AccScience Publishing / MI / Online First / DOI: 10.36922/MI025300066
COMMUNICATION

Ea5Mab-7, a novel anti-EphA5 monoclonal antibody for flow cytometric and immunohistochemical applications

Guanjie Li1 Tomohiro Tanaka1 Mika K. Kaneko1 Hiroyuki Suzuki1* Yukinari Kato1*
Show Less
1 Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
Received: 25 July 2025 | Revised: 5 September 2025 | Accepted: 9 October 2025 | Published online: 8 December 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Erythropoietin-producing hepatocellular (Eph) receptor A5 (EphA5) binds to ephrin ligands and initiates intracellular signaling through its tyrosine kinase activity. EphA5 is upregulated or mutated in various tumors, and these alterations are associated with tumor progression and sensitivity to immunotherapy, respectively. Therefore, EphA5 has been proposed as an attractive target for tumor diagnosis and therapy. A monoclonal antibody (mAb) against EphA5 is essential for basic research and for the development of mAb-based tumor therapies. In this study, we developed a novel anti-human EphA5 mAb, Ea5Mab-7, using the Cell-Based Immunization and Screening (CBIS) approach. Ea5Mab-7 reacted with EphA5-overexpressed Chinese hamster ovary-K1 (CHO/EphA5), EphA5-overexpressed glioblastoma LN229 (LN229/EphA5), and Saos-2 osteosarcoma cells endogenously expressing EphA5, as assessed using flow cytometry. The binding affinities (KD values) were determined to be 3.2 × 10−9 M for CHO/EphA5, 3.0 × 10−9 M for LN229/EphA5, and 1.3 × 10−9 M for Saos-2. Furthermore, Ea5Mab-7 did not exhibit cross-reactivity with other ephrin receptor-overexpressed CHO-K1 cells. In addition, Ea5Mab-7 was suitable for immunohistochemistry. These results indicate that Ea5Mab-7, established using the CBIS method, facilitates basic studies of EphA5 and is a potential candidate for mAb-based tumor diagnosis and therapy.

Keywords
EphA5
Monoclonal antibody
Cell-Based Immunization and Screening
Flow cytometry
Immunohistochemistry
Funding
This research was supported in part by the Japan Agency for Medical Research and Development under grant numbers JP25am0521010 (to Y.K.), JP25ama121008 (to Y.K.), P25ama221153 (to Y.K.), JP25ama221339 (to Y.K.), and JP25bm1123027 (to Y.K.), and by the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid for Scientific Research (KAKENHI) under grant numbers 24K18268 (to T.T.) and 25K10553 (to Y.K.).
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Pasquale EB. Eph receptors and ephrins in cancer progression. Nat Rev Cancer. 2024;24(1):5-27. doi: 10.1038/s41568-023-00634-x

 

  1. Pasquale EB. Eph receptor signaling complexes in the plasma membrane. Trends Biochem Sci. 2024;49(12):1079-1096. doi: 10.1016/j.tibs.2024.10.002

 

  1. Lisabeth EM, Falivelli G, Pasquale EB. Eph receptor signaling and ephrins. Cold Spring Harb Perspect Biol. 2013;5(9):a00159. doi: 10.1101/cshperspect.a009159

 

  1. Alford SC, Bazowski J, Lorimer H, Elowe S, Howard PL. Tissue transglutaminase clusters soluble A-type ephrins into functionally active high molecular weight oligomers. Exp Cell Res. 2007;313(20):4170-4179. doi: 10.1016/j.yexcr.2007.07.019

 

  1. Wykosky J, Palma E, Gibo DM, Ringler S, Turner CP, Debinski W. Soluble monomeric EphrinA1 is released from tumor cells and is a functional ligand for the EphA2 receptor. Oncogene. 2008;27(58):7260-7273. doi: 10.1038/onc.2008.328

 

  1. Alford S, Watson-Hurthig A, Scott N, et al. Soluble ephrin a1 is necessary for the growth of HeLa and SK-BR3 cells. Cancer Cell Int. 2010;10:41. doi: 10.1186/1475-2867-10-41

 

  1. Song Y, Zhao XP, Song K, Shang ZJ. Ephrin-A1 is up-regulated by hypoxia in cancer cells and promotes angiogenesis of HUVECs through a coordinated cross-talk with eNOS. PLoS One. 2013;8(9):e74464. doi: 10.1371/journal.pone.0074464

 

  1. Arora S, Scott AM, Janes PW. Eph receptors in cancer. Biomedicines. 2023;11(2):315. doi: 10.3390/biomedicines11020315

 

  1. Huang W, Lin A, Luo P, et al. EPHA5 mutation predicts the durable clinical benefit of immune checkpoint inhibitors in patients with lung adenocarcinoma. Cancer Gene Ther. 2021;28(7-8):864-874. doi: 10.1038/s41417-020-0207-6

 

  1. Zhang R, Liu J, Zhang W, Hua L, Qian LT, Zhou SB. EphA5 knockdown enhances the invasion and migration ability of esophageal squamous cell carcinoma via epithelial-mesenchymal transition through activating Wnt/β-catenin pathway. Cancer Cell Int. 2020;20:20. doi: 10.1186/s12935-020-1101-x

 

  1. Oh SY, Jang G, Kim J, et al. Identification of new pathogenic variants of hereditary diffuse gastric cancer. Cancer Res Treat. 2024;56(4):1126-1135. doi: 10.4143/crt.2024.328

 

  1. Wang G, Xu G, Fan Y, et al. EPHA5 promotes cell proliferation and inhibits apoptosis in follicular thyroid cancer via the STAT3 signaling pathway. Oncogenesis. 2025;14(1):12. doi: 10.1038/s41389-025-00556-3

 

  1. Janes PW, Vail ME, Ernst M, Scott AM. Eph receptors in the immunosuppressive tumor microenvironment. Cancer Res. 2021;81(4):801-805. doi: 10.1158/0008-5472.Can-20-3047

 

  1. Shiuan E, Chen J. Eph receptor tyrosine kinases in tumor immunity. Cancer Res. 2016;76(22):6452-6457. doi: 10.1158/0008-5472.Can-16-1521

 

  1. Zhang Z, Wu HX, Lin WH, et al. EPHA7 mutation as a predictive biomarker for immune checkpoint inhibitors in multiple cancers. BMC Med. 2021;19(1):26. doi: 10.1186/s12916-020-01899-x

 

  1. Harly C, Joyce SP, Domblides C, et al. Human γδ T cell sensing of AMPK-dependent metabolic tumor reprogramming through TCR recognition of EphA2. Sci Immunol. 2021;6(61):eaba9010 doi: 10.1126/sciimmunol.aba9010

 

  1. Funk SD, Yurdagul A Jr., Albert P, et al. EphA2 activation promotes the endothelial cell inflammatory response: A potential role in atherosclerosis. Arterioscler Thromb Vasc Biol. 2012;32(3):686-695. doi: 10.1161/atvbaha.111.242792

 

  1. Zhang A, Xing J, Xia T, et al. EphA2 phosphorylates NLRP3 and inhibits inflammasomes in airway epithelial cells. EMBO Rep. 2020;21(7):e49666. doi: 10.15252/embr.201949666

 

  1. Itai S, Yamada S, Kaneko MK, Chang YW, Harada H, Kato Y. Establishment of EMab-134, a sensitive and specific anti-epidermal growth factor receptor monoclonal antibody for detecting squamous cell carcinoma cells of the oral cavity. Monoclon Antib Immunodiagn Immunother. 2017;36(6):272-281. doi: 10.1089/mab.2017.0042

 

  1. Itai S, Fujii Y, Kaneko MK, et al. H(2)Mab-77 is a sensitive and specific anti-HER2 monoclonal antibody against breast cancer. Monoclon Antib Immunodiagn Immunother. 2017;36(4):143-148. doi: 10.1089/mab.2017.0026

 

  1. Ubukata R, Suzuki H, Hirose M, et al. Establishment of a highly sensitive and specific anti-EphB2 monoclonal antibody (Eb2Mab-12) for flow cytometry. MI. 2025;2:168-177. doi: 10.36922/mi.5728

 

  1. Satofuka H, Suzuki H, Tanaka T, Li G, Kaneko MK, Kato Y. Development of an anti-human EphA2 monoclonal antibody Ea2Mab-7 for multiple applications. Biochem Biophys Rep. 2025;42:101998. doi: 10.1016/j.bbrep.2025.101998

 

  1. Satofuka H, Suzuki H, Tanaka T, et al. A novel anti-mouse CCR7 monoclonal antibody, C(7)Mab-7, demonstrates high sensitivity in flow cytometry, western blot, and immunohistochemistry. Biochem Biophys Rep. 2025;41:101948. doi: 10.1016/j.bbrep.2025.101948

 

  1. Suzuki H, Tanaka T, Li G, Ouchida T, Kaneko MK, Kato Y. Development of a sensitive anti-mouse CCR5 monoclonal antibody for flow cytometry. Monoclon Antib Immunodiagn Immunother. 2024;43(4):96-100. doi: 10.1089/mab.2024.0004

 

  1. Ubukata R, Suzuki H, Tanaka T, Kaneko MK, Kato Y. Development of an anti-CDH15/M-cadherin monoclonal antibody Ca15Mab-1 for flow cytometry, immunoblotting, and immunohistochemistry. Biochem Biophys Rep. 2025;43:102138. doi: 10.1016/j.bbrep.2025.102138

 

  1. Available from: https://www.med/tohoku/antibody.com/ topics/001_paper_antibody_pdis.htm [Last accessed on 2025 Oct 9].

 

  1. Fujii Y, Kaneko MK, Kato Y. MAP Tag: A novel tagging system for protein purification and detection. Monoclon Antib Immunodiagn Immunother. 2016;35(6):293-299. doi: 10.1089/mab.2016.0039

 

  1. Kato Y, Kaneko MK, Kuno A, et al. Inhibition of tumor cell-induced platelet aggregation using a novel anti-podoplanin antibody reacting with its platelet-aggregation-stimulating domain. Biochem Biophys Res Commun. 2006;349(4):1301-1307. doi: 10.1016/j.bbrc.2006.08.171

 

  1. Shoaib Z, Fan TM, Irudayaraj JMK. Osteosarcoma mechanobiology and therapeutic targets. Br J Pharmacol. 2022;179(2):201-217. doi: 10.1111/bph.15713

 

  1. Wang X, Zhu K, Hu J, Zhang C. Advances and challenges in the treatment of osteosarcoma. Prog Biophys Mol Biol. 2025;197:60-74. doi: 10.1016/j.pbiomolbio.2025.07.001

 

  1. Harper K, Sathiadoss P, Saifuddin A, Sheikh A. A review of imaging of surface sarcomas of bone. Skeletal Radiol. 2021;50(1):9-28. doi: 10.1007/s00256-020-03546-1

 

  1. Brar GS, Schmidt AA, Willams LR, Wakefield MR, Fang Y. Osteosarcoma: Current insights and advances. Explor Target Antitumor Ther. 2025;6:1002324. doi: 10.37349/etat.2025.1002324

 

  1. Hasegawa J, Sue M, Yamato M, et al. Novel anti-EPHA2 antibody, DS-8895a for cancer treatment. Cancer Biol Ther. 2016;17(11):1158-1167. doi: 10.1080/15384047.2016.1235663

 

  1. Gan HK, Parakh S, Lee FT, et al. A phase 1 safety and bioimaging trial of antibody DS-8895a against EphA2 in patients with advanced or metastatic EphA2 positive cancers. Invest New Drugs. 2022;40(4):747-755. doi: 10.1007/s10637-022-01237-3

 

  1. Offenhäuser C, Al-Ejeh F, Puttick S, et al. EphA3 pay-loaded antibody therapeutics for the treatment of glioblastoma. Cancers (Basel). 2018;10(12):519. doi: 10.3390/cancers10120519

 

  1. Day BW, Stringer BW, Al-Ejeh F, et al. EphA3 maintains tumorigenicity and is a therapeutic target in glioblastoma multiforme. Cancer Cell. 2013;23(2):238-248. doi: 10.1016/j.ccr.2013.01.007

 

  1. Suzuki H, Ohishi T, Tanaka T, Kaneko MK, Kato Y. Anti-HER2 cancer-specific mAb, H(2)mab-250-hG(1), possesses higher complement-dependent cytotoxicity than trastuzumab. Int J Mol Sci. 2024;25(15):8336. doi: 10.3390/ijms25158386

 

  1. Kaneko MK, Suzuki H, Ohishi T, Nakamura T, Tanaka T, Kato Y. A cancer-specific monoclonal antibody against HER2 exerts antitumor activities in human breast cancer xenograft models. Int J Mol Sci. 2024;25(3):1941. doi: 10.3390/ijms25031941

 

  1. Wang J, Guo W, Wang X, Tang X, Sun X, Ren T. Circulating exosomal PD-L1 at initial diagnosis predicts outcome and survival of patients with osteosarcoma. Clin Cancer Res. 2023;29(3):659-666. doi: 10.1158/1078-0432.Ccr-22-2682

 

  1. Cai R, Zhu H, Liu Y, et al. To be, or not to be: The dilemma of immunotherapy for non-small cell lung cancer harboring various driver mutations. J Cancer Res Clin Oncol. 2023;149(12):10027-10040. doi: 10.1007/s00432-023-04919-4
Share
Back to top
Microbes & Immunity, Electronic ISSN: 3029-2883 Print ISSN: 3041-0886, Published by AccScience Publishing