08.031
  108. Carballo CB, Nakagawa Y, Sekiya I, Rodeo SA. Basic science of articular cartilage. Clin Sports Med. 2017;36(3):413-425. doi: 10.1016/j.csm.2017.02.001
  109. He B, Wu JP, Kirk TB, Carrino JA, Xiang C, Xu J. High-resolution measurements of the multilayer ultra-structure of articular cartilage and their translational potential. Arthritis Res Ther. 2014;16(2):205. doi: 10.1186/ar4506
  110. Mandelbaum BR, ElAttrache NS. Articular cartilage repair techniques. Sports Med Arthrosc Rev. 2016;24(2):43.
  111. Liu Y, Shah KM, Luo J. Strategies for articular cartilage repair and regeneration. Front Bioeng Biotechnol. 2021;9:770655. doi: 10.3389/fbioe.2021.770655
  112. Correa D, Lietman SA. Articular cartilage repair: Current needs, methods and research directions. Semin Cell Dev Biol. 2017;62:67-77. doi: 10.1016/j.semcdb.2016.07.013
  113. Bhardwaj N, Singh YP, Devi D, Kandimalla R, Kotoky J, Mandal BB. Potential of silk fibroin/chondrocyte constructs of muga silkworm Antheraea assamensis for cartilage tissue engineering. J Mater Chem B. 2016;4(21):3670-3684. doi: 10.1039/c6tb00717a
  114. Uebersax L, Merkle HP, Meinel L. Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells. J Control Release. 2008;127(1):12-21. doi: 10.1016/j.jconrel.2007.11.006
  115. Wang Y, Kim UJ, Blasioli DJ, Kim HJ, Kaplan DL. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials. 2005;26(34):7082-7094. doi: 10.1016/j.biomaterials.2005.05.022
  116. Wang Y, Blasioli DJ, Kim HJ, Kim HS, Kaplan DL. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials. 2006;27(25):4434-4442. doi: 10.1016/j.biomaterials.2006.03.050
  117. Singh YP, Adhikary M, Bhardwaj N, Bhunia BK, Mandal BB. Silk fiber reinforcement modulates in vitro chondrogenesis in 3D composite scaffolds. Biomed Mater. 2017;12(4):045012. doi: 10.1088/1748-605X/aa7697
  118. Kazemnejad S, Khanmohammadi M, Mobini S, et al. Comparative repair capacity of knee osteochondral defects using regenerated silk fiber scaffolds and fibrin glue with/ without autologous chondrocytes during 36 weeks in rabbit model. Cell Tissue Res. 2016;364(3):559-572. doi: 10.1007/s00441-015-2355-9
  119. Weitkamp JT, Wöltje M, Nußpickel B, et al. Silk fiber-reinforced hyaluronic acid-based hydrogel for cartilage tissue engineering. Int J Mol Sci. 2021;22(7):3635. doi: 10.3390/ijms22073635
  120. Mirahmadi F, Tafazzoli-Shadpour M, Shokrgozar MA, Bonakdar S. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Mater Sci Eng C Mater Biol Appl. 2013;33(8):4786-4794. doi: 10.1016/j.msec.2013.07.043
  121. Kim JS, Choi J, Ki CS, Lee KH. 3D silk fiber construct embedded dual-layer PEG hydrogel for articular cartilage repair: In vitro assessment. Front Bioeng Biotechnol. 2021;9:653509. doi: 10.3389/fbioe.2021.653509
  122. Yao X, Yang Y, Zhou Z. Non-mulberry silk fiber-based composite scaffolds containing millichannels for auricular cartilage regeneration. ACS Omega. 2022;7(17):15064-15073. doi: 10.1021/acsomega.2c00846
  123. Mienaltowski MJ, Birk DE. Structure, physiology, and biochemistry of collagens. Adv Exp Med Biol. 2014;802:5-29. doi: 10.1007/978-94-007-7893-1_2
  124. Bobzin L, Roberts RR, Chen HJ, Crump JG, Merrill AE. Development and maintenance of tendons and ligaments. Development. 2021;148(8):dev186916. doi: 10.1242/dev.186916
  125. Leong NL, Kator JL, Clemens TL, James A, Enamoto- Iwamoto M, Jiang J. Tendon and ligament healing and current approaches to tendon and ligament regeneration. J Orthop Res. 2020;38(1):7-12. doi: 10.1002/jor.24475
  126. Chen J, Altman GH, Karageorgiou V, et al. Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers. J Biomed Mater Res A. 2003;67(2):559-570. doi: 10.1002/jbm.a.10120
  127. Teuschl A, Heimel P, Nürnberger S, Griensven MV, Redl H, Nau T. A novel silk fiber-based scaffold for regeneration of the anterior cruciate ligament: Histological results from a study in sheep. Am J Sports Med. 2016;44(6):1547-1557. doi: 10.1177/0363546516631954
  128. Fan H, Liu H, Toh SL, Goh JC. Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model. Biomaterials. 2009;30(28):4967-4977.
  129. Panas-Perez E, Gatt CJ, Dunn MG. Development of a silk and collagen fiber scaffold for anterior cruciate ligament reconstruction. J Mater Sci Mater Med. 2013;24(1):257-265. doi: 10.1007/s10856-012-4781-5
  130. Chen X, Qi YY, Wang LL, et al. Ligament regeneration using a knitted silk scaffold combined with collagen matrix. Biomaterials. 2008;29(27):3683-3692. doi: 10.1016/j.biomaterials.2008.05.017
  131. Bosetti M, Boccafoschi F, Calarco A, et al. Behaviour of human mesenchymal stem cells on a polyelectrolyte-modified HEMA hydrogel for silk-based ligament tissue engineering. J Biomater Sci Polymer Ed. 2008;19(9):1111-1123. doi: 10.1163/156856208785540145
  132. Fang Q, Chen D, Yang Z, Li M. In vitro and in vivo research on using Antheraea pernyi silk fibroin as tissue engineering tendon scaffolds. Mater Sci Eng C Mater Biol Appl. 2009;29(5):1527-1534.
  133. Chen JL, Yin Z, Shen WL, et al. Efficacy of hESC-MSCs in knitted silk-collagen scaffold for tendon tissue engineering and their roles. Biomaterials. 2010;31(36):9438-9451. doi: 10.1016/j.biomaterials.2010.08.011
  134. Zheng Z, Ran J, Chen W, et al. Alignment of collagen fiber in knitted silk scaffold for functional massive rotator cuff repair. Acta Biomater. 2017;51:317-329. doi: 10.1016/j.actbio.2017.01.041
  135. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442. doi: 10.1371/journal.pmed.0030442
  136. Pashneh-Tala S, MacNeil S, Claeyssens F. The tissue-engineered vascular graft: Past, present, and future. Tissue Eng Part B Rev. 2016;22(1):68-100. doi: 10.1089/ten.teb.2015.0100
  137. Naito Y, Shinoka T, Duncan D, et al. Vascular tissue engineering: Towards the next generation vascular grafts. Adv Drug Deliv Rev. 2011;63(4-5):312-323. doi: 10.1016/j.addr.2011.03.001
  138. Cleary MA, Geiger E, Grady C, Best C, Naito Y, Breuer C. Vascular tissue engineering: The next generation. Trends Mol Med. 2012;18(7):394-404. doi: 10.1016/j.molmed.2012.04.013
  139. Cabrera PO. Esthetic root coverage in periodontics: A review. J Clin Periodontol. 1995;88(2):30-34.
  140. Bos GW, Poot AA, Beugeling T, Aken WG, Feijen J. Small-diameter vascular graft prostheses: Current status. Adv Pharmacol Biochem Eng Biotechnol. 1998;106(2):100-115. doi: 10.1076/apab.106.2.100.4384
  141. Thottappillil N, Nair PD. Scaffolds in vascular regeneration: Current status. Vasc Health Risk Manag. 2015;11:79-91. doi: 10.2147/vhrm.S50536
  142. Hibino N, Mejias D, Pietris N, et al. The innate immune system contributes to tissue-engineered vascular graft performance. FASEB J. 2015;29(6):2431-2438. doi: 10.1096/fj.14-268334
  143. Zilla P, Bezuidenhout D, Human P. Prosthetic vascular grafts: Wrong models, wrong questions and no healing. Biomaterials. 2007;28(34):5009-5027. doi: 10.1016/j.biomaterials.2007.07.017
  144. Wei Y, Wang F, Guo Z, Zhao Q. Tissue-engineered vascular grafts and regeneration mechanisms. J Mol Cell Cardiol. 2022;165:40-53. doi: 10.1016/j.yjmcc.2021.12.010
  145. Bondar B, Fuchs S, Motta A, Migliaresi C, Kirkpatrick CJ. Functionality of endothelial cells on silk fibroin nets: Comparative study of micro- and nanometric fibre size. Biomaterials. 2008;29(5):561-572. doi: 10.1016/j.biomaterials.2007.10.002
  146. Mi HY, Jiang Y, Jing X, et al. Fabrication of triple-layered vascular grafts composed of silk fibers, polyacrylamide hydrogel, and polyurethane nanofibers with biomimetic mechanical properties. Mater Sci Eng C Mater Biol Appl. 2019;98:241-249. doi: 10.1016/j.msec.2018.12.126
  147. Nakazawa Y, Sato M, Takahashi R, et al. Development of small-diameter vascular grafts based on silk fibroin fibers from Bombyx mori for vascular regeneration. J Biomater Sci Polym Ed. 2011;22(1-3):195-206. doi: 10.1163/092050609x12586381656530
  148. Ding X, Zhang W, Xu P, et al. The regulatory effect of braided silk fiber skeletons with differential porosities on in vivo vascular tissue regeneration and long-term patency. Research (Wash D C). 2022;2022:9825237.
  149. Li S, Hang Y, Ding Z, et al. Microfluidic silk fibers with aligned hierarchical microstructures. ACS Biomater Sci Eng. 2020;6(5):2847-2854. doi: 10.1021/acsbiomaterials.0c00060
  150. Robinson RA. Bone tissue: Composition and function. Johns Hopkins Med J. 1979;145(1):10-24.
  151. Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3 Suppl 3:S131-S139. doi: 10.2215/cjn.04151206
  152. Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: Current concepts and future directions. BMC Med. 2011;9:66. doi: 10.1186/1741-7015-9-66
  153. Yudoh K, Sugishita Y, Suzuki-Takahashi Y. Bone development and regeneration 2.0. Int J Mol Sci. 2023;24(10):8761. doi: 10.3390/ijms24108761
  154. Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater Sci Eng C Mater Biol Appl. 2021;130:112466. doi: 10.1016/j.msec.2021.112466
  155. Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK. Alginate composites for bone tissue engineering: A review. Int J Biol Macromol. 2015;72:269-281. doi: 10.1016/j.ijbiomac.2014.07.008
  156. Cao GD, Pei YQ, Liu J, Li P, Liu P, Li XS. Research progress on bone defect repair materials. China J Orthop Traumatol. 2021;34(4):382-388. doi: 10.12200/j.issn.1003-0034.2021.04.018
  157. Mobini S, Hoyer B, Solati-Hashjin M, et al. Fabrication and characterization of regenerated silk scaffolds reinforced with natural silk fibers for bone tissue engineering. J Biomed Mater Res A. 2013;101(8):2392-2404. doi: 10.1002/jbm.a.34537
  158. Takeuchi A, Ohtsuki C, Miyazaki T, Tanaka H, Yamazaki M, Tanihara M. Deposition of bone-like apatite on silk fiber in a solution that mimics extracellular fluid. J Biomed Mater Res A. 2003;65(2):283-289. doi: 10.1002/jbm.a.10456
  159. Dong Z, Xia Q, Zhao P. Antimicrobial components in the cocoon silk of silkworm, Bombyx mori. Int J Biol Macromol. 2023;224:68-78. doi: 10.1016/j.ijbiomac.2022.10.103
  160. Zhang X, Ni Y, Guo K, et al. The mutation of SPI51, a protease inhibitor of silkworm, resulted in the change of antifungal activity during domestication. Int J Biol Macromol. 2021;178:63-70. doi: 10.1016/j.ijbiomac.2021.02.076
  161. Li YS, Liu HW, Zhu R, Xia QY, Zhao P. Protease inhibitors in Bombyx mori silk might participate in protecting the pupating larva from microbial infection. Insect Sci. 2016;23(6):835-842. doi: 10.1111/1744-7917.12241
  162. Guo X, Dong Z, Zhang Y, et al. Proteins in the cocoon of silkworm inhibit the growth of Beauveria bassiana. PLoS One. 2016;11(3):e0151764. doi: 10.1371/journal.pone.0151764
  163. Li Y, Zhao P, Liu H, et al. TIL-type protease inhibitors may be used as targeted resistance factors to enhance silkworm defenses against invasive fungi. Insect Biochem Mol Biol. 2015;57:11-19. doi: 10.1016/j.ibmb.2014.11.006
  164. Li Y, Zhao P, Liu S, et al. A novel protease inhibitor in Bombyx mori is involved in defense against Beauveria bassiana. Insect Biochem Mol Biol. 2012;42(10):766-775. doi: 10.1016/j.ibmb.2012.07.004
  165. Zhang X, Guo K, Dong Z, et al. Kunitz-type protease inhibitor BmSPI51 plays an antifungal role in the silkworm cocoon. Insect Biochem Mol Biol. 2020;116:103258. doi: 10.1016/j.ibmb.2019.103258
  166. Orhan DD, Ozçelik B, Ozgen S, Ergun F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol Res. 2010;165(6):496-504. doi: 10.1016/j.micres.2009.09.002
  167. Singh CP, Vaishna RL, Kakkar A, Arunkumar KP, Nagaraju J. Characterization of antiviral and antibacterial activity of Bombyx mori seroin proteins. Cell Microbiol. 2014;16(9):1354-1365. doi: 10.1111/cmi.12294
  168. Zhang Y, Zhao P, Dong Z, et al. Comparative proteome analysis of multi-layer cocoon of the silkworm, Bombyx mori. PLoS One. 2015;10(4):e0123403. doi: 10.1371/journal.pone.0123403
  169. Dong Z, Song Q, Zhang Y, et al. Structure, evolution, and expression of antimicrobial silk proteins, seroins in Lepidoptera. Insect Biochem Mol Biol. 2016;75:24-31. doi: 10.1016/j.ibmb.2016.05.005
  170. Dong Z, Zhao P, Wang C, et al. Comparative proteomics reveal diverse functions and dynamic changes of Bombyx mori silk proteins spun from different development stages. J Proteome Res. 2013;12(11):5213-5222. doi: 10.1021/pr4005772
  171. In YW, Kim JJ, Kim HJ, Oh SW. Antimicrobial activities of acetic acid, citric acid and lactic acid against Shigella species. J Food Saf. 2013;33(1):79-85.
  172. Ozçelik B, Kartal M, Orhan I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm Biol. 2011;49(4):396-402. doi: 10.3109/13880209.2010.519390
  173. Zhu H, Zhang X, Lu M, et al. Antibacterial mechanism of silkworm seroins. Polymers. 2020;12(12):2985. doi: 10.3390/polym12122985
  174. Gao A, Chen H, Hou A, Xie K. Efficient antimicrobial silk composites using synergistic effects of violacein and silver nanoparticles. Mater Sci Eng C Mater Biol Appl. 2019;103:109821.doi: 10.1016/j.msec.2019.109821
  175. Saviane A, Romoli O, Bozzato A, et al. Intrinsic antimicrobial properties of silk spun by genetically modified silkworm strains. Transgenic Res. 2018;27(1):87-101. doi: 10.1007/s11248-018-0059-0
  176. Carvalho EO, Rincón-Iglesias M, Brito-Pereira R, Lizundia E, Fernandes MM, Lanceros-Mendez S. Designing antimicrobial biomembranes via clustering amino-modified cellulose nanocrystals on silk fibroin β-sheets. Int J Biol Macromol. 2023;242(Pt 3):125049. doi: 10.1016/j.ijbiomac.2023.125049
  177. Zhang W, Yang ZY, Cheng XW, Tang RC, Qiao YF. Adsorption, antibacterial and antioxidant properties of tannic acid on silk fiber. Polymers. 2019;11(6):1090. doi: 10.3390/polym11060970
  178. Zhao Z, Yan J, Wang T, et al. Multi-functional Calotropis gigantea fabric using self-assembly silk fibroin, chitosan and nano-silver microspheres with oxygen low-temperature plasma treatment. Colloids Surf B Biointerfaces. 2022;215:112488. doi: 10.1016/j.colsurfb.2022.112488
  179. Li G, Qin S, Zhang D, Liu X. Preparation of antibacterial degummed silk fiber/nano-hydroxyapatite/polylactic acid composite scaffold by degummed silk fiber loaded silver nanoparticles. Nanotechnology. 2019;30(29):295101. doi: 10.1088/1361-6528/ab13df
  180. Liu X, Yin G, Yi Z, Duan T. Silk fiber as the support and reductant for the facile synthesis of Ag-Fe₃O₄ nanocomposites and its antibacterial properties. Materials. 2016;9(7):501. doi: 10.3390/ma9070501
  181. Li G, Liu H, Zhao H, et al. Chemical assembly of TiO2 and TiO2@Ag nanoparticles on silk fiber to produce multifunctional fabrics. J Colloid Interface Sci. 2011;358(1):307-315. doi: 10.1016/j.jcis.2011.02.053
  182. Valarmathi N, Sumathi S. Zinc substituted hydroxyapatite/ silk fiber/methylcellulose nanocomposite for bone tissue engineering applications. Int J Biol Macromol. 2022; 214:324-337. doi: 10.1016/j.ijbiomac.2022.06.033
  183. Zhang YH, Shi MJ, Li KL, et al. Impact of adding glucose-coated water-soluble silver nanoparticles to the silkworm larval diet on silk protein synthesis and related properties. J Biomater Sci Polym Ed. 2020;31(3):376-393. doi: 10.1080/09205063.2019.1692642
  184. Henderson JD Jr., Mullarky RH, Ryan DE. Tissue biocompatibility of kevlar aramid fibers and polymethylmethacrylate, composites in rabbits. J Biomed Mater Res. 1987;21(1):59-64.
  185. Coury AJ, Levy RJ, Mcmillin CR, et al. Degradation of materials in the biological environment. In: Biomaterials Science. Netherlands: Elsevier; 1996. p. 243-281.
  186. Hudson JA, Crugnola A. The in vivo biodegradation of nylon 6 utilized in a particular IUD. J Biomed Appl. 1986;1(3):487- 501. doi: 10.1177/088532828600100304
  187. Rothamel D, Benner M, Fienitz T, et al. Biodegradation pattern and tissue integration of native and cross-linked porcine collagen soft tissue augmentation matrices-an experimental study in the rat. Head Face Med. 2014;10:10. doi: 10.1186/1746-160X-10-10
  188. ASTM International. ASTM F2792-10: Standard Terminology for Additive Manufacturing Technologies. West Conshohocken, PA: ASTM International; 2010.
  189. Song YH, Yan YN, Zhang RJ, Xu D, Wang F. Manufacture of the die of an automobile deck part based on rapid prototyping and rapid tooling technology. J Mater Process Technol. 2002;120(1-3):237-242. doi: 10.1016/s0924-0136(01)01165-7
  190. Vilaro T, Abed S, Knapp W. Direct Manufacturing of Technical Parts Using Selective Laser Melting: Example of Automotive Application. In: Proceeding of 12th European Forum on Rapid Prototyping; 2008.
  191. Giannatsis J, Dedoussis V. Additive fabrication technologies applied to medicine and health care: A review. Int J Adv Manuf Technol. 2009;40:116-127.
  192. Sachlos E, Czernuszka J. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater. 2003;5(29):39-40. doi: 10.22203/ecm.v005a03
  193. Agostinacchio F, Fitzpatrick V, Dirè S, Kaplan DL. Silk fibroin-based inks for in situ 3D printing using a double crosslinking process. Biomater Sci. 2024;35:122-134. doi: 10.1016/j.bioactmat.2024.01.015
  194. De Gans B, Duineveld P, Schubert U. Inkjet printing of polymers: State of the art and future developments. Adv Mater. 2004;16(3):203-213.
  195. Singh M, Haverinen HM, Dhagat P, Jabbour GE. Inkjet printing-process and its applications. Adv Mater. 2010;22(6):673-685. doi: 10.1002/adma.200901141
  196. Calvert P. Inkjet printing for materials and devices. Chem Mater. 2001;13(10):3299-3305.
  197. Limem S, Calvert P, Kim HJ, Kaplan DL. Differentiation of bone marrow stem cells on inkjet printed silk lines. MRS Proc. 2006;950:0950-D04-18. doi: 10.1557/PROC-0950-D04-18
  198. Bishop ES, Mostafa S, Pakvasa M, et al. 3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends. Ann Biomed Eng. 2017;4(4):185-195. doi: 10.1016/j.gendis.2017.10.002
  199. Rider PM, Brook IM, Smith PJ, Miller CA. Reactive inkjet printing of regenerated silk fibroin films for use as dental barrier membranes. J Mech Behav Biomed Mater. 2018;9(2):46.
  200. Compaan AM, Christensen K, Huang Y. Inkjet bioprinting of 3D silk fibroin cellular constructs using sacrificial alginate. ACS Biomater Sci Eng. 2017;3(8):1519-1526.
  201. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014;32(8):773-785. doi: 10.1038/nbt.2958
  202. Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials. 2016;76:321-343. doi: 10.1016/j.biomaterials.2015.10.076
  203. Ghosh S, Parker ST, Wang X, Kaplan DL, Lewis JA. Direct‐write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications. Adv Funct Mater. 2008;18(13):1883-1889.
  204. Chawla S, Midha S, Sharma A, Ghosh S. Silk‐based bioinks for 3D bioprinting. Adv Healthc Mater. 2018;7(8):e1701204. doi: 10.1002/adhm.201701204
  205. Das S, Pati F, Chameettachal S, et al. Enhanced redifferentiation of chondrocytes on microperiodic silk/ gelatin scaffolds: Toward tailor-made tissue engineering. Macromol Biosci. 2013;14(2):311-321. doi: 10.1021/bm301193t
  206. Zheng Z, Wu J, Liu M, et al. 3D bioprinting of self‐standing silk‐based bioink. Adv Healthc Mater. 2018;7(6):e1701026. doi: 10.1002/adhm.201701026
  207. Jose RR, Brown JE, Polido KE, Omenetto FG, Kaplan DL. Polyol-silk bioink formulations as two-part room-temperature curable materials for 3D printing. ACS Biomater Sci Eng. 2015;1(9):780-788. doi: 10.1021/acsbiomaterials.5b00160
  208. Rodriguez MJ, Dixon TA, Cohen E, Huang W, Omenetto FG, Kaplan DL. 3D freeform printing of silk fibroin. Acta Biomater. 2018;71:379-387. doi: 10.1016/j.actbio.2018.02.035
  209. Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol. 2016;40:103-112. doi: 10.1016/j.copbio.2016.03.014
  210. Grogan SP, Chung PH, Soman P, et al. Digital micromirror device projection printing system for meniscus tissue engineering. Acta Biomater. 2013;9(7):7218-7226. doi: 10.1016/j.actbio.2013.03.020
  211. Zheng X, Smith W, Jackson J, et al. Multiscale metallic metamaterials. Nat Mater. 2016;15(10):1100-1106. doi: 10.1038/nmat4694
  212. Yusupov V, Churbanov S, Churbanova E, et al. Laser-induced forward transfer hydrogel printing: A defined route for highly controlled process. Biofabrication. 2020;6(3):271. doi: 10.18063/ijb.v6i3.271
  213. Kim SH, Kim DY, Lim TH, Park CH. Silk fibroin bioinks for digital light processing (DLP) 3D bioprinting. In: Bioinspired Biomaterials: Advances in Tissue Engineering and Regenerative Medicine. Berlin: Springer Nature; 2020. p. 53-66.
  214. Cui X, Zhang J, Qian Y, et al. 3D printing strategies for precise and functional assembly of silk-based biomaterials. Biofabrication. 2024;34:92-108.
  215. Na K, Shin S, Lee H, et al. Effect of solution viscosity on retardation of cell sedimentation in DLP 3D printing of gelatin methacrylate/silk fibroin bioink. Mater Sci Eng C Mater Biol Appl. 2018;61:340-347.



Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing