AccScience Publishing / MSAM / Volume 3 / Issue 2 / DOI: 10.36922/msam.3323
REVIEW

Recent progress on materials for functional additive manufacturing

Hayeol Kim1 Kyung-Hwan Kim1 Jiyun Jeong1 Yunsoo Lee1 Im Doo Jung1,2*
Show Less
1 Department of Mechanical Engineering, Faculty of Mechanical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
2 Artificial Intelligence Graduate School, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
Submitted: 29 March 2024 | Accepted: 16 May 2024 | Published: 27 June 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Material science in additive manufacturing (AM) has experienced remarkable advancements in the development of functional materials. This review systematically investigates the state-of-the-art research on AM of functional materials, providing a comprehensive overview of AM systems and methodologies employed for functional materials and applications. The review delves into various functional materials, including magnetic, metal powder, perovskite, piezoelectric, thermoelectric, and carbon-based materials, exploring their fabrication and applications in creating multifunctional components and devices. Furthermore, it examines the integration of these functional materials, enabling manufacturing on curved surfaces, the development of flexible components, and the enhancement of functional properties. By analyzing the latest developments in this rapidly evolving field, this review offers insights into current challenges, future directions, and potential innovations, promoting a deeper understanding of AM technology and stimulating further advancements toward the realization of advanced functional devices and systems.

Keywords
Additive manufacturing
Functional materials
Polymer matrices
Multifunctional components
Funding
This work was supported by the Technology Development Program (Grant No. S3248116) funded by the Ministry of SMEs and Startups (MSS, Korea), and the National Research Foundation of Korea (NRF) grant under the Korea government (MSIT) (no. RS-2023-00211636).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Madhavadas V, Srivastava D, Chadha U, et al. A review on metal additive manufacturing for intricately shaped aerospace components. CIRP J Manuf Sci Technol. 2022;39:18-36. doi: 10.1016/j.cirpj.2022.07.005
  2. Park JW, Shin YC, Kang HG, et al. In vivo analysis of post-joint-peserving surgery fracture of 3D-printed Ti-6Al-4V implant to treat bone cancer. Bio Des Manuf. 2021;4:879-888. doi: 10.1007/s42242-021-00147-2
  3. Kim T, Kim JG, Park S, et al. Virtual surface morphology generation of Ti-6Al-4V directed energy deposition via conditional generative adversarial network. Virtual Phys Prototyp. 2023;18(1):e2124921. doi: 10.1080/17452759.2022.2124921
  4. Tan LJ, Zhu W, Zhou K. Recent progress on polymer materials for additive manufacturing. Adv Funct Mater. 2020;30(43):2003062. doi: 10.1002/adfm.202003062
  5. Wu H, Fahy WP, Kim S, et al. Recent developments in polymers/polymer nanocomposites for additive manufacturing. Prog Mater Sci. 2020;111:100638. doi: 10.1016/j.pmatsci.2020.100638
  6. Li J, Lin X, Kang N, Lu J, Wang Q, Huang W. Microstructure, tensile and wear poperties of a novel graded al matrix composite pepared by direct energy deposition. J Alloy Compd. 2020;826:154077. doi: 10.1016/j.jallcom.2020.154077
  7. Seo E, Sung H, Jeon H, et al. Laser powder bed fusion for AI assisted digital metal components. Virtual Phys Prototyp. 2022;17(4):806-820. doi: 10.1080/17452759.2022.2068804
  8. Hotz H, Zimmermann M, Greco S, Kirsch B, Aurich JC. Additive manufacturing of functionally graded Ti-Al structures by laser-based direct energy deposition. J Manuf Process. 2021;68:1524-1534. doi: 10.1016/j.jmapro.2021.06.068
  9. Jung ID, Lee MS, Lee J, et al. Embedding sensors using selective laser melting for self-cognitive metal parts. Addit Manuf. 2020;33:101151. doi: 10.1016/j.addma.2020.101151
  10. Lee MS, Kim H, Koo YT, et al. Selective laser melting process for sensor embedding into SUS316L with heat dissipative inner cavity design. Met Mater Int. 2022;28:1-9. doi: 10.1007/s12540-021-01106-3
  11. Lee J, Choe J, Park J, Yu JH, Kim S, Sung H. Microstructural effects on the tensile and fracture behavior of selective laser melted H13 tool steel under varying conditions. Mater Charact. 2019;55:109817. doi: 10.1016/j.matchar.2019.109817
  12. Verma S, Yang CK, Lin CH, Jeng JY. Additive manufacturing of lattice structures for high strength mechanical interlocking of metal and resin during injection molding. Addit Manuf. 2022;49:102463. doi: 10.1016/j.addma.2021.102463
  13. Joyee EB, Pan Y. Additive manufacturing of multi-material soft robot for on-demand drug delivery applications. J Manuf Process. 2020;56:1178-1184. doi: 10.1016/j.jmapro.2020.03.059
  14. Rafiee M, Farahani RD, Therriault D. Multi‐material 3D and 4D printing: A survey. Adv Sci. 2020;7(12):1902307. doi: 10.1002/advs.201902307
  15. Champeau M, Heinze DA, Viana TN, de Souza ER, Chinellato AC, Titotto S. 4D printing of hydrogels: A review. Adv Funct Mater. 2020;30(31):1910606. doi: 10.1002/adfm.201910606
  16. Liu J, Shang Y, Shao Z, Liu X, Zhang C. Three-dimensional printing to translate simulation to architecting for three-dimensional high performance piezoelectric Energy harvester. Ind Eng Chem Res. 2021;61(1):433-440. doi: 10.1021/acs.iecr.1c04433
  17. Zhang D, Lim WYS, Duran SSF, Loh XJ, Suwardi A. Additive manufacturing of thermoelectrics: Emerging trends and outlook. ACS Energy Lett. 2022;7(2):720-735. doi: 10.1021/acsenergylett.1c02553
  18. Park JW, Seo E, Park H, et al. Hybrid solid mesh structure for electron beam melting customized implant to treat bone cancer. Int J Bioprinting. 2023;9(4):716. doi: 10.18063/ijb.716
  19. Culmone C, Smit G, Breedveld P. Additive manufacturing of medical instruments: A state-of-the-art review. Addit Manuf. 2019;27:461-473. doi: 10.1016/j.addma.2019.03.015
  20. Huang J, Chen Q, Jiang H, et al. A survey of design methods for material extrusion polymer 3D printing. Virtual Phys Prototyp. 2020;15(2):148-162. doi: 10.1080/17452759.2019.1708027
  21. Hossain SS, Gao B, Park S, Bae CJ. Incorporating nanoparticles in alumina ink for improved solid-loading and sinterability of extrusion-based 3D printing. ACS Appl Nano Mater. 2022;5(12):17828-17838. doi: 10.1021/acsanm.2c03792
  22. Kim JH, Park S, Ahn J, et al. Meniscus‐guided micro‐printing of prussian blue for smart electrochromic display. Adv Sci. 2023;10(3):2205588. doi: 10.1002/advs.202205588
  23. Lee S, Kim JH, Wajahat M, et al. Three-dimensional printing of silver microarchitectures using newtonian nanoparticle inks. ACS Appl Mater Interfaces. 2017;9(22):18918-18924. doi: 10.1021/acsami.7b02581
  24. Gu X, Shaw L, Gu K, Toney MF, Bao Z. The meniscus-guided deposition of semiconducting polymers. Nat Commun. 2018;9(1):534. doi: 10.1038/s41467-018-02833-9
  25. Pagac M, Hajnys J, Ma QP, et al. A review of vat photopolymerization technology: Materials, applications, challenges, and future trends of 3D printing. Polymers. 2021;13(4):598. doi: 10.3390/polym13040598
  26. Gross B, Lockwood SY, Spence DM. Recent advances in analytical chemistry by 3D printing. Anal Chem. 2017;89(1):57-70. doi: 10.1021/acs.analchem.6b04344
  27. Chiappone A, Fantino E, Roppolo I, et al. 3D printed PEG-based hybrid nanocomposites obtained by sol-gel technique. ACS Appl Mater Interfaces. 2016;8(8):5627-5633. doi: 10.1021/acsami.5b12578
  28. Wang W, Liu S, Liu L, Alfarhan S, Jin K, Chen X. High-speed and high-resolution 3D printing of self-healing and ion-conductive hydrogels via μCLIP. ACS Mater Lett. 2023;5(6):1727-1737. doi: 10.1021/acsmaterialslett.3c00439
  29. Jose RR, Rodriguez MJ, Dixon TA, Omenetto F, Kaplan DL. Evolution of bioinks and additive manufacturing technologies for 3D bioprinting. ACS Biomater Sci Eng. 2016;2(10):1662-1678. doi: 10.1021/acsbiomaterials.6b00088
  30. Ouyang H, Li X, Lu X, Xia H. Selective laser sintering 4D printing of dynamic cross-linked polyurethane containing diels-alder bonds. ACS Appl Polym Mater. 2022;4(5):4035-4046. doi: 10.1021/acsapm.2c00565
  31. Sireesha M, Lee J, Kiran ASK, Babu VJ, Kee BBT, Ramakrishna S. A review on additive manufacturing and its way into the oil and gas industry. RSC Adv. 2018;8(40):22460-22468. doi: 10.1039/C8RA03194K
  32. Hines L, Petersen K, Lum GZ, Sitti M. Soft actuators for small‐scale robotics. Adv Mater. 2017;29(13):1603483. doi: 10.1002/adma.201603483
  33. Ju Y, Hu R, Xie Y, et al. Reconfigurable magnetic soft robots with multimodal locomotion. Nano Energy. 2021;87:106169. doi: 10.1016/j.nanoen.2021.106169
  34. Kim Y, Zhao X. Magnetic soft materials and robots. Chem Rev. 2022;122(5):5317-5364. doi: 10.1021/acs.chemrev.1c00481
  35. Zhang C, Li X, Jiang L, et al. 3D pinting of functional magnetic materials: From design to applications. Adv Funct Mater. 2021;31(34):2102777. doi: 10.1002/adfm.20210277
  36. Zhao R, Kim Y, Chester SA, Sharma P, Zhao X. Mechanics of hard-magnetic soft materials. J Mech Phys Solids. 2019;124:244-263. doi: 10.1016/j.jmps.2018.10.008
  37. Lantean S, Barrera G, Pirri CF, et al. 3D printing of magnetoresponsive polymeric materials with tunable mechanical and magnetic properties by digital light processing. Adv Mater Technol. 2019;4(11):1900505. doi: 10.1002/admt.201900505
  38. Shasha C, Krishnan KM. Nonequilibrium dynamics of magnetic nanoparticles with applications in biomedicine. Adv Mater. 2021;33(23):1904131. doi: 10.1002/adma.201904131
  39. Xiao Y, Du J. Superparamagnetic nanoparticles for biomedical applications. J Mater Chem B. 2020;8(3):354-367. doi: 10.1039/C9TB01955C
  40. Ghazanfari MR, Kashefi M, Shams SF, Jaafari MR. Perspective of Fe3O4 nanoparticles role in biomedical applications. Biochem Res Int. 2016;2016:7840161. doi: 10.1155/2016/7840161
  41. Wajahat M, Kim JH, Kim JH, Jung ID, Pyo J, Seol SK. 4D printing of ultrastretchable magnetoactive soft material architectures for soft actuators. ACS Appl Mater Interfaces. 2023;15(51):59582-59591. doi: 10.1021/acsami.3c12173
  42. Wu S, Hamel CM, Ze Q, Yang F, Qi HJ, Zhao R. Evolutionary algorithm‐guided voxel‐encoding printing of functional hard‐magnetic soft active materials. Adv Intell Syst. 2020;2(8):2000060. doi: 10.1002/aisy.202000060
  43. Ren Z, Hu W, Dong X, Sitti M. Multi-functional soft-bodied jellyfish-like swimming. Nat Commun. 2019;10(1):2703. doi: 10.1038/s41467-019-10549-7
  44. Kim Y, Yuk H, Zhao R, Chester SA, Zhao X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature. 2018;558(7709):274-279. doi: 10.1038/s41586-018-0185-0
  45. Zhang Y, Wang Q, Yi S, et al. 4D printing of magnetoactive soft materials for on-demand magnetic aactuation transformation. ACS Appl Mater Interfaces. 2021;13(3):4174-4184. doi: 10.1021/acsami.0c19280
  46. Kim Y, Parada GA, Liu S, Zhao X. Ferromagnetic soft continuum robots. Sci Robot. 2019;4(33):eaax7329. doi: 10.1126/scirobotics.aax7329
  47. Zhang Y, Pan C, Liu P, et al. Coaxially printed magnetic mechanical electrical hybrid structures with actuation and sensing functionalities. Nat Commun. 2023;14(1):4428. doi: 10.1038/s41467-023-40109-z
  48. Hofmann M. 3D printing gets a boost and opportunities with polymer materials. ACS Macro Lett. 2014;3(4):295-397. doi: 10.1021/mz4006556
  49. Xu T, Zhang J, Salehizadeh M, Onaizah O, Diller E. Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions. Sci Robot. 2019;4(29):eaav4494. doi: 10.1126/scirobotics.aav4494
  50. Shao G, Ware HOT, Huang J, Hai R, Li L, Sun C. 3D printed magnetically-actuating micro-gripper operates in air and water. Addit Manuf. 2021;38:101834. doi: 10.1016/j.addma.2020.101834
  51. Siripongpreda T, Hoven VP, Narupai B, Rodthongkum N. Emerging 3D printing based on polymers and nanomaterial additives: Enhancement of properties and potential applications. Eur Polym J. 2021;184:111806. doi: 10.1016/j.eurpolymj.2022.111806
  52. Tan HW, An J, Chua CK, Tran T. Metallic nanoparticle inks for 3D printing of electronics. Adv Electron Mater. 2019;5(5):1800831. doi: 10.1002/aelm.201800831
  53. Huang Q, Zhu Y. Printing conductive nanomaterials for flexible and stretchable electronics: A review of materials, processes, and applications. Adv Mater Technol. 2019;4(5):1800546. doi: 10.1002/admt.201800546
  54. Tan HW, Choong YYC, Kuo CN, Low HY, Chua CK. 3D printed electronics: Processes, materials and future trends. Prog Mater Sci. 2022;127:100945. doi: 10.1016/j.pmatsci.2022.100945
  55. Yang C, Gu H, Lin W, et al. Silver nanowires: From scalable synthesis to recyclable foldable electronics. Adv Mater. 2011;23(27):3052-3056. doi: 10.1002/adma.201100530
  56. Fu D, Yang R, Wang Y, Wang R, Hua F. Silver nanowire synthesis and applications in composites: Progress and prospects. Adv Mater Technol. 2022;7(11):2200027. doi: 10.1002/admt.202200027
  57. Kim J, Kim WS. Stretching silver: Printed metallic nano inks in stretchable conductor applications. IEEE Nanotechnol Mag. 2014,8(4):6-13. doi: 10.1109/MNANO.2014.2355274
  58. Jo H, Park JS, Lim HY, Lee GY. Laser sintered silver nanoparticles on the PDMS for a wearable strain sensor capable of detecting finger motion. ACS Appl Nano Mater. 2023;6(24):22998-23011. doi: 10.1021/acsanm.3c04386
  59. Lee GY, Kim MS, Min SH, et al. Highly sensitive solvent-free silver nanoparticle strain sensors with tunable sensitivity created using an aerodynamically focused nanoparticle printer. ACS Appl Mater Interfaces. 2019;11(29):26421-26432. doi: 10.1021/acsami.9b00943
  60. Jain PK, El-Sayed IH, El-Sayed MA. Au nanoparticles target cancer. Nano Today. 2007;2(1):18-29. doi: 10.1016/S1748-0132(07)70016-6
  61. Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev. 2009;6:1759-1782. doi: 10.1039/B806051G
  62. Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem Soc Rev. 2012;41:2256-2282. doi: 10.1039/C1CS15166E
  63. Park BK, Kim D, Jeong S, Moon J, Kim JS. Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Films. 2007;515(19):7706-7711. doi: 10.1016/j.tsf.2006.11.142
  64. Jeong S, Woo K, Kim D, et al. Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink-jet printing. Adv Funct Mater. 2008;18(5):671-830. doi: 10.1002/adfm.200700902
  65. Kim YJ, Ryu CH, Park SH, Kim HS. The effect of poly (N-vinylpyrrolidone) molecular weight on flash light sintering of copper nanopaste. Thin Solid Films. 2014;570:114-122. doi: 10.1016/j.tsf.2014.09.035
  66. Dharmadasa R, Jha M, Amos DA, Druffel T. Room temperature synthesis of a copper ink for the intense pulsed light sintering of conductive copper films. ACS Appl Mater Interfaces. 2013;5(24):12773-13484. doi: 10.1021/am404226e
  67. Zhan P, Jia Y, Zhai W, et al. A fibrous flexible strain sensor with Ag nanoparticles and carbon nanotubes for synergetic high sensitivity and large response range. Compos A Appl Sci Manuf. 2023;167:107431. doi: 10.1016/j.compositesa.2023.107431
  68. Aslanidis E, Skotadis E, Tsoukalas D. Resistive crack-based nanoparticle strain sensors with extreme sensitivity and adjustable gauge factor, made on flexible substrates. Nanoscale. 2021;13(5):3263-3274. doi: 10.1039/d0nr07002e
  69. Soe HM, Manaf AA, Matsuda A, Jaafar M. Development and fabrication of highly flexible, stretchable, and sensitive strain sensor for long durability based on silver nanoparticles-polydimethylsiloxane composite. J Mater Sci Mater Electron. 2020;31:11897-11910. doi: 10.1007/s10854-020-03744-6
  70. Hammock ML, Chortos A, Tee BCK, Tok JBH, Bao Z. 25th Anniversary article: The evolution of electronic skin (E-Skin): A brief history, design considerations, and recent progress. Adv Mater. 2013;25(42):5997-6038. doi: 10.1002/adma.201302240
  71. Guo SZ, Qiu K, Meng F, Park SH, McAlpine MC. 3D printed stretchable tactile sensors. Adv Mater. 2017;29(27):1701218. doi: 10.1002/adma.201701218
  72. Valentine AD, Busbee TA, Boley JW, et al. Hybrid 3D printing of soft electronics. Adv Mater. 2017;29(40):1703817. doi: 10.1002/adma.201703817
  73. Zhu Z, Guo SZ, Hirdler T, et al. 3D printed functional and biological materials on moving freeform surfaces. Adv Mater. 2018;30(23):1707495. doi: 10.1002/adma.201707495
  74. Zhou LY, Gao Q, Zhan JF, Xie CQ, Fu JZ, He Y. Three-dimensional printed wearable sensors with liquid metals for detecting the pose of snakelike soft robots. ACS Appl Mater Interfaces. 2018;10(27):23208-23217. doi: 10.1021/acsami.8b06903
  75. Peng X, Kuang X, Roach DJ, et al. Integrating digital light processing with direct ink writing for hybrid 3D printing of functional structures and devices. Addit Manuf. 2021;40:101911. doi: 10.1016/j.addma.2021.101911
  76. Park NG. Perovskite solar cells: An emerging photovoltaic technology. Mater Today. 2015;18(2):65-72. doi: 10.1016/j.mattod.2014.07.007
  77. Zhang X, Turiansky ME, Shen JX, Van de Walle CG. Defect tolerance in halide perovskites: A first-principles perspective. J Appl Phys. 2022;131(9):090901. doi: 10.1063/5.0083686
  78. Motta C, El-Mellouhi F, Sanvito S. Charge carrier mobility in hybrid halide perovskites. Sci Rep. 2015;5(1):12746. doi: 10.1038/srep12746
  79. Wei Z, Chen H, Yan K, Yang S. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew Chem Int Ed Engl. 2014;53(48):13239-13243. doi: 10.1002/anie.201408638
  80. Mathies F, Abzieher T, Hochstuhl A, et al. Multipass inkjet printed planar methylammonium lead iodide perovskite solar cells. J Mater Chem A. 2016;4(48):19207-19213. doi: 10.1039/c6ta07972e
  81. Choi JW, Woo HC, Huang X, et al. Organic-inorganic hybrid perovskite quantum dots with high PLQY and enhanced carrier mobility through crystallinity control by solvent engineering and solid-state ligand exchange. Nanoscale. 2018;10(28):13356-13367. doi: 10.1039/c8nr00806j
  82. Liang H, Yuan F, Johnston A, et al. High color purity lead-free perovskite light-emitting diodes via sn stabilization. Adv Sci (Weinh). 2020;7(8):1903213. doi: 10.1002/advs.201903213
  83. Bak T, Kim K, Seo E, et al. Accelerated design of high-efficiency lead-free tin perovskite solar cells via machine learning. Int J Precis Eng Manuf Green Technol. 2023;10(1):109-121. doi: 10.1007/s40684-022-00417-z
  84. Ahmed T, Seth S, Samanta A. Boosting the photoluminescence of CsPbX3 (X=Cl, Br, I) perovskite nanocrystals covering a wide wavelength range by postsynthetic treatment with tetrafluoroborate salts. Chem Mat. 2018;30(11):3633-3637. doi: 10.1021/acs.chemmater.8b01235
  85. Li F, Liu SF, Liu W, et al. 3D printing of inorganic nanomaterials by photochemically bonding colloidal nanocrystals. Science. 2023;381(6665):1468-1474. doi: 10.1126/science.adg6681
  86. Liu J, Shabbir B, Wang C, et al. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots. Adv Mater. 2019;31(30):1901644. doi: 10.1002/adma.201901644
  87. Zheng J, Zhang M, Lau CFJ, et al. Spin-coating free fabrication for highly efficient perovskite solar cells. Sol Energy Mater Sol Cells. 2017;168:165-171. doi: 10.1016/j.solmat.2017.04.029
  88. Bishop JE, Smith JA, Lidzey DG. Development of spray-coated perovskite solar cells. ACS Appl Mater Interfaces. 2020;12(43):48237-48245. doi: 10.1021/acsami.0c14540
  89. Kim JH, Williams ST, Cho N, Chueh CC, Jen AKY. Enhanced environmental stability of planar heterojunction perovskite solar cells based on blade‐coating. Adv Energy Mater. 2014;5(4):1401229. doi: 10.1002/aenm.201401229
  90. Zhang L, Chen S, Wang X, et al. Ambient inkjet‐printed high‐efficiency perovskite solar cells: Manipulating the spreading and crystallization behaviors of picoliter perovskite droplets. Sol RRL. 2021;5(5):2100106. doi: 10.1002/solr.202100106
  91. Chen M, Zhou Z, Hu S, et al. 3D printing of arbitrary perovskite nanowire heterostructures. Adv Funct Mater. 2023;33(15):2212146. doi: 10.1002/adfm.202212146
  92. Zhu M, Duan Y, Liu N, et al. Electrohydrodynamically printed high‐resolution full‐color hybrid perovskites. Adv Funct Mater. 2019;29(35):1903294. doi: 10.1002/adfm.201903294
  93. Tang Y, Liu B, Yuan H, et al. In situ synthesis of MAPbX3 perovskite quantum dot-polycaprolactone composites for fluorescent 3D printing filament. J Alloy Compd. 2022;916:164961. doi: 10.1016/j.jallcom.2022.164961
  94. Jeon H, Wajahat M, Park S, et al. 3D Printing of luminescent perovskite quantum dot-polymer architectures. Adv Funct Mater. 2024;2024:2400594. doi: 10.1002/adfm.202400594
  95. Eggers H, Schackmar F, Abzieher T, et al. Inkjet‐printed micrometer‐thick perovskite solar cells with large columnar grains. Adv Energy Mater. 2019;10(6):1903184. doi: 10.1002/aenm.201903184
  96. Wang Q, Zhang G, Zhang H, Duan Y, Yin Z, Huang Y. High‐resolution, flexible, and full‐color perovskite image photodetector via electrohydrodynamic printing of ionic‐liquid‐based ink. Adv Funct Mater. 2021;31(28):2100857. doi: 10.1002/adfm.202100857
  97. Satake K, Sato Y, Narazaki K, et al. Fabrication of perovskite nanocrystal light-emitting diodes via inkjet printing with high-temperature annealing. ACS Appl Opti Mater. 2022;1(1):282-288. doi: 10.1021/acsaom.2c00053
  98. Liu H, Shi G, Khan R, et al. Large‐area flexible perovskite light‐emitting diodes enabled by inkjet printing. Adv Mater. 2024;36(8):2309921. doi: 10.1002/adma.202309921
  99. Liu Y, Li F, Qiu L, et al. Fluorescent Microarrays of in situ crystallized perovskite nanocomposites fabricated for patterned applications by using inkjet printing. ACS Nano. 2019;13(2):2042-2049. doi: 10.1021/acsnano.8b08582
  100. Yang Z, Zhou S, Zu J, Inman D. High-performance piezoelectric energy harvesters and their applications. Joule. 2018;2(4):642-697. doi: 10.1016/j.joule.2018.03.011
  101. Wu Y, Ma Y, Zheng H, Ramakrishna S. Piezoelectric materials for flexible and wearable electronics: A review. Mater Des. 2021;211:110164. doi: 10.1016/j.matdes.2021.110164
  102. Smith GL, Pulskamp JS, Sanchez LM, et al. PZT‐based piezoelectric MEMS technology. J Am Ceram Soc. 2012;95(6):1777-1792. doi: 10.1111/j.1551-2916.2012.05155.x
  103. Park KI, Xu S, Liu Y, et al. Piezoelectric BaTiO(3) thin film nanogenerator on plastic substrates. Nano Lett. 2010;10(12):4939-4943. doi: 10.1021/nl102959k
  104. Ueberschlag P. PVDF piezoelectric polymer. Sens Rev. 2001;21(2):118-126. doi: 10.1108/02602280110388315
  105. Bhavanasi V, Kumar V, Parida K, Wang J, Lee PS. Enhanced piezoelectric energy harvesting performance of flexible PVDF-TrFE bilayer films with graphene oxide. ACS Appl Mater Interfaces. 2016;8(1):521-529. doi: 10.1021/acsami.5b09502
  106. Zhilun G, Longtu L, Suhua G, Xiaowen Z. Low‐temperature sintering of lead‐based piezoelectric ceramics. J Am Ceram Soc. 1989;72(3):486-491. doi: 10.1111/j.1151-2916.1989.tb06160.x
  107. Wang H, Godara M, Chen Z, Xie H. A one-step residue-free wet etching process of ceramic PZT for piezoelectric transducers. Sens Actuator A Phys. 2019;290:130-136. doi: 10.1016/j.sna.2019.03.028
  108. Amagata Y, Mihara S, Nishioki N, Higuchi T. A New Fabrication Method for Microactuators with Piezoelectric Thin Film Using Precision Cutting Technique. United States: IEEE; 1996. p. 307-311. doi: 10.1109/MEMSYS.1996.493999
  109. Megdich A, Habibi M, Laperrière L. A review on 3D printed piezoelectric energy harvesters: Materials, 3D printing techniques, and applications. Mater Today Commun. 2023;35:105541. doi: 10.1016/j.mtcomm.2023.105541
  110. Zhang J, Ye S, Liu H, et al. 3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors. Nano Energy. 2020;77:105300. doi: 10.1016/j.nanoen.2020.105300
  111. Song L, Dai R, Li Y, Wang Q, Zhang C. Polyvinylidene fluoride energy harvester with boosting piezoelectric performance through 3D printed biomimetic bone structures. ACS Sustain Chem Eng. 2021;9(22):7561-7568. doi: 10.1021/acssuschemeng.1c01305
  112. Malakooti MH, Julé F, Sodano HA. Printed nanocomposite energy harvesters with controlled alignment of barium titanate nanowires. ACS Appl Mater Interfaces. 2018;10(44):38359-38367. doi: 10.1021/acsami.8b13643
  113. Liu CL, Du Q, Zhang C, Wu JM, Zhang G, Shi YS. Fabrication and properties of BaTiO3 ceramics via digital light processing for piezoelectric energy harvesters. Addit Manuf. 2022;56:102940. doi: 10.1016/j.addma.2022.102940
  114. Pabst O, Perelaer J, Beckert E, Schubert US, Eberhardt R, Tünnermann A. All inkjet-printed piezoelectric polymer actuators: Characterization and applications for micropumps in lab-on-a-chip systems. Org Electron. 2013;14(12):3423- 3429. doi: 10.1016/j.orgel.2013.09.009
  115. Maity K, Mondal A, Saha MC. Cellulose nanocrystal-based all-3D-printed pyro-piezoelectric nanogenerator for hybrid energy harvesting and self-powered cardiorespiratory monitoring toward the human-machine interface. ACS Appl Mater Interfaces. 2023;15(11):13956-13970. doi: 10.1021/acsami.2c21680
  116. Islam MN, Rupom RH, Adhikari PR, et al. Boosting piezoelectricity by 3D printing PVDF‐MoS2 composite as a conformal and high‐sensitivity piezoelectric sensor. Adv Funct Mater. 2023;33(42):2302946. doi: 10.1002/adfm.202302946
  117. Nassar H, Khandelwal G, Chirila R, et al. Fully 3D printed piezoelectric pressure sensor for dynamic tactile sensing. Addit Manuf. 2023;71:103601. doi: 10.1016/j.addma.2023.103601
  118. Cui H, Yao D, Hensleigh R, et al. Design and printing of proprioceptive three-dimensional architected robotic metamaterials. Science. 2022;376(6599):1287-1293. doi: 10.1126/science.abn0090
  119. Burton M, Howells G, Atoyo J, Carnie M. Printed thermoelectrics. Adv Mater. 2022;34(18):e2108183. doi: 10.1002/adma.202108183
  120. Lee H, Chidambaram Seshadri R, Han SJ, Sampath S. TiO 2-X based thermoelectric generators enabled by additive and layered manufacturing. Appl Energy. 2017;192:24-32. doi: 10.1016/j.apenergy.2017.02.001
  121. Shin S, Kumar R, Roh JW, et al. High-performance screen-printed thermoelectric films on fabrics. Sci Rep. 2017;7(1):7317. doi: 10.1038/s41598-017-07654-2
  122. Juntunen T, Jussila H, Ruoho M, et al. Inkjet printed large‐area flexible few‐layer graphene thermoelectrics. Adv Funct Mater. 2018;28(22):1800480. doi: 10.1002/adfm.201800480
  123. Bulman G, Barletta P, Lewis J, et al. Superlattice-bsed thin-film thermoelectric modules with high cooling fluxes. Nat Commun. 2016;7:10302. doi: 10.1038/ncomms10302
  124. Zhao X, Han W, Zhao C, et al. Fabrication of transparent paper-based flexible thermoelectric generator for wearable energy harvester using modified distributor printing technology. ACS Appl Mater Interfaces. 2019;11(10):10301-10309. doi: 10.1021/acsami.8b21716
  125. Liu H, Li G, Zhao X, Ma X, Shen C. Investigation of the impact of the thermoelectric geometry on the cooling performance and thermal-mechanic characteristics in a thermoelectric cooler. Energy. 2023;267:126471. doi: 10.1016/j.energy.2022.126471
  126. Li P, Nie XL, Fang WB, et al. Fabrication and planar cooling performance of flexible Bi0.5Sb1.5Te3/epoxy composite thermoelectric films. J Inorg Mater. 2019;34(6):679. doi: 10.15541/jim20180528
  127. Lu Z, Layani M, Zhao X, et al. Fabrication of flexible thermoelectric thin film devices by inkjet printing. Small. 2014;10(17):3551-3554. doi: 10.1002/smll.201303126
  128. Venkatasubramanin R, Siivola E, Colpitts T, O’Quinn B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature. 2001;413:597-602. doi: 10.1038/35098012
  129. Du J, Zhang B, Jiang M, et al. Inkjet printing flexible thermoelectric devices using metal chalcogenide nanowires. Adv Funct Mater. 2023;33(26):2213564. doi: 10.1002/adfm.202213564
  130. Mytafides CK, Tzounis L, Karalis G, Formanek P, Paipetis AS. High-power all-carbon fully printed and wearable SWCNT-based organic thermoelectric generator. ACS Appl Mater Interfaces. 2021;13(9):11151-11165. doi: 10.1021/acsami.1c00414
  131. Schroeder V, Savagatrup S, He M, Lin S, Swager TM. Carbon nanotube chemical sensors. Chem Rev. 2019;119(1):599-663. doi: 10.1021/acs.chemrev.8b00340
  132. Jung ID, Kim M, Gao C, et al. Selective ion sweeping on prussian blue analogue nanoparticles and activated carbon for electrochemical kinetic energy harvesting. Nano Letters. 2020;20(3):1800-1807. doi: 10.1021/acs.nanolett.9b05029
  133. Sidhu JS, Misra A, Bhardwaj A. Fabrication of Carbon Nanotube Components Using 3D Printing: Review. In: Mater Today Proceedings; 2023. doi: 10.1016/j.matpr.2023.08.040
  134. Lawes S, Riese A, Sun Q, Cheng N, Sun X. Printing nanostructured carbon for energy storage and conversion applications. Carbon. 2015;92:150-176. doi: 10.1016/j.carbon.2015.04.008
  135. Alshammari AS, Alenezi MR, Lai KT, Silva SRP. Inkjet printing of polymer functionalized CNT gas sensor with enhanced sensing properties. Mater Lett. 2017;189:299-302. doi: 10.1016/j.matlet.2016.11.033
  136. Beniwal A, Ganguly P, Aliyana AK, Khandelwal G, Dahiya R. Screen-printed graphene-carbon ink based disposable humidity sensor with wireless communication. Sens Actuators B Chem. 2023;374:132731. doi: 10.1016/j.snb.2022.132731
  137. Hassan K, Tung TT, Stanley N, et al. Graphene ink for 3D extrusion micro printing of chemo-resistive sensing devices for volatile organic compound detection. Nanoscale. 2021;13(10):5356-5368. doi: 10.1039/d1nr00150g
  138. Anca FB, Filipescu M, Voicu SI, Lippert T, Palla- Papavlu A. Facile fabrication of hybrid carbon nanotube sensors by laser direct transfer. Nanomaterials (Basel). 2021;11(10):2604. doi: 10.3390/nano11102604
  139. Wajahat M, Lee S, Kim JH, et al. Flexible strain sensors fabricated by meniscus-guided printing of carbon nanotube-polymer composites. ACS Appl Mater Interfaces. 2018;10(23):19999-20005. doi: 10.1021/acsami.8b04073
  140. Alsharari M, Chen B, Shu W. 3D printing of highly stretchable and sensitive strain sensors using graphene based composites. Proceedings. 2018;2:792. doi: 10.3390/proceedings2130792
  141. Ren Y, Meng F, Zhang S, et al. CNT@MnO2 composite ink toward a flexible 3D printed micro‐zinc‐ion battery. Carbon Energy. 2022;4(3):446-457. doi: 10.1002/cey2.177
  142. Kushwaha A, Jangid MK, Bhatt BB, Mukhopadhyay A, Gupta D. Inkjet-printed environmentally friendly graphene film for application as a high-performance anode in Li-Ion batteries. ACS Appl Energy Mater. 2021;4(8):7911-7921. doi: 10.1021/acsaem.1c01249
  143. Wang J, Sun Q, Gao X, et al. Toward high areal energy and power density electrode for Li-Ion batteries via optimized 3D printing approach. ACS Appl Mater Interfaces. 2018;10(46):39794-39801. doi: 10.1021/acsami.8b14797
  144. Chen Q, Xu R, He Z, Zhao K, Pan L. Printing 3D gel polymer electrolyte in lithium-ion microbattery using stereolithography. J Electrochem Soc. 2017;164:X18. doi: 10.1149/2.0651709jes
Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing