AccScience Publishing / MSAM / Volume 3 / Issue 2 / DOI: 10.36922/msam.3380
ORIGINAL RESEARCH ARTICLE

Compressive properties and fatigue performance of NiTi lattice structures optimized by TPMS

Yunlong Ren1 Yang Li1,2 Lei Yang1,2,3* Yun Chen1,2* Chunze Yan3 Bing Liu4 Xuan Cai4 Mingkang Zhang5 Yusheng Shi3
Show Less
1 Department of Mechanical Design and Manufacturing, School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan, Hubei, China
2 Hubei Longzhong Laboratory, Xiangyang, Hubei, China
3 State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
4 Wuhan Second Ship Design and Research Institute, Wuhan, Hubei, China
5 Additive Manufacturing Laboratory and Mechanics Experiment Center, School of Mechanical and Energy Engineering, Guangdong Ocean University, Yangjiang, Guangdong, China
Submitted: 22 May 2024 | Accepted: 1 June 2024 | Published: 20 June 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Nickel titanium (NiTi) lattice structures prepared by laser powder bed fusion (LPBF) have great application potential, due to their unique shape memory effect, superelasticity, and controlled geometry characteristics. In this study, the NiTi I-graph-wrapped package (I-WP) and NiTi body-centered cubic (BCC) lattice structure samples were prepared by the LPBF process. The uniaxial compression properties and cyclic compression properties of NiTi lattice structure samples prepared by LPBF process were studied. The results showed that the surfaces of NiTi lattice structures were very rough and adhered with many powder particles. The sample optimization design through the minimal surface could effectively improve the mechanical properties and deformation resistance and change the surface morphology of fracture surfaces in high cycle fatigue. The I-WP lattice structure had a higher Young’s modulus and yield strength. The fatigue strength improved from 1.88 MPa (BCC structure lattice) to 2.08 MPa (I-WP structure lattice). The simulation was performed to investigate the mechanism underlying the improvement in fatigue strength, revealing that optimization of surface stress distribution could be the plausible reason. In general, this study provides valuable guidance for the preparation and design of NiTi lattice structure by the LPBF process.

Keywords
Nickel titanium alloy
Additive manufacturing
Triply periodic minimal surface
Laser powder bed fusion
Lattice structure
Funding
This study was supported by the National Natural Science Foundation of China (No. 52105396, 52235008, and U2341270) and the Open Fund of Hubei Longzhong Laboratory (2022ZZ-28).
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Editorial Disclosure

Chunze Yan serves as the Editorial Board Member of the journal, but did not in any way involve in the editorial and peer-review process conducted for this paper, directly or indirectly.

References
  1. Bagheri A, Mahtabi MJ, Shamsaei N. Fatigue behavior and cyclic deformation of additive manufactured NiTi. J Mater Process Technol. 2018;252:440-453. doi: 10.1016/j.jmatprotec.2017.10.006
  2. Gu H, Bumke L, Chluba C, Quandt E, James RD. Phase engineering and supercompatibility of shape memory alloys. Mater Today. 2018;21(3):265-277. doi: 10.1016/j.mattod.2017.10.002
  3. Molod MA, Spyridis P, Barthold FJ. Applications of shape memory alloys in structural engineering with a focus on concrete construction - A comprehensive review. Constr Build Mater. 2022;337:127565. doi: 10.1016/j.conbuildmat.2022.127565
  4. Fang C, Liang D, Zheng Y, Yam MCH, Sun R. Rocking bridge piers equipped with shape memory alloy (SMA) washer springs. Eng Struct. 2020;214:110651. doi: 10.1016/j.engstruct.2020.110651
  5. Xie W, Quinn J, Zhang J, Carson L, Chan CW. Control of laser-gas-material interactions to enhance the surface properties of NiTi for orthopaedic applications. Surf Coat Technol. 2021;421:127403. doi: 10.1016/j.surfcoat.2021.127403
  6. Yang X, Yang Q, Shi Y, et al. Effect of volume fraction and unit cell size on manufacturability and compressive behaviors of Ni-Ti triply periodic minimal surface lattices. Addit Manuf. 2022;54:102737. doi: 10.1016/j.addma.2022.102737
  7. Zhang C, Jin J, He M, Yang L. Compressive mechanics and hyperelasticity of Ni-Ti lattice structures fabricated by
  8. Sefene EM. State-of-the-art of selective laser melting process: A comprehensive review. J Manuf Syst. 2022;63:250-274. doi: 10.1016/j.jmsy.2022.04.002
  9. Liu C, Roux LL, Ji Z, Kerfriden P, Lacan F, Bigot S. Machine learning-enabled feedback loops for metal powder bed fusion additive manufacturing. Procedia Comput Sci. 2020;176:2586-2595. doi: 10.1016/j.procs.2020.09.314
  10. Han Q, Gu Y, Huang J, et al. Selective laser melting of hastelloy X nanocomposite: Effects of TiC reinforcement on crack elimination and strength improvement. Compos B Eng. 2020;202:108442. doi: 10.1016/j.compositesb.2020.108442
  11. Zhou SY, Su Y, Wang H, Enz J, Ebel T, Yan M. Selective laser melting additive manufacturing of 7xxx series Al-Zn- Mg-Cu alloy: Cracking elimination by co-incorporation of Si and TiB2. Addit Manuf. 2020;36:101458. doi: 10.1016/j.addma.2020.101458
  12. Hussain S, Alagha AN, Haidemenopoulos GN, Zaki W. Microstructural and surface analysis of NiTi TPMS lattice sections fabricated by laser powder bed fusion. J Manuf Process. 2023;102:375-386. doi: 10.1016/j.jmapro.2023.07.055
  13. Finazzi V, Berti F, Petrini L, Previtali B, Demir AG. Additive manufacturing and post-processing of superelastic NiTi micro struts as building blocks for cardiovascular stents. Addit Manuf. 2023;70:103561. doi: 10.1016/j.addma.2023.103561
  14. Wang J, Huang B, Gu X, Zhu J, Zhang W. Actuation performance of machined helical springs from NiTi shape memory alloy. Int J Mech Sci. 2022;236:107744. doi: 10.1016/j.ijmecsci.2022.107744
  15. Luo J, Xu K, Li C, Li M, Lin Y. The evolution of dynamic recrystallization and recrystallization texture during isothermal compression of NiTi shape memory alloy. Mater Sci Eng A. 2021;820:141424. doi: 10.1016/j.msea.2021.141424
  16. Kan Q, Zhang Y, Xu Y, Kang G, Yu C. Tension-compression asymmetric functional degeneration of super-elastic NiTi shape memory alloy: Experimental observation and multiscale constitutive model. Int J Solids Struct. 2023;280:112384. doi: 10.1016/j.ijsolstr.2023.112384
  17. Safdel A, Zaker N, Botton GA, Elbestawi MA. The role of texture and restoration mechanisms in defining the tension-compression asymmetry behavior of aged NiTi alloys fabricated by laser powder bed fusion. Mater Sci Eng A. 2023;864:144592. doi: 10.1016/j.msea.2023.144592
  18. Wu Y, Ertekin E, Sehitoglu H. Elastocaloric cooling capacity of shape memory alloys - Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation. Acta Mater. 2017;135:158-176. doi: 10.1016/j.actamat.2017.06.012
  19. Zhang K, Kang G, Sun Q. High fatigue life and cooling efficiency of NiTi shape memory alloy under cyclic compression. Scr Mater. 2019;159:62-67. doi: 10.1016/j.scriptamat.2018.09.012
  20. Zhao T, Kang G. Experimental study and life prediction on fatigue failure of NiTi shape memory alloy under multi-axial one-way shape memory cyclic loadings. Int J Fatigue. 2022;155:106609. doi: 10.1016/j.ijfatigue.2021.106609
  21. Jin J, Wu S, Yang L, et al. Ni-Ti multicell interlacing Gyroid lattice structures with ultra-high hyperelastic response fabricated by laser powder bed fusion. Int J Mach Tools Manuf. 2024;195:104099. doi: 10.1016/j.ijmachtools.2023.104099
  22. Song W, Mu K, Feng G, et al. Mechanical properties of 3D printed interpenetrating phase composites with TPMS architectures. Thin Walled Struct. 2023;193:111210. doi: 10.1016/j.tws.2023.111210
  23. Gado MG, Ookawara S. 3D-printed Triply Periodic Minimal Surface (TPMS) structures: Towards potential application of adsorption-based atmospheric water harvesting. Energy Convers Manag. 2023;297:117729. doi: 10.1016/j.enconman.2023.117729
  24. Yang L, Li Y, Chen Y, Yan C, Liu B, Shi Y. Topologically optimized lattice structures with superior fatigue performance. Int J Fatigue. 2022;165:107188. doi: 10.1016/j.ijfatigue.2022.107188
  25. Zhang C, Qiao H, Yang L, et al. Vibration characteristics of additive manufactured IWP-type TPMS lattice structures. Compos Struct. 2024;327:117642. doi: 10.1016/j.compstruct.2023.117642
  26. Fu H, Kaewunruen S. Experimental and DEM investigation of axially-loaded behaviours of IWP-based structures. Int J Mech Sci. 2022;235:107738. doi: 10.1016/j.ijmecsci.2022.107738
  27. Ge J, Yuan B, Chen H, et al. Anisotropy in microstructural features and tensile performance of laser powder bed fusion NiTi alloys. J Mater Res Technol. 2023;24:8656-8668. doi: 10.1016/j.jmrt.2023.05.046
  28. Qi Y, Sha P, Yang K, et al. Construction and parameter optimization of LPBF-NiTi alloy bionic superhydrophobic surface based on laser processing. J Mater Res Technol. 2023;24:9462-9475. doi: 10.1016/j.jmrt.2023.05.162
  29. Yang L, Yan C, Fan H, et al. Investigation on the orientation dependence of elastic response in Gyroid cellular structures. J Mech Behav Biomed Mater. 2019;90:73-85. doi: 10.1016/j.jmbbm.2018.09.042
  30. International Organization for Standardization. ISO 13314:2011, Mechanical Testing of Metals--Ductility Testing- -Compression Test for Porous and Cellular Metals. Geneva: International Organization for Standardization; 2011. p. 1-7.
  31. Chen W, Yang Q, Huang S, Kruzic JJ, Li X. Compression behavior of graded NiTi gyroid-structures fabricated by laser powder bed fusion additive manufacturing under monotonic and cyclic loading. JOM. 2021;73(12):4154-4165. doi: 10.1007/s11837-021-04938-x
  32. Yang L, Wu S, Yan C, et al. Fatigue properties of Ti-6Al-4V Gyroid graded lattice structures fabricated by laser powder bed fusion with lateral loading. Addit Manuf. 2021;46:102214. doi: 10.1016/j.addma.2021.102214
  33. Jiang H, Wang X, Xi R, et al. Size effect on the microstructure, phase transformation behavior, and mechanical properties of NiTi shape memory alloys fabricated by laser powder bed fusion. J Mater Sci Technol. 2023;157:200-212. doi: 10.1016/j.jmst.2023.02.026
  34. Zheng N, Zhai X, Chen F. Topology optimization of Self-supporting porous structures based on triply periodic minimal surfaces. Comput Aided Des. 2023;161:103542. doi: 10.1016/j.cad.2023.103542
  35. Hu J, Wang S, Wang Y, Li F, Luo Z. A lightweight methodology of 3D printed objects utilizing multi-scale porous structures. Vis Comput. 2019;35:949-959. doi: 10.1007/s00371-019-01672-z
  36. Chen W, Gu D, Yang J, Yang Q, Chen J, Shen X. Compressive mechanical properties and shape memory effect of NiTi gradient lattice structures fabricated by laser powder bed fusion. Int J Extrem Manuf. 2022;4(4):045002. doi: 10.1088/2631-7990/ac8ef3
  37. Sun L, Chen K, Geng P, Zhou Y, Wen S, Shi Y. Mechanical and shape memory properties of NiTi triply periodic minimal surface structures fabricated by laser powder bed fusion. J Manuf Process. 2023;101:1091-1100. doi: 10.1016/j.jmapro.2023.06.034
  38. Yang L, Mertens R, Ferrucci M, Yan C, Shi Y, Yang S. Continuous graded Gyroid cellular structures fabricated by selective laser melting: Design, manufacturing and mechanical properties. Mater Des. 2019;162:394-404. doi: 10.1016/j.matdes.2018.12.007
  39. Loginov YN, Koptyug A, Popov VV Jr., et al. Compression deformation and fracture behavior of additively manufactured Ti-6Al-4V cellular structures. Int J Lightweight Mater Manuf. 2022;5(1):126-135. doi: 10.1016/j.ijlmm.2021.11.003
  40. Al-Saedi DSJ, Masood SH, Faizan-Ur-Rab M, Alomarah A, Ponnusamy P. Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM. Mater Des. 2018;144:32-44. doi: 10.1016/j.matdes.2018.01.059
  41. Bian Y, Li P, Yang F, Wang P, Li W, Fan H. Deformation mode and energy absorption of polycrystal-inspired square-cell lattice structures. Appl Math Mech. 2020;41(10):1561-1582. doi: 10.1007/s10483-020-2648-8
  42. Li QM, Magkiriadis I, Harrigan JJ. Compressive strain at the onset of densification of cellular solids. J Cell Plast. 2006;42(5):371-392. doi: 10.1177/0021955x06063519
  43. Prevéy PS, Cammett JT. The influence of surface enhancement by low plasticity burnishing on the corrosion fatigue performance of AA7075-T6. Int J Fatigue. 2004;26(9):975-982. doi: 10.1016/j.ijfatigue.2004.01.010
  44. Nemat-Nasser S, Guo WG. Superelastic and cyclic response of NiTi SMA at various strain rates and temperatures. Mech Mater. 2006;38(5):463-474. doi: 10.1016/j.mechmat.2005.07.004
  45. Gall K, Maier HJ. Cyclic deformation mechanisms in precipitated NiTi shape memory alloys. Acta Mater. 2002;50(18):4643-4657. doi: 10.1016/S1359-6454(02)00315-4
  46. Sun ZP, Guo YB, Shim VPW. Deformation and energy absorption characteristics of additively-manufactured polymeric lattice structures - Effects of cell topology and material anisotropy. Thin-Walled Struct. 2021;169:108420. doi: 10.1016/j.tws.2021.108420
  47. Otsuka K, Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci. 2005;50(5):511-678. doi: 10.1016/j.pmatsci.2004.10.001
  48. Yang L, Yan C, Cao W, et al. Compression-compression fatigue behaviour of gyroid-type triply periodic minimal surface porous structures fabricated by selective laser melting. Acta Mater. 2019;181:49-66. doi: 10.1016/j.actamat.2019.09.042
  49. Zhao S, Li SJ, Wang SG, et al. Compressive and fatigue behavior of functionally graded Ti-6Al-4V meshes fabricated by electron beam melting. Acta Mater. 2018;150:1-15. doi: 10.1016/j.actamat.2018.02.060
  50. International Organization for Standardization. Metallic Materials--Fatigue Testing--Axial Force-controlled Method. Geneva: International Organization for Standardization; 2006.
  51. Li SJ, Murr LE, Cheng XY, et al. Compression fatigue behavior of Ti-6Al-4V mesh arrays fabricated by electron beam melting. Acta Mater. 2012;60(3):793-802. doi: 10.1016/j.actamat.2011.10.051
  52. Speirs M, Van Hooreweder B, Van Humbeeck J, Kruth JP. Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM, a unit cell design comparison. J Mech Behav Biomed Mater. 2017;70:53-59. doi: 10.1016/j.jmbbm.2017.01.016
  53. Zhu ML, Jin L, Xuan FZ. Fatigue life and mechanistic modeling of interior micro-defect induced cracking in high cycle and very high cycle regimes. Acta Mater. 2018;157:259-275. doi: 10.1016/j.actamat.2018.07.036
  54. Swain MV, Lawn BR, Burns SJ. Cleavage step deformation in brittle solids. J Mater Sci. 1974;9(2):175-183. doi: 10.1007/BF00550939

 

Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing