AccScience Publishing / MSAM / Volume 4 / Issue 2 / DOI: 10.36922/MSAM025130018
ORIGINAL RESEARCH ARTICLE

Disinfection efficiency and its impact on the mechanical properties of multi-material mouthguards fabricated via fused filament fabrication

Leonor Bispo1 Joana F. Henriques1 Ana P. Piedade1* Ana M. Sousa1
Show Less
1 Department of Mechanical Engineering, CEMMPRE, University of Coimbra, 3030-788 Coimbra, Portugal
MSAM 2025, 4(2), 025130018 https://doi.org/10.36922/MSAM025130018
Received: 28 March 2025 | Accepted: 22 April 2025 | Published online: 20 May 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Mouthguards are orthodontic devices designed to prevent orofacial injuries during sports activities. To ensure comfort and correct positioning, they must fit the athlete’s dental arch precisely. Customization through additive manufacturing offers a practical solution for producing well-fitted mouthguards. The present study aimed to investigate the use of 3D-printed multi-material parts in the fabrication of protective mouthguards. Three polymeric materials were employed: High-impact polystyrene (HIPS), thermoplastic polyurethane, and poly(methyl methacrylate) (PMMA). Two configurations – bi-layered and tri-layered – were analyzed to assess the influence of material arrangement on mechanical performance. The impact of disinfection methods on mechanical properties was also evaluated, comparing physical (ultraviolet [UV]-C light exposure) and chemical (Polident cleaning tablet solution) disinfection strategies. In addition, the effects of artificial saliva aging on all material types and configurations were examined. Mechanical testing revealed that multi-material configurations containing HIPS exhibited superior mechanical performance, with flexural stiffness values 8 – 40% higher than PMMA-based samples, Vickers microhardness 40 – 128% greater, and absorbed energy and impact strength improved by 11 – 105%. Moreover, the tri-layered configuration demonstrated enhanced mechanical behavior, showing approximately 40% higher transverse impact resistance and increases of ~35% and ~77% in flexural strength and modulus, respectively, relative to the bi-layered configuration. Disinfection studies confirmed the efficacy of both approaches, reducing Staphylococcus aureus colony-forming units by 95% (Polident) and 97% (UVC light). These findings are promising for the development of protective mouthguards, where changes in mechanical properties over time – particularly due to saliva exposure and disinfection – are of critical importance.

Graphical abstract
Keywords
Mouthguards
Multi-material configuration
Disinfection
Material characterization
Additive manufacturing
Funding
Joana F. Henriques and Ana M. Sousa acknowledge financial support from FCT, Portugal, through the PhD grants 2023.00752.BD and UI/BD/150913/2020, respectively.
Conflict of interest
Ana P. Piedade serves as the Editorial Board Member of the journal but did not in any way involved in the editorial and peer-review process conducted for this paper, directly or indirectly. Other authors declare they have no competing interests.
References
  1. Zaman I, Rozlan SAM, Manshoor B, Ngali MZ, Khalid A, Amin NAM. Study of mouthguard design for endurance and air-flow intake. IOP Conf Ser Mater Sci Eng. 2017;226:012007. doi: 10.1088/1757-899X/226/1/012007
  2. Singarapu R, Panneerselvam E, Balasubramaniam S, Nakkeeran KP, Ramanathan M, Raja VBK. The role of mouthguards in preventing temporomandibular joint injuries during contact sports: A prospective study. Front Dent. 2023;20:12. doi: 10.18502/fid.v20i12.12661
  3. Lieger O, Von Arx T. Orofacial/cerebral injuries and the use of mouthguards by professional athletes in Switzerland. Dent Traumatol. 2006;22(1):1-6. doi: 10.1111/j.1600-9657.2006.00328.x
  4. Knapik JJ, Marshall SW, Lee RB, et al. Mouthguards in sport activities: History, physical properties and injury prevention effectiveness. Sports Med. 2007;37(2):117-144. doi: 10.2165/00007256-200737020-00003
  5. ASTM. ASTM F697-16. Standard Practice for Care and Use of Athletic Mouth Protectors. Available from: https://store. astm.org/f0697-16.html [Last accessed on 2025 Mar 14].
  6. Green JI. The role of mouthguards in preventing and reducing sports-related trauma? Prim Dent J. 2017;6(2):27-34. doi: 10.1308/205016817821281738
  7. Mantri SS, Mantri SP, Deogade S, Bhasin AS. Intra-oral mouth-guard in sport related Oro-facial injuries: Prevention is better than cure! J Clin Diagn Res. 2014;8:299-302. doi: 10.7860/JCDR/2014/6470.3872
  8. ADA Council on Access, Prevention and Interprofessional Relations, ADA Council on Scientific Affairs. Using mouthguards to reduce the incidence and severity of sports-related oral injuries. J Am Dent Assoc. 2006;137(12):1712- 1720; quiz 1731. doi: 10.14219/jada.archive.2006.0118
  9. Parker K, Marlow B, Patel N, Gill DS. A review of mouthguards: Effectiveness, types, characteristics and indications for use. Br Dent J. 2017;222(8):629-633. doi: 10.1038/sj.bdj.2017.365
  10. Guérard S, Barou JL, Petit J, Poisson P. Characterization of mouthguards: Impact performance. Dent Traumatol. 2017;33(4):281-287. doi: 10.1111/edt.12329
  11. Sousa AM, Pinho AC, Piedade AP. Mechanical properties of 3D printed mouthguards: Influence of layer height and device thickness. Mater Des. 2021;203:109624. doi: 10.1016/j.matdes.2021.109624
  12. Patrick DG, Van Noort R, Found MS. Scale of protection and the various types of sports mouthguard. Br J Sports Med. 2005;39(5):278-281. doi: 10.1136/bjsm.2004.012658
  13. Roberts HW. Sports mouthguard overview: Materials, fabrication techniques, existing standards, and future research needs. Dent Traumatol. 2023;39(2):101-108. doi: 10.1111/edt.12809
  14. Maeda Y, Kumamoto D, Yagi K, Ikebe K. Effectiveness and fabrication of mouthguards. Dent Traumatol. 2009;25(6):556-564. doi: 10.1111/j.1600-9657.2009.00822.x
  15. Coto NP, Brito e Dias R, Costa RA, Antoniazzi TF, Carvalho EPC. Mechanical behaviour of ethylene vinyl acetate copolymer (EVA) used for manufacture mouthguards and interocclusal splints. Braz Dent J. 2007;18(4):324-328. doi: 10.1590/S0103-64402007000400010
  16. Almeida MH, Ceschim GV, Iorio NLPP, et al. Influence of thickness, colour, and polishing process of ethylene‐vinyl‐acetate sheets on surface roughness and microorganism adhesion. Dent Traumatol. 2018;34(1):51-57. doi: 10.1111/edt.12374
  17. Li C, Wada T, Tsuchida Y, et al. Optimizing additively manufactured mouthguards: An evaluation of multi-layer materials for improved shock absorption and durability compared to conventionally fabricated samples. Int J Bioprint. 2024;10:2469. doi: 10.36922/ijb.2469
  18. Bandyopadhyay A, Heer B. Additive manufacturing of multi-material structures. Mater Sci Eng R Rep. 2018;129:1-16. doi: 10.1016/j.mser.2018.04.001
  19. Unkovskiy A, Huettig F, Kraemer-Fernandez P, Spintzyk S. Multi-material 3D printing of a customized sports mouth guard: Proof-of-concept clinical case. Int J Environ Res Public Health. 2021;18:12762. doi: 10.3390/ijerph182312762
  20. Ribeiro YJS, Delgado RZR, Paula-Silva FWG, et al. Sports mouthguards: Contamination, roughness, and chlorhexidine for disinfection - a randomized clinical trial. Braz Dent J. 2021;32(6):66-73. doi: 10.1590/0103-6440202104533
  21. Hayran Y, Sarikaya I, Aydin A, Tekin YH. Determination of the effective anticandidal concentration of denture cleanser tablets on some denture base resins. J Appl Oral Sci. 2018;26:e20170077. doi: 10.1590/1678-7757-2017-0077
  22. Bae CH, Lim YK, Kook JK, Son MK, Heo YR. Evaluation of antibacterial activity against Candida albicans according to the dosage of various denture cleansers. J Adv Prosthodont. 2021;13(2):100-106. doi: 10.4047/jap.2021.13.2.100
  23. Hayashi H, Naiki Y, Murakami M, et al. Effects of cleaning sports mouthguards with ethylene-vinyl acetate on oral bacteria. PeerJ. 2022;10:e14480. doi: 10.7717/peerj.14480
  24. International Organization for Standardization. ISO 10271:2020 Dental Metallic Materials Corrosion Test Methods. Available from: https://www.iso.org/standard/73445.html [Last accessed on 2024 Dec 15].
  25. Kechagias JD, Zaoutsos SP, Fountas NA, Vaxevanidis NM. Experimental investigation and neural network development for modeling tensile properties of polymethyl methacrylate (PMMA) filament material. Int J Adv Manuf Tech. 2024;134:4387-4398. doi: 10.1007/s00170-024-14402-0
  26. Kumar R, Singh R, Farina I. On the 3D printing of recycled ABS, PLA and HIPS thermoplastics for structural applications. PSU Res Rev. 2018;2(2):115-137. doi: 10.1108/PRR-07-2018-0018
  27. Sastri VR. Commodity thermoplastics: Polyvinyl chloride, polyolefins, cycloolefins and polystyrene. In: Sastri VR, editors. Plastics in Medical Devices. 3rd ed. Elsevier; 2022. p. 113-166. doi: 10.1016/B978-0-323-85126-8.00002-3
  28. Gong XH, Tang CY, Hu HC, Zhou XP, Xie XL. Improved mechanical properties of HIPS/hydroxyapatite composites by surface modification of hydroxyapatite via in-situ polymerization of styrene. J Mater Sci Mater Med. 2004;15:1141-1146. doi: 10.1023/B:JMSM.0000046397.09060.15
  29. Al Nakib R, Toncheva A, Fontaine V, Vanheuverzwijn J, Raquez J, Meyer F. Thermoplastic polyurethanes for biomedical application: A synthetic, mechanical, antibacterial, and cytotoxic study. J Appl Polym Sci. 2022;139:e51666. doi: 10.1002/app.51666
  30. Prajapati S, Sharma JK, Kumar S, Pandey S, Pandey MK. A Review on Comparison of Physical and Mechanical Properties of PLA, ABS, TPU, and PETG Manufactured Engineering Components by using Fused Deposition Modelling. Netherlands: Elsevier; 2024. doi: 10.1016/j.matpr.2024.05.018
  31. Ali U, Abd Karim KJB, Buang NA. A review of the properties and applications of poly (Methyl Methacrylate) (PMMA). Polym Rev. 2015;55:678-705. doi: 10.1080/15583724.2015.1031377
  32. Amirabad LM, Tahriri M, Zarrintaj P, Ghaffari R, Tayebi L. Preparation and characterization of TiO2‐coated polymerization of methyl methacrylate (PMMA) for biomedical applications: In vitro study. Asia Pac J Chem Eng. 2022;17:e2761. doi: 10.1002/apj.2761
  33. Lopes LR, Silva AF, Carneiro OS. Multi-material 3D printing: The relevance of materials affinity on the boundary interface performance. Addit Manuf. 2018;23:45-52. doi: 10.1016/j.addma.2018.06.027
  34. ASTM. ASTM D790-03: Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulation Materials. Available from: https://cdn.standards.iteh.ai/samples/27059/ f08b79ad9a784319871f02f70e5b399a/astm-d790-03.pdf [Last accessed on 2025 Jan 13].
  35. Boisse P, Colmars J, Hamila N, Naouar N, Steer Q. Bending and wrinkling of composite fiber preforms and prepregs. A review and new developments in the draping simulations. Compos Part B Eng. 2018;141:234-249. doi: 10.1016/j.compositesb.2017.12.061
  36. Kumar A, Venkatappa Rao T, Ray Chowdhury S, Ramana Reddy SVS. Compatibility confirmation and refinement of thermal and mechanical properties of poly (lactic acid)/poly (ethylene-co-glycidyl methacrylate) blend reinforced by hexagonal boron nitride. React Funct Polym. 2017;117:1-9. doi: 10.1016/j.reactfunctpolym.2017.05.005
  37. International Organization for Standardization. ISO 179- 1:2023 Determination of Charpy impact properties. Part 1: Non instrumented impact test. Available from: https://www. iso.org/standard/84393.html [Last accessed on 2025 Jan 15].
  38. International Organization for Standardization. ISO 6507- 1:2023 Metallic materials-Vickers Hardness Test. Available from: https://www.iso.org/standard/83898.html [Last accessed on 2025 Jan 13].
  39. Deng Y, Peng C, Dai M, et al. Recent development of super-wettable materials and their applications in oil-water separation. J Clean Prod. 2020;266:121624. doi: 10.1016/j.jclepro.2020.121624
  40. Nituica M, Oprea O, Stelescu MD, et al. Polymeric bio composite based on thermoplastic polyurethane (TPU) and protein and elastomeric waste mixture. Materials. 2023;16:5279. doi: 10.3390/ma16155279
  41. Arash S, Akbari B, Ghaleb S, Kaffashi B, Marouf BT. Preparation of PLA-TPU-nanoclay composites and characterization of their morphological, mechanical, and shape memory properties. J Mech Behav Biomed Mater. 2023;139:105642. doi: 10.1016/j.jmbbm.2022.105642
  42. Calvo-Correas T, Benitez M, Larraza I, Ugarte L, Peña- Rodríguez C, Eceiza A. Advanced and traditional processing of thermoplastic polyurethane waste. Polym Degrad Stab. 2022;198:109880. doi: 10.1016/j.polymdegradstab.2022.109880
  43. Giakoumakis NS, Vos C, Janssens K, et al. Total revalorization of high impact polystyrene (HIPS): Enhancing styrene recovery and upcycling of the rubber phase. Green Chem. 2024;26(1):340-352. doi: 10.1039/D3GC02407E
  44. Thanh Truc NT, Lee BK. Combining ZnO/microwave treatment for changing wettability of WEEE styrene plastics (ABS and HIPS) and their selective separation by froth flotation. Appl Surf Sci. 2017;420:746-752. doi: 10.1016/j.apsusc.2017.04.075
  45. Sekhar VC, Nampoothiri KM, Mohan AJ, Nair NR, Bhaskar T, Pandey A. Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide. J Hazard Mater. 2016;318:347-354. doi: 10.1016/j.jhazmat.2016.07.008
  46. Elashmawi IS, Hakeem NA. Effect of PMMA addition on characterization and morphology of PVDF. Polym Eng Sci. 2008;48(5):895-901. doi: 10.1002/pen.21032
  47. Huszank R, Szilágyi E, Szoboszlai Z, Szikszai Z. Investigation of chemical changes in PMMA induced by 1.6 MeV He+ irradiation by ion beam analytical methods (RBS-ERDA) and infrared spectroscopy (ATR-FTIR). Nucl Instrum Methods Phys Res B Beam Interact Mater Atoms. 2019;450:364-368. doi: 10.1016/j.nimb.2018.05.016
  48. Aziza SB, Abdullaha OG, Brzac MA, Azawyd AK, Tahir DA. Effect of carbon nano-dots (CNDs) on structural and optical properties of PMMA polymer composite. Results Phys. 2019;15:102776. doi: 10.1016/j.rinp.2019.102776
  49. Ramesh S, Leen KH, Kumutha K, Arof AK. FTIR studies of PVC/PMMA blend based polymer electrolytes. Spectrochim Acta A Mol Biomol Spectrosc. 2007;66(4-5):1237-1242. doi: 10.1016/j.saa.2006.06.012
  50. O’Toole GA. Classic spotlight: Plate counting you can count on. J Bacteriol. 2016;198:3127. doi: 10.1128/JB.00711-16
  51. Cummins NK, Spears IR. The effect of mouthguard design on stresses in the tooth-bone complex. Med Sci Sports Exerc. 2002;34(6):942-947. doi: 10.1097/00005768-200206000-00006
  52. Amza CG, Zapciu A, Baciu F, Radu C. Effect of UV-C radiation on 3D printed ABS-PC polymers. Polymers (Basel). 2023;15:1966. doi: 10.3390/polym15081966
  53. Brischetto S, Ferro CG, Torre R, Maggiore P. 3D FDM production and mechanical behavior of polymeric sandwich specimens embedding classical and honeycomb cores. Curved Layer Struct. 2018;5(1):80-94. doi: 10.1515/cls-2018-0007
  54. Głowacki M, Mazurkiewicz A, Słomion M, Skórczewska K. Resistance of 3D-printed components, test specimens and products to work under environmental conditions-review. Materials. 2022;15:6162. doi: 10.3390/ma15176162
  55. Piedade AP, Nunes J, Vieira MT. Thin films with chemically graded functionality based on fluorine polymers and stainless steel. Acta Biomat. 2008;4(4):1073-1080. doi: 10.1016/j.actbio.2008.02.023
  56. Yousif E, Haddad R. Photodegradation and photostabilization of polymers, especially polystyrene: Review. SpringerPlus. 2013;2:398. doi: 10.1186/2193-1801-2-398

 

 



Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing