AccScience Publishing / MSAM / Volume 3 / Issue 2 / DOI: 10.36922/msam.3430
ORIGINAL RESEARCH ARTICLE

Accelerating hybrid lattice structures design with machine learning

Chenxi Peng1,2 Phuong Tran3* Erich Rutz1,2,4,5,6,7*
Show Less
1 Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia
2 Murdoch Children’s Research Institute, Parkville, Victoria, Australia
3 RMIT Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria, Australia
4 Bob Dickens Chair Paediatric Orthopaedic Surgery, The University of Melbourne, Parkville, Victoria, Australia
5 Department of Orthopaedics, The Royal Children’s Hospital Melbourne, Parkville, Victoria, Australia
6 The Hugh Williamson Gait Analysis Laboratory, The Royal Children’s Hospital Melbourne, Parkville, Victoria, Australia
7 Medical Faculty, The University of Basel, Basel, Switzerland
Submitted: 16 April 2024 | Accepted: 3 June 2024 | Published: 25 June 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Lattice structures inspired by triply periodic minimal surfaces (TPMS) have attracted increasing attention due to their lightweight properties and high mechanical performance. Recent research showed that hybrid structures based on the topology of two or more types of TPMS can present interesting multifunctional properties. However, the complexity of TPMS-based lattice designs presents challenges in both design and evaluation. To address these challenges, this study was designed to explore the integration of the machine learning method to predict the mechanical properties of hybrid lattice structures inspired by TPMS based on their patterns. A back propagation neural network (BPNN) was designed and trained on a dataset generated through finite element (FE) simulations and homogenization methods. The BPNN demonstrated robustness in predicting elastic modulus and Poisson’s ratio of TPMS hybrid lattice structures, offering rapid and efficient predictions. Validation against FE simulations confirmed the accuracy and reliability of the BPNN predictions, proving its potential as a valuable tool for accelerating the design and evaluation of complex hybrid lattice structures.

Keywords
Lattice structures
Triply periodic minimal surfaces
Elastic modulus
Poisson’s ratio
Machine learning
Funding
Not applicable.
Conflict of interest
The authors declare that they have no competing interests.
Editorial Disclosure

Phuong Tran serves as the Editorial Board Member of the journal, but did not in any way involve in the editorial and peer-review process conducted for this paper, directly or indirectly.

References
  1. Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HN. Metal Foams: A Design Guide. London: Butterworth-Heinemann; 2000.
  2. Peng C, Tran P, Nguyen-Xuan H, Ferreira AJ. Mechanical performance and fatigue life prediction of lattice structures: Parametric computational approach. Compos Struct. 2020;235:111821. doi: 10.1016/j.compstruct.2019.111821
  3. Wong M, Owen I, Sutcliffe CJ, Puri A. Convective heat transfer and pressure losses across novel heat sinks fabricated by Selective Laser Melting. Int J Heat Mass Tran. 2009;52(1- 2):281-288. doi: 10.1016/j.ijheatmasstransfer.2008.06.002
  4. Zhang XY, Fang G, Zhou J. Additively manufactured scaffolds for bone tissue engineering and the prediction of their mechanical behavior: A review. Materials (Basel). 2017;10(1)50. doi: 10.3390/ma10010050
  5. Tran P, Peng C. Triply periodic minimal surfaces sandwich structures subjected to shock impact. J Sandwich Struct Mater. 2020;23(6):2146-2175. doi: 10.1177/1099636220905551
  6. Peng C, Tran P. Bioinspired functionally graded gyroid sandwich panel subjected to impulsive loadings. Compos Part B Eng. 2020;188:107773. doi: 10.1016/j.compositesb.2020.107773
  7. Nguyen‐Van V, Peng C, Hazell PJ, Lee J, Nguyen‐Xuan H, Tran P. Performance of meta concrete panels subjected to explosive load: Numerical investigations. Struct Concr. 2023;25:1590-1619. doi: 10.1002/suco.202200749
  8. Catchpole-Smith S, Sélo RR, Davis AW, Ashcroft IA, Tuck CJ, Clare A. Thermal conductivity of TPMS lattice structures manufactured via laser powder bed fusion. Addit Manuf. 2019;30:100846. doi: 10.1016/j.addma.2019.100846
  9. Aremu AO, Brennan-Craddock JP, Panesar A, et al. A voxel-based method of constructing and skinning conformal and functionally graded lattice structures suitable for additive manufacturing. Addit Manuf. 2017;13:1-13. doi: 10.1016/j.addma.2016.10.006
  10. Peng C, Fox K, Qian M, Nguyen-Xuan H, Tran P. 3D printed sandwich beams with bioinspired cores: Mechanical performance and modelling. Thin Walled Struct. 2021;161:107471. doi: 10.1016/j.tws.2021.107471
  11. Wickramasinghe S, Peng C, Ladani R, Tran P. Analysing fracture properties of bio-inspired 3D printed suture structures. Thin Walled Struct. 2022;176:109317. doi: 10.1016/j.tws.2022.109317
  12. Wu C, Peng C, Le TC, Das R, Tran P. Tunable 3D printed composite metamaterials with negative stiffness. Smart Mater Struct. 2023;32(12):125010. doi: 10.1088/1361-665X/ad06df
  13. Ashby MF. The properties of foams and lattices. Philos Trans A Math Phys Eng Sci. 2006;364(1838):15-30. doi: 10.1098/rsta.2005.1678
  14. Rashed MG, Ashraf M, Mines RA, Hazell PJ. Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications. Mater Des. 2016;95:518-533. doi: 10.1016/j.matdes.2016.01.146
  15. Wang Y, Zhang L, Daynes S, Zhang H, Feih S, Wang MY. Design of graded lattice structure with optimized mesostructures for additive manufacturing. Mater Des. 2018;142:114-123. doi: 10.1016/j.matdes.2018.01.011
  16. Wang P, Yang F, Li P, Zheng B, Fan H. Design and additive manufacturing of a modified face-centered cubic lattice with enhanced energy absorption capability. Extreme Mech Lett. 2021;47:101358. doi: 10.1016/j.eml.2021.101358
  17. Daynes S, Feih S, Lu WF, Wei J. Optimisation of functionally graded lattice structures using isostatic lines. Mater Des. 2017;127:215-223. doi: 10.1016/j.matdes.2017.04.082
  18. Cao X, Zhang D, Liao B, et al. Numerical analysis of the mechanical behavior and energy absorption of a novel P-lattice. Thin Walled Struct. 2020;157:107147. doi: 10.1016/j.tws.2020.107147
  19. Lan T, Tran P. Multiscale topology optimization of lattice structure using 3D moving hollow morphable bars. JOM. 2021;73(12):4141-4153. doi: 10.1007/s11837-021-04917-2
  20. Al-Ketan O, Abu Al-Rub RK. Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices. Adv Eng Mater. 2019;21(10):1900524. doi: 10.1002/adem.201900524
  21. Han L, Che S. An overview of materials with triply periodic minimal surfaces and related geometry: From biological structures to self-assembled systems. Adv Mater. 2018;30(17):e1705708. doi: 10.1002/adma.201705708
  22. Lan T, Peng C, Fox K, Do T, Tran P. Triply periodic minimal surfaces lattice structures: Functional graded and hybrid designs for engineering applications. Mater Sci Addit Manuf. 2023;2(3):1753. doi: 10.36922/msam.1753
  23. Maskery I, Aboulkhair NT, Aremu AO, Tuck CJ, Ashcroft IA. Compressive failure modes and energy absorption in additively manufactured double gyroid lattices. Addit Manuf. 2017;16:24-29. doi: 10.1016/j.addma.2017.04.003
  24. Li X, Xiao L, Song W. Compressive behavior of selective laser melting printed Gyroid structures under dynamic loading. Addit Manuf. 2021;46:102054. doi: 10.1016/j.addma.2021.102054
  25. Yan C, Hao L, Hussein A, Young P, Huang J, Zhu W. Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering. Mater Sci Eng A. 2015;628:238-246. doi: 10.1016/j.msea.2015.01.063
  26. Cao X, Yang H, Ren X, et al. Mechanical performance and defect analysis of the imperfect micro smooth gyroid cylinder shell structure. Compos Struct. 2021;273:114320. doi: 10.1016/j.compstruct.2021.114320
  27. Peng C, Tran P, Mouritz AP. Compression and buckling analysis of 3D printed carbon fibre-reinforced polymer cellular composite structures. Compos Struct. 2022;300:116167. doi: 10.1016/j.compstruct.2022.116167
  28. Nguyen-Van V, Liu J, Peng C, Zhang G, Nguyen-Xuan H, Tran P. Dynamic responses of bioinspired plastic-reinforced cementitious beams. Cement Concr Compos. 2022;133:104682. doi: 10.1016/j.cemconcomp.2022.104682
  29. Nguyen-Van V, Tran P, Peng C, Pham L, Zhang G, Nguyen- Xuan H. Bioinspired cellular cementitious structures for prefabricated construction: Hybrid design and performance evaluations. Autom Construct. 2020;119:103324. doi: 10.1016/j.autcon.2020.103324
  30. Plocher J, Panesar A. Effect of density and unit cell size grading on the stiffness and energy absorption of short fibre-reinforced functionally graded lattice structures. Addit Manuf. 2020;33:101171. doi: 10.1016/j.addma.2020.101171
  31. Al-Ketan O, Lee DW, Abu Al-Rub RK. Mechanical properties of additively-manufactured sheet-based gyroidal stochastic cellular materials. Addit Manuf. 2021;48:102418. doi: 10.1016/j.addma.2021.102418
  32. Maskery I, Aremu AO, Parry L, Wildman RD, Tuck CJ, Ashcroft IA. Effective design and simulation of surface-based lattice structures featuring volume fraction and cell type grading. Mater Des. 2018;155:220-232. doi: 10.1016/j.matdes.2018.05.058
  33. Maskery I, Ashcroft IA. The deformation and elastic anisotropy of a new gyroid-based honeycomb made by laser sintering. Addit Manuf. 2020;36:101548. doi: 10.1016/j.addma.2020.101548
  34. Peng C, Marzocca P, Tran P. Triply periodic minimal surfaces based honeycomb structures with tuneable mechanical responses. Virtual Phys Prototyp. 2022;18(1):e2125879. doi: 10.1080/17452759.2022.2125879
  35. Cerniauskas G, Sadia H, Alam P. Machine intelligence in metamaterials design: A review. Oxford Open Mater Sci. 2024;4(1):itae001. doi: 10.1093/oxfmat/itae001
  36. Meng L, McWilliams B, Jarosinski W, et al. Machine learning in additive manufacturing: A review. JOM. 2020;72: 2363-2377. doi: 10.1007/s11837-020-04155-y
  37. Jiao P, Alavi AH. Artificial intelligence-enabled smart mechanical metamaterials: Advent and future trends. Int Mater Rev. 2021;66(6):365-393. doi: 10.1080/09506608.2020.1815394
  38. Bastek JH, Kochmann DM. Inverse design of nonlinear mechanical metamaterials via video denoising diffusion models. Nat Mach Intell. 2023;5(12):1466-1475. doi: 10.1038/s42256-023-00762-x
  39. Nadell CC, Huang B, Malof JM, Padilla WJ. Deep learning for accelerated all-dielectric metasurface design. Opt Express. 2019;27(20):27523-27535. doi: 10.1364/OE.27.027523
  40. Liu TW, Chan CT, Wu RT. Deep-learning-based acoustic metamaterial design for attenuating structure-borne noise in auditory frequency bands. Materials (Basel). 2023;16(5):1879. doi: 10.3390/ma16051879
  41. Li W, Chen P, Xiong B, et al. Deep learning modeling strategy for material science: From natural materials to metamaterials. J Phys Mater. 2022;5(1):014003. doi: 10.1088/2515-7639/ac5914
  42. Peng H, Liu A, Huang J, Cao L, Liu J, Lu L. PH-Net: Parallelepiped microstructure homogenization via 3D convolutional neural networks. Addit Manuf. 2022;60:103237. doi: 10.1016/j.addma.2022.103237
  43. Gu GX, Chen CT, Richmond DJ, Buehler MJ. Bioinspired hierarchical composite design using machine learning: Simulation, additive manufacturing, and experiment. Mater Horizons. 2018;5(5):939-945. doi: 10.1039/C8MH00653A
  44. Zheng X, Chen TT, Guo X, Samitsu S, Watanabe I. Controllable inverse design of auxetic metamaterials using deep learning. Mater Des. 2021;211:110178. doi: 10.1016/j.matdes.2021.110178
  45. Sui F, Guo R, Zhang Z, Gu GX, Lin L. Deep reinforcement learning for digital materials design. ACS Mater Lett. 2021;3(10):1433-1439. doi: 10.1021/acsmaterialslett.1c00390
  46. Wilt JK, Yang C, Gu GX. Accelerating auxetic metamaterial design with deep learning. Adv Eng Mater. 2020;22(5):1901266. doi: 10.1002/adem.201901266
  47. Do Carmo MP. Differential Geometry of Curves and Surfaces. 2nd ed. New York: Springer Cham; 2016.
  48. Schoen AH. NASA Technical Note D-5541; 1970.
  49. Matsen MW, Bates FS. Origins of complex self-assembly in block copolymers. Macromolecules. 1996;29(23):7641-7644. doi: 10.1021/ma960744q
  50. Pouya C, Overvelde JT, Kolle M, et al. Characterization of a mechanically tunable gyroid photonic crystal inspired by the butterfly parides sesostris. Adv Opt Mater. 2015;4(1): 99-105. doi: 10.1002/adom.201500436
  51. Michielsen K, Stavenga DG. Gyroid cuticular structures in butterfly wing scales: Biological photonic crystals. J R Soc Interface. 2008;5(18):85-94. doi: 10.1098/rsif.2007.1065
  52. Lai M, Kulak AN, Law D, Zhang Z, Meldrum FC, Riley DJ. Profiting from nature: Macroporous copper with superior mechanical properties. Chem Commun (Camb). 2007;34:3547-3549. doi: 10.1039/b707469g
  53. Brakke KA. The surface evolver. Exp Math. 1992;1(2): 141-165. doi: 10.1080/10586458.1992.10504253
  54. Dong G, Tang Y, Zhao YF. A 149 line homogenization code for three-dimensional cellular materials written in matlab. J Eng Mater Technol. 2019;141(1):11. doi: 10.1115/1.4040555
  55. Abadi M, Barham P, Chen J, et al. TensorFlow: A System for Large-Scale Machine Learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation. 2016. p. 265-283.
  56. Yan H, Yu H, Zhu S, Wang Z, Zhang Y, Guo L. Nonlinear properties prediction and inverse design of a porous auxetic metamaterial based on neural networks. Thin Walled Struct. 2024;197:111717. doi: 10.1016/j.tws.2024.111717

 

 

 

Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing