AccScience Publishing / MSAM / Volume 3 / Issue 2 / DOI: 10.36922/msam.3125
ORIGINAL RESEARCH ARTICLE

Developing a sustainable resin for 3D printing in coral restoration

Yukai Jia1 Sherin Abdelrahman1 Charlotte A.E. Hauser1*
Show Less
1 Laboratory for Nanomedicine, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
Submitted: 9 March 2024 | Accepted: 11 April 2024 | Published: 31 May 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Correction

Correction for this article is available: view correction

Abstract

Coral reefs boast one of the planet’s most diversified ecosystems, serving as an essential source of food and revenue for millions of people while providing shelter to a wide variety of marine creatures. However, overfishing, pollution, climate change, and other factors collectively pose an escalating danger to coral reefs. Therefore, coral reef restoration efforts are urgently needed to save corals. In this study, we exploited 3D printing technology based on vat polymerization to fabricate artificial coral plugs, expediting the reef restoration process while minimizing labor costs. We have developed a scalable model through the photoinitiated polymerization of an eco-friendly resin composed of modified soybean oil and calcium carbonate which has the potential to significantly enhance global restoration efforts. Material characterization demonstrated that the printed scaffold was highly cross-linked. Based on cytotoxicity analysis, the printed scaffold exhibited excellent cell adhesion and proliferation characteristics. The coral microfragmentation experiment showed initial signs of coral settlement on the printed coral plugs. This work demonstrates that plant-based material and vat-polymerization-based 3D printing techniques hold promise for coral restoration.

Keywords
Coral restoration
3D printing
Sustainable resin
Calcium carbonate-based ink
Vat polymerization
Acrylated epoxidized soybean oil
Funding
This work was financially supported by King Abdullah University of Science and Technology (KAUST).
Conflict of interest
The authors declare no conflicts of interest.
Editorial Disclosure

Charlotte A. E. Hauser serves as the Editorial Board Member of the journal, but did not in any way involve in the editorial and peer-review process conducted for this paper, directly or indirectly.

References
  1. Connell JH. Diversity in tropical rain forests and coral reefs. Science. 1978;199(4335):1302-1310. doi: 10.1126/science.199.4335.1302
  2. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B. Catastrophic shifts in ecosystems. Nature. 2001;413(6856):591-596. doi: 10.1038/35098000
  3. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, et al. Coral reefs under rapid climate change and ocean acidification. Science. 2007;318(5857):1737-1742. doi: 10.1126/science.1152509
  4. Hughes TP, Baird AH, Bellwood DR, et al. Climate change, human impacts, and the resilience of coral reefs. Science. 2003;301(5635):929-933. doi: 10.1126/science.1085046
  5. Cornwall CE, Comeau S, Kornder NA, et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc Natl Acad Sci U S A. 2021;118(21):e2015265118. doi: 10.1073/pnas.2015265118
  6. Erftemeijer PLA, Riegl B, Hoeksema BW, Todd PA. Environmental impacts of dredging and other sediment disturbances on corals: A review. Mar Pollut Bull. 2012;64(9):1737-1765. doi: 10.1016/j.marpolbul.2012.05.008
  7. Al-Horani FA, Al-Moghrabi SM, De Beer D. The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol. 2003;142(3):419-426. doi: 10.1007/s00227-002-0981-8
  8. Klinges D. A New Dimension to Marine Restoration: 3D Printing Coral Reefs. Vol. 11. California: Mongabay; 2018.
  9. Ngo TD, Kashani A, Imbalzano G, Nguyen KTQ, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos Part B Eng. 2018;143:172-196. doi: 10.1016/j.compositesb.2018.02.012
  10. Kim NP, Cho D, Zielewski M. Optimization of 3D printing parameters of Screw Type Extrusion (STE) for ceramics using the Taguchi method. Ceram Int. 2019;45(2):2351-2360. doi: 10.1016/j.ceramint.2018.10.152
  11. Crook L. Coral Skeletons Crafted from 3D-printed Calcium Carbonate Could Restore Damaged Reefs. London: Dezeen; 2020.
  12. Ziaee M, Crane NB. Binder jetting: A review of process, materials, and methods. Addit Manuf. 2019;28:781-780. doi: 10.1016/j.addma.2019.05.031
  13. Buswell RA, Leal de Silva WR, Jones SZ, Dirrenberger J. 3D printing using concrete extrusion: A roadmap for research. Cem Concr Res. 2018;112:37-49. doi: 10.1016/j.cemconres.2018.05.006
  14. Ly O, Yoris-Nobile AI, Sebaibi N, et al. Optimisation of 3D printed concrete for artificial reefs: Biofouling and mechanical analysis. Constr Build Mater. 2021;272:121649. doi: 10.1016/j.conbuildmat.2020.121649
  15. Ikiz SU. 3D-printed artificials reefs to restore coral ecosystems. Parametric Architecture. 2022. Available from: https:// parametric-architecture.com/3D-printed-artificial-reefs-to-restore-coral-ecosystems. [Last accessed on 2024 Jan 06].
  16. Chaudhary R, Fabbri P, Leoni E, Mazzanti F, Akbari R, Antonini C. Additive manufacturing by digital light processing: A review. Prog Addit Manuf. 2023;8(2):331-351. doi: 10.1007/s40964-022-00336-0
  17. Chaudhary B, Li H, Matos H. Long-term mechanical performance of 3D printed thermoplastics in seawater environments. Results Mater. 2023;17:100381. doi: 10.1016/j.rinma.2023.100381 
  18. Shokoohi R, Samadi MT, Samarghandi MR, Ahmadian M, Karimaian K, Poormohammadi A. Comparing the performance of granular coral limestone and Leca in adsorbing Acid Cyanine 5R from aqueous solution. Saudi J Biol Sci. 2017;24(4):749-759. doi: 10.1016/j.sjbs.2016.01.012 
  19. Lange C, Ratoi L, Co DL. Reformative Coral Habitats - Rethinking Artificial Reef Structures through a Robotic 3D Clay Printing Method. In: Proceedings of the 25th Conference on Computer Aided Architectural Design Research in Asia (CAADRIA). Vol. 2; 2022. doi: 10.52842/conf.caadria.2020.2.463
  20. Khot SN, Lascala JJ, Can E, et al. Development and application of triglyceride-based polymers and composites. J Appl Polym Sci. 2001;82(3):703-723. doi: 10.1002/app.1897
  21. O’Donnell A, Dweib MA, Wool RP. Natural fiber composites with plant oil-based resin. Compos Sci Technol. 2004;64(9):1135-1145. doi: 10.1016/j.compscitech.2003.09.024
  22. Mondal D, Haghpanah Z, Huxman CJ, et al. mSLA-based 3D printing of acrylated epoxidized soybean oil-nano-hydroxyapatite composites for bone repair. Mater Sci Eng C Mater Biol Appl. 2021;130:112456. doi: 10.1016/j.msec.2021.112456
  23. Miezinyte G, Ostrauskaite J, Rainosalo E, Skliutas E, Malinauskas M. Photoresins based on acrylated epoxidized soybean oil and benzenedithiols for optical 3D printing. Rapid Prototyp J. 2019;25(2):378-387. doi: 10.1108/RPJ-04-2018-0101
  24. Lebedevaite M, Ostrauskaite J, Skliutas E, Malinauskas M. Photoinitiator free resins composed of plant-derived monomers for the optical μ-3D printing of thermosets. Polymers (Basel). 2019;11(1):116. doi: 10.3390/polym11010116
  25. Wang C, Ding L, He M, et al. Facile one-step synthesis of bio-based AESO resins. Eur J Lip Sci Technol. 2016;118(10):1463-1469. doi: 10.1002/ejlt.201500494
  26. Albalawi HI, Khan ZN, Valle-Pérez AU, et al. Sustainable and eco-friendly coral restoration through 3D printing and fabrication. ACS Sustain Chem Eng. 2021;9:12634-12645. doi: 10.1021/acssuschemeng.1c04148
  27. Roepke LK, Brefeld D, Soltmann U, Randall CJ, Negri AP, Kunzmann A. Antifouling coatings can reduce algal growth while preserving coral settlement. Sci Rep. 2022;12(1):15935. doi: 10.1038/s41598-022-19997-6
  28. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861-872. doi: 10.1016/j.cell.2007.11.019
  29. Dimri GP, Lee X, Basile G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92(20):9363-9367. doi: 10.1073/pnas.92.20.9363
  30. Lee HJ, Lee JS, Chansakul T, Yu C, Elisseeff JH, Yu SM. Collagen mimetic peptide-conjugated photopolymerizable PEG hydrogel. Biomaterials. 2006;27(30):5268-5276. doi: 10.1016/j.biomaterials.2006.06.001
  31. Hauser CAE, Deng R, Mishra A, et al. Natural tri-to hexapeptides self-assemble in water to amyloid β-type fiber aggregates by unexpected α-helical intermediate structures. Proc Natl Acad Sci U S A. 2011;108(4):1361-1366. doi: 10.1073/pnas.1014796108
  32. Mishra A, Loo Y, Deng R, et al. Ultrasmall natural peptides self-assemble to strong temperature-resistant helical fibers in scaffolds suitable for tissue engineering. Nano Today. 2011;6(3):232-239. doi: 10.1016/j.nantod.2011.05.001 
  33. Susapto HH, Alhattab D, Abdelrahman S, et al. Ultrashort peptide bioinks support automated printing of large-scale constructs assuring long-term survival of printed tissue constructs. Nano Lett. 2021;21(7):2719-2729. doi: 10.1021/acs.nanolett.0c04426
  34. Heiden MGV, Cantley LC, Thompson CB. Understanding the warburg effect: The metabolic requirements of cell proliferation. Science. 2009;324(5930):1029-1033. doi: 10.1126/science.1160809
  35. Berney M, Hammes F, Bosshard F, Weilenmann HU, Egli T. Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight kit in combination with flow cytometry. Appl Environ Microbiol. 2007;73(10):3283-3290. doi: 10.1128/AEM.02750-06
  36. Hall A. Rho GTpases and the actin cytoskeleton. Science. 1998;279(5350):509-514. doi: 10.1126/science.279.5350.509
  37. Hess ST, Girirajan TPK, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J. 2006;91(11):4258-4272. doi: 10.1529/biophysj.106.091116
  38. Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 1992;70(3):389-399. doi: 10.1016/0092-8674(92)90163-7
  39. De La Cruz EM, Pollard TD. Transient kinetic analysis of rhodamine phalloidin binding to actin filaments. Biochemistry. 1994;33(48):14387-14392. doi: 10.1021/bi00252a003
  40. Tarnowski BI, Spinale FG, Nicholson JH. DAPI as a useful stain for nuclear quantitation. Biotech Histochem. 1991;66(6):297-302. doi: 10.3109/10520299109109990
  41. Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods. 2005;2(12):932-940. doi: 10.1038/nmeth818
  42. Mostrales TPI, Rollon RN, Licuanan WY. Evaluation of the performance and cost-effectiveness of coral microfragments in covering artificial habitats. Ecol Eng. 2022;184:106770. doi: 10.1016/j.ecoleng.2022.106770
  43. Luo Y, Le Fer G, Dean D, Becker ML. 3D Printing of poly(propylene fumarate) oligomers: Evaluation of resin viscosity, printing characteristics and mechanical properties. Biomacromolecules. 2019;20(4):1699-7108. doi: 10.1021/acs.biomac.9b00076
  44. Rudawska A, FrigioneM. Effect of diluents on mechanical characteristics of epoxy compounds. Polymers (Basel). 2022;14(11):2277. doi: 10.3390/polym14112277
  45. Khalina M, Beheshty MH, Salimi A. The effect of reactive diluent on mechanical properties and microstructure of epoxy resins. Polym Bull. 2019;76(8):3905-3927. doi: 10.1007/s00289-018-2577-6
  46. Green WA. Industrial Photoinitiators. Boca Raton: CRC Press; 2010. doi: 10.1201/9781439827468
  47. Nandiyanto ABD, Oktiani R, Ragadhita R. How to read and interpret ftir spectroscope of organic material. Indones J Sci Technol. 2019;4(1):97-118. doi: 10.17509/ijost.v4i1.15806
  48. Lebedevaite M, Talacka V, Ostrauskaite J. High biorenewable content acrylate photocurable resins for DLP 3D printing. J Appl Polym Sci. 2021;138(16):50233. doi: 10.1002/app.50233
  49. Galan I, Glasser FP, Andrade C. Calcium carbonate decomposition. J Therm Anal Calorim. 2013;111(2):1197-1202. doi: 10.1007/s10973-012-2290-x
  50. Millot C, Fillot LA, Lame O, Sotta P, Seguela R. Assessment of polyamide-6 crystallinity by DSC: Temperature dependence of the melting enthalpy. J Therm Anal Calorim. 2015;122(1):307-314. doi: 10.1007/s10973-015-4670-5 
  51. Cassie ABD, Baxter S. Wettability of porous surfaces. Trans Faraday Soc. 1944;40:546-551. doi: 10.1039/tf9444000546
  52. Miao S, Zhu W, Castro NJ, et al. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Sci Rep. 2016;6:27226. doi: 10.1038/srep27226
  53. Larson JK, Mccormick MI. The role of chemical alarm signals in facilitating learned recognition of novel chemical cues in a coral reef fish. Anim Behav. 2005;69(1):51-57. doi: 10.1016/j.anbehav.2004.04.005
  54. Whalan S, Abdul Wahab MA, Sprungala S, Poole AJ, De Nys R. Larval settlement: The role of surface topography for sessile coral reef invertebrates. PLoS One. 2015;10(2):e0117675. doi: 10.1371/journal.pone.0117675
  55. Edmunds PJ. Finding signals in the noise of coral recruitment. Coral Reefs. 2022;41(1):81-93. doi: 10.1007/s00338-021-02204-9
  56. Vermeij MJA, Dailer ML, Smith CM. Crustose coralline algae can suppress macroalgal growth and recruitment on Hawaiian coral reefs. Mar Ecol Prog Ser. 2011;422:1-7. doi: 10.3354/meps08964

 

Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing