AccScience Publishing / MSAM / Volume 3 / Issue 2 / DOI: 10.36922/msam.3137
ORIGINAL RESEARCH ARTICLE

Effects of aging heat treatment on the mechanical properties of NiTi triply periodic minimal surface

Jinwei Li1 Mingkang Zhang1* Jie Chen2 Chang Liu1 Wenbin Liu1 Mingjian Deng1
Show Less
1 Additive Manufacturing Laboratory, School of Mechanical and Energy Engineering, Guangdong Ocean University, Yangjiang, Guangdong, China
2 Institute of Intelligent Manufacturing, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
Submitted: 11 March 2024 | Accepted: 22 April 2024 | Published: 24 May 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

This study investigated the impact of aging heat treatment time on the mechanical properties of NiTi triply periodic minimal surface structures fabricated through laser powder bed fusion. X-ray diffraction analysis results indicate that with increasing aging time, the NiTi2 phase precipitates while the content of the B19’ phase decreases. At 10 h of aging time, the Ni4Ti3 phase becomes evident in the sample. The differential scanning calorimeter results show that R phase transformation occurs, and the phase transformation temperature increases when the aging time reaches 6 h. Microhardness increases with aging time, peaking at 477.8 HV after 10 h. Compression experiment results reveal a maximum elastic modulus of 1262.82 MPa for the gyroid sheet-shaped structure achieved after 2 h. In addition, the superelasticity test indicates the highest recoverable strains at 2%, 4%, and 6% compressive strain for the gyroid rod-shaped structure after aging for 10 h. In cyclic compression experiments, the ratio of shape memory recovery increases from 40% at 0 h to 97% at 6 h. Fracture analysis results show that the transition in the fracture mechanism from brittle fracture to quasi-cleavage fracture occurs after aging heat treatment.

Keywords
NiTi alloy
Laser powder bed fusion
Aging heat treatment
Triply periodic minimal surface
Shape memory effect
Funding
This research was funded by the Guangdong Natural Science Foundation (No. 2023A1515012704), Guangdong Basic and Applied Basic Research Foundation-Youth Fund Project (No. 2021A1515110033), Program for scientific research start-up funds of Guangdong Ocean University (360302022201), and GDA’s Project of Science and Technology Development (2022GDASZH-2022010107).
References
  1. Mohamed OA, Masood SH, Xu W. Nickel-titanium shape memory alloys made by selective laser melting: A review on process optimisation. Adv Manuf. 2022;10(1):24-58. doi: 10.1007/s40436-021-00376-9
  2. Wei S, Zhang J, Zhang L, et al. Laser powder bed fusion additive manufacturing of NiTi shape memory alloys: A review Int J Extreme Manuf. 2023;5(3):032001. doi: 10.1088/2631-7990/acc7d9
  3. Zhang Y, Attarilar S, Wang L, Lu W, Yang J, Fu Y. A review on design and mechanical properties of additively manufactured NiTi implants for orthopedic applications. Int J Bioprint. 2021;7(2):340. doi: 10.18063/ijb.v7i2.340
  4. Feng J, Fu J, Yao X, He Y. Triply periodic minimal surface (TPMS) porous structures: From multi-scale design, precise additive manufacturing to multidisciplinary applications. Int J Extreme Manuf. 2022;4(2):022001. doi: 10.1088/2631-7990/ac5be6
  5. Farber E, Orlov A, Borisov E, et al. TiNi alloy lattice structures with negative Poisson’s ratio: Computer simulation and experimental results. Metals. 2022;12(9):1476. doi: 10.3390/met12091476
  6. Li S, Hassanin H, Attallah MM, Adkins NJ, Essa K. The development of TiNi-based negative Poisson’s ratio structure using selective laser melting. Acta Mater. 2016;105:75-83. doi: 10.1016/j.actamat.2015.12.017
  7. Pan C, Han Y, Lu J. Design and optimization of lattice structures: A review. Appl Sci. 2020;10(18):6374. doi: 10.3390/app10186374
  8. Maconachie T, Leary M, Lozanovski B, et al. SLM lattice structures: Properties, performance, applications and challenges. Mater Des. 2019;183:108137. doi: 10.1016/j.matdes.2019.108137
  9. Du Plessis A, Razavi SM, Benedetti M, et al. Properties and applications of additively manufactured metallic cellular materials: A review. Prog Mater Sci. 2022;125:100918. doi: 10.1016/j.pmatsci.2021.100918
  10. Elahinia M, Moghaddam NS, Andani MT, Amerinatanzi A, Bimber BA, Hamilton RF. Fabrication of NiTi through additive manufacturing: A review. Prog Mater Sci. 2016;83:630-663. doi: 10.1016/j.pmatsci.2016.08.001
  11. Bobbert FS, Lietaert K, Eftekhari AA, et al. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties. Acta Biomater. 2017;53:572-584. doi: 10.1016/j.actbio.2017.02.024
  12. Yuan B, Zhu M, Chung CY. Biomedical porous shape memory alloys for hard-tissue replacement materials. Materials (Basel). 2018;11(9):1716. doi: 10.3390/ma11091716
  13. Liu J, Xu MY, Zhang RD, Zhang X, Xi W. Progress of porous/ lattice structures applied in thermal management technology of aerospace applications. Aerospace. 2022;9(12):827. doi: 10.3390/aerospace9120827
  14. Riva L, Ginestra PS, Ceretti E. Mechanical characterization and properties of laser-based powder bed-fused lattice structures: A review. Int J Adv Manuf Technol. 2021;113(3-4):649-671. doi: 10.1007/s00170-021-06631-4
  15. Chen Z, Wang X, Tao Y, Wen S, Zhou Y, Shi Y. Volume fraction effect on the mechanical and shape memory properties of NiTi gyroid lattice structure fabricated by laser powder bed fusion. JOM. 2024;76(3):1715-1725. doi: 10.1007/s11837-024-06372-1
  16. Shi X, Liao W, Li P, et al. Comparison of compression performance and energy absorption of lattice structures fabricated by selective laser melting. Adv Eng Mater. 2020;22(11):2000453. doi: 10.1002/adem.202000453
  17. Alagha AN, Nguyen V, Zaki W. Effective phase transformation behavior of NiTi triply periodic minimal surface architectures. J Intell Mater Syst Struct. 2023;34(6):672-695. doi: 10.1177/1045389x221115704
  18. Zhang C, Jin J, He M, Yang L. Compressive mechanics and hyperelasticity of Ni-Ti lattice structures fabricated by selective laser melting. Crystals. 2022;12(3):408. doi: 10.3390/cryst12030408
  19. Jin J, Wu S, Yang L, et al. Ni-Ti multicell interlacing Gyroid lattice structures with ultra-high hyperelastic response fabricated by laser powder bed fusion. Int J Mach Tools Manuf. 2023;195:104099. doi: 10.1016/j.ijmachtools.2023.104099
  20. Speirs M, Van Hooreweder B, Van Humbeeck J, Kruth JP. Fatigue behaviour of NiTi shape memory alloy scaffolds produced by SLM, a unit cell design comparison. J Mech Behav Biomed Mater. 2017;70:53-59. doi: 10.1016/j.jmbbm.2017.01.016
  21. Zhang M, Liu C, Deng M, Li Y, Li J, Wang D. Graded minimal surface structures with high specific strength for broadband sound absorption produced by laser powder bed fusion. Coatings. 2023;13(11):1950. doi: 10.3390/coatings13111950
  22. Li Z, Zhou Y, Kong X, et al. Sound absorption performance of a micro-perforated plate sandwich structure based on selective laser melting. Virtual Phys Prototyp. 2024;19(1):386-400. doi: 10.1080/17452759.2024.2321607
  23. Kong XN, Bin L, Li ZH, Peng-Fei Z, Chao S. Research on sound absorption properties of tri-periodic minimal surface sandwich structure of selective laser melting titanium alloy. Mater Trans. 2023;64(4):861-888. doi: 10.2320/matertrans.MT-M2022164
  24. Catchpole-Smith S, Selo RR, Davis AW, Ashcroft I, John Tuck C, Clare AT. Thermal conductivity of TPMS lattice structures manufactured via laser powder bed fusion. Addit Manuf. 2019;30:100846. doi: 10.1016/j.addma.2019.100846
  25. Qu S, Ding J, Song X. Achieving triply periodic minimal surface thin-walled structures by micro laser powder bed fusion process. Micromachines. 2021;12(6):705. doi: 10.3390/mi12060705
  26. Dong L, Zhu Q, Liu X, et al. 3D printing Al porous metamaterials with triply periodic minimal surfaces (TPMS) for hydrogen generation from Al-water reaction. Int J Hydrogen Energy. 2024;49:1426-1435. doi: 10.1016/j.ijhydene.2023.10.047
  27. Lei HY, Li JR, Wang QH, et al. Feasibility of preparing additive manufactured porous stainless steel felts with mathematical micro pore structure as novel catalyst support for hydrogen production via methanol steam reforming. Int J Hydrogen Energy. 2019;44(45):24782-24791. doi: 10.1016/j.ijhydene.2019.07.187
  28. Khoo ZX, Liu Y, An J, Chua CK, Shen YF, Kuo CN. A review of selective laser melted NiTi shape memory alloy. Materials. 2018;11(4):519. doi: 10.3390/ma11040519
  29. Wang X, Kustov S, Van Humbeeck J. A short review on the microstructure, transformation behavior and functional properties of NiTi shape memory alloys fabricated by selective laser melting. Materials. 2018;11(9):1683. doi: 10.3390/ma11091683
  30. Gao B, Zhao H, Peng L, Sun Z. A review of research progress in selective laser melting (SLM). Micromachines. 2023;14(1):57. doi: 10.3390/mi14010057
  31. Jalali M, Mohammadi K, Movahhedy MR, et al. SLM additive manufacturing of NiTi porous implants: A review of constitutive models, finite element simulations, manufacturing, heat treatment, mechanical, and biomedical studies. Met Mater Int. 2023;29(9):2458-2491. doi: 10.1007/s12540-023-01401-1
  32. Speirs M, Wang X, Van Baelen S, et al. On the transformation behavior of NiTi shape-memory alloy produced by SLM. Shape Mem Superelasticity. 2016;2(4):310-316. doi: 10.1007/s40830-016-0083-y
  33. Haberland C, Elahinia M, Walker JM, Meier H, Jan F. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing. Smart Mater Struct. 2014;23(10):104002. doi: 10.1088/0964-1726/23/10/104002
  34. Ma J, Yu L, Yang Q, Liu J, Yang L. High-superelasticity NiTi shape memory alloy by directed energy deposition-arc and solution heat treatment. Acta Metall Sin (Eng Lett). 2024;37(1):132-44. doi: 10.1007/s40195-023-01659-9
  35. Saedi S, Turabi AS, Andani MT, Moghaddam NS, Elahinia M, Karaca H. Texture, aging, and superelasticity of selective laser melting fabricated Ni-rich NiTi alloys. Mater Sci Eng A. 2017;686:1-10. doi: 10.1016/j.msea.2017.01.008
  36. Lu HZ, Ma HW, Cai WS, et al. Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50.4Ti49.6 shape memory alloy fabricated via selective laser melting. Acta Mater. 2021;219:117261. doi: 10.1016/j.actamat.2021.117261
  37. Chen F, Lu J, Liu Y, Zhang H, Zhang C, Shen Q. Microstructure and mechanical properties of NiTi shape memory alloys by laser engineered net shaping. Adv Eng Mater. 2023;25(5):2200504. doi: 10.1002/adem.202200504
  38. Khoo ZX, An J, Chua CK, Shen YF, Kuo CN, Liu Y. Effect of heat treatment on repetitively scanned SLM NiTi shape memory alloy. Materials. 2018;12(1):77. doi: 10.3390/ma12010077
  39. Yan B, Zhang Y, Jiang S, Yu J, Sun D, Tang M. Mechanical properties and fracture mechanisms of martensitic NiTi shape memory alloy based on various thermomechanical-processing microstructures. J Alloys Compd. 2021;883:160797. doi: 10.1016/j.jallcom.2021.160797
  40. Ma C, Gu D, Setchi R, et al. A large compressive recoverable strain induced by heterogeneous microstructure in a Ni50.6Ti49.4 shape memory alloy via laser powder bed fusion and subsequent aging treatment. J Alloys Compd. 2022;918:165620. doi: 10.1016/j.jallcom.2022.165620
  41. Bayati P, Safaei K, Nematollahi M, et al. Toward understanding the effect of remelting on the additively manufactured NiTi. Int J Adv Manuf Technol. 2021;112(1):347-360. doi: 10.1007/s00170-020-06378-4
  42. Zhan JB, Lu YJ, Lin JX. On the martensitic transformation temperatures and mechanical properties of NiTi alloy manufactured by selective laser melting: Effect of remelting. Acta Metall Sin (Engl Lett). 2021;34(9):1223-1233. doi: 10.1007/s40195-021-01212-6
  43. Yuan L, Gu D, Lin K, et al. Electrically actuated shape recovery of NiTi components processed by laser powder bed fusion after regulating the dimensional accuracy and phase transformation behaviour. Chin J Mech Eng Addit Manuf Front. 2022;1(4):100056. doi: 10.1016/j.cjmeam.2022.100056
  44. Lu HZ, Liu LH, Yang C, et al Simultaneous enhancement of mechanical and shape memory properties by heat-treatment homogenization of Ti2Ni precipitates in TiNi shape memory alloy fabricated by selective laser melting. J Mater Sci Technol. 2021;101:205-216. doi: 10.1016/j.jmst.2021.06.019
  45. Zhu J, Wu HH, Wu Y, et al. Influence of Ni4Ti3 precipitation on martensitic transformations in NiTi shape memory alloy: R phase transformation. Acta Mater. 2021;207:116665. doi: 10.1016/j.actamat.2021.116665
  46. Gu DD, Ma CL. In-situ formation of Ni4Ti3 precipitate and its effect on pseudoelasticity in selective laser melting additive manufactured NiTi-based composites. Appl Surf Sci. 2018;441:862-870. doi: 10.1016/j.apsusc.2018.01.317
  47. Yu H, Qiu Y, Young ML. Influence of Ni4Ti3 precipitate on pseudoelasticity of austenitic NiTi shape memory alloys deformed at high strain rate. Mater Sci Eng A. 2021;804:140753. doi: 10.1016/j.msea.2021.140753
  48. Liu G, Chen D, Tan F, et al. Effects of annealing on softening and hardening behaviors of 60NiTi alloy. J Mater Res Technol. 2022;21:3220-3234. doi: 10.1016/j.jmrt.2022.10.093
  49. Saedi S, Turabi AS, Taheri Andani M, Haberland C, Karaca H, Elahinia M. The influence of heat treatment on the thermomechanical response of Ni-rich NiTi alloys manufactured by selective laser melting. J Alloys Compd. 2016;677:204-210. doi: 10.1016/j.jallcom.2016.03.161
  50. Zhang M, Li J, Liao X, Xu M, Shi W. Influence of cycle number on the compression behavior of nonlinear periodically gradient porous structures produced by laser powder bed fusion. Mater Des. 2022;223:111257. doi: 10.1016/j.matdes.2022.111257
  51. Chen W, Yang Q, Huang S, Kruzic JJ, Li X. Compression behavior of graded NiTi gyroid-structures fabricated by laser powder bed fusion additive manufacturing under monotonic and cyclic loading. JOM. 2021;73(12):4154-4165. doi: 10.1007/s11837-021-04938-x
  52. Sun L, Chen K, Geng P, Zhou Y, Wen S, Shi Y. Mechanical and shape memory properties of NiTi triply periodic minimal surface structures fabricated by laser powder bed fusion. J Manuf Processes. 2023;101:1091-100. doi: 0.1016/j.jmapro.2023.06.034
  53. Bhardwaj A, Ojha M, Garudapalli A, Gupta AK. Microstructural, mechanical and strain hardening behaviour of NiTi alloy subjected to constrained groove pressing and ageing treatment. J Mater Process Technol. 2021;294:117132. doi: 10.1016/j.jmatprotec.2021.117132
  54. Sinha A, Rajak DK, Shaik NB, et al. A review on 4D printing of Nickel-Titanium smart alloy processing, the effect of major parameters and their biomedical applications. Proc Inst Mech Eng E J Process Mech Eng. 2023. doi: 10.1177/09544089231154416
  55. Mohd Jani J, Leary M, Subic A, Gibson G. A review of shape memory alloy research, applications and opportunities. Mater Des (1980-2015). 2014;56:1078-1113. doi: 10.1016/j.matdes.2013.11.084
  56. Yang X, Yang Q, Shi Y, et al. Effect of volume fraction and unit cell size on manufacturability and compressive behaviors of Ni-Ti triply periodic minimal surface lattices. Addit Manuf. 2022;54:102737. doi: 10.1016/j.addma.2022.102737
Conflict of interest
The authors declare that they have no competing interests.
Share
Back to top
Materials Science in Additive Manufacturing, Electronic ISSN: 2810-9635 Published by AccScience Publishing