Candida hyphae and healthspan: Hypothesis
Candida is traditionally considered an opportunistic pathogen. However, recent research, accelerated by COVID-19, has raised thought-provoking questions about the limitations of this view. Dietary carbohydrates and ethanol have been shown to enable its pathogenic transition. Its hyphae express epitopes that may initiate celiac and Crohn’s diseases. Hyphal mannan is potentially linked to Gq-coupled G-protein coupled receptors. Antibodies to these receptors include chemotactic cytokine receptors, which may mediate the escape of latent Epstein–Barr virus. Candida hyphae induce mast cells to release histamine and tryptase, which are associated with paroxysmal orthostatic tachycardia syndrome, mast cell activation syndrome, and hypermobility spectrum disorder—conditions frequently observed in long COVID (LC). Hyphae are also implicated in periodontitis, a condition linked to and potentially serving as a sentinel risk indicator for cancer, dementia, autoimmune disease, atherosclerotic cardiovascular disease, and chronic diseases in general. Candida yeast and hyphae can produce their own indoleamine dioxygenase (IDO), which antagonizes host IDO, impacting tryptophan metabolism. Altered tryptophan metabolism is observed in cancer, dementia, autoimmune diseases, and LC. Candida overgrowth (CO) also releases candidalysin, a toxin that suppresses competing intestinal bacteria, triggers inflammasomes, and causes hypercitrullination, a process associated with several autoimmune diseases and cancers. In addition, CO produces aspartyl protease, leading to the release of zonulin from intestinal epithelial cells, which increase intestinal and endothelial permeability – hallmarks of autoimmune diseases. Candida-induced acetaldehyde amplifies the harmful effects of a genetic variant, highly prevalent in Americans, linked to cancer, dementia, and autoimmune diseases. The gut microbiome is increasingly recognized as critical to overall health, and hyphae may play a major role in determining its composition. In this review, the roles of cholecalciferol, tryptophan, and magnesium in counteracting the yeast-to-hyphae transition and invasion are explored. The approach presented here is conceptual rather than empirical.
- Li X, Li C, Zhang W, Wang Y, Qian P, Huang H. Inflammation and aging: Signaling pathways and intervention therapies. Signal Transduct Target Ther. 2023;8:239. doi: 10.1038/s41392-023-01502-8
- Santos-Moreno P, Burgos-Angulo G, Martinez- Ceballos MA, et al. Inflammaging as a link between autoimmunity and cardiovascular disease: The case of rheumatoid arthritis. RMD Open. 2021;7(1):e001470. doi: 10.1136/rmdopen-2020-001470
- Mekli K, Lophatananon A, Maharani A, Nazroo JY, Muir KR. Association between an inflammatory biomarker score and future dementia diagnosis in the population-based UK Biobank cohort of 500,000 people. PLoS One. 2023;18(7):e0288045. doi: 10.1371/journal.pone.0288045
- Berben L, Floris G, Wildiers H, Hatse S. Cancer and aging: Two tightly interconnected biological processes. Cancers (Basel). 2021;13(6):1400. doi: 10.3390/cancers13061400
- Zhu L, Tang Z, Hu R, Gu M, Yang, Y. Ageing and Inflammation in Periodontium. Encyclopedia; 2024. Available from: https://encyclopedia.pub/entry/51981 [Last accessed on 2024 Dec 09].
- Kim EH, Nam S, Park CH, et al. Periodontal disease and cancer risk: A nationwide population-based cohort study. Front Oncol. 2022;12:901098. doi: 10.3389/fonc.2022.901098
- Guo H, Chang S, Pi X, et al. The effect of periodontitis on dementia and cognitive impairment: A meta-analysis. Int J Environ Res Public Health. 2021;18(13):6823. doi: 10.3390/ijerph18136823
- Lundergan W, Parthasarathy K, Knight N. Periodontitis and Alzheimer’s disease: Is there a connection? Oral. 2024;4(1):61-73. doi: 10.3390/oral4010006
- Rutter-Locher Z, Smith TO, Giles I, Sofat N. Association between systemic lupus erythematosus and periodontitis: A systematic review and meta-analysis. Front Immunol. 2017;8:1295. doi: 10.3389/fimmu.2017.01295
- Hussain SB, Leira Y, Zehra SA, et al. Periodontitis and systemic lupus erythematosus: A systematic review and meta-analysis. J Periodontal Res. 2022;57(1):1-10. doi: 10.1111/jre.12936
- Stanomir A, Micu IC, Picoș A, et al. Periodontitis burden in diffuse versus limited systemic sclerosis subtypes: A pilot study. Curr Health Sci J. 2023;49(2):280-287. doi: 10.12865/CHSJ.49.02.280
- Patil BS, Patil S, Gururaj TR. Probable autoimmune causal relationship between periodontitis and Hashimotos thyroidits: A systemic review. Niger J Clin Pract. 2011;14(3):253-261. doi: 10.4103/1119-3077.86763
- Tsimpiris A, Tsolianos I, Grigoriadis A, Tsimtsiou Z, Goulis DG, Grigoriadis N. Association of chronic periodontitis with multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord. 2023;77:104874. doi: 10.1016/j.msard.2023.104874
- de Molon RS, Rossa C Jr., Thurlings RM, Cirelli JA, Koenders MI. Linkage of periodontitis and rheumatoid arthritis: Current evidence and potential biological interactions. Int J Mol Sci. 2019;20(18):4541. doi: 10.3390/ijms20184541
- Skipina TM, Elhawary MM, Soliman EZ. Periodontal disease is associated with elevated atherosclerotic cardiovascular disease risk score. Am J Med Sci. 2022;364(3):327-332. doi: 10.1016/j.amjms.2022.04.002
- Kim CM, Lee S, Hwang W, et al. Obesity and periodontitis: A systematic review and updated meta-analysis. Front Endocrinol (Lausanne). 2022;13:999455. doi: 10.3389/fendo.2022.999455
- Shoukat M, Ullah F, Tariq MN, Din G, Khadija B, Faryal R. Profiling of potential pathogenic Candida species in obesity. Microb Pathog. 2023;174:105894. doi: 10.1016/j.micpath.2022.105894
- Bhuyan R, Bhuyan SK, Mohanty JN, Das S, Juliana N, Juliana IF. Periodontitis and its inflammatory changes linked to various systemic diseases: A review of its underlying mechanisms. Biomedicines. 2022;10(10):2659. doi: 10.3390/biomedicines10102659
- Isola G, Polizzi A, Santonocito S, Alibrandi A, Williams RC. Periodontitis activates the NLRP3 inflammasome in serum and saliva. J Periodontol. 2022;93(1):135-145. doi: 10.1002/JPER.21-0049
- Matarese G, Currò M, Isola G, et al. Transglutaminase 2 up-regulation is associated with RANKL/OPG pathway in cultured HPDL cells and THP-1-differentiated macrophages. Amino Acids. 2015;47(11):2447-2455. doi: 10.1007/s00726-015-2039-5
- Reyna-Beltrán E, Iranzo M, Calderón-González KG, et al. The Candida albicans ENO1 gene encodes a transglutaminase involved in growth, cell division, morphogenesis, and osmotic protection. J Biol Chem. 2018;293(12):4304-4323. doi: 10.1074/jbc.M117.810440
- Gupta S, Mohindra R, Singla M, et al. The clinical association between periodontitis and COVID-19. Clin Oral Investig. 2022;26(2):1361-1374. doi: 10.1007/s00784-021-04111-3
- Lloyd-Jones G, Pontes CC, Molayem S, Chapple ILC. The oral-vascular-pulmonary infection route: A pathogenic mechanism linking oral health status to acute and post-acute COVID-19. Curr Oral Health Rep. 2023;10:163-174. doi: 10.1007/s40496-023-00354-z
- Suresh Unniachan A, Krishnavilasom Jayakumari N, Sethuraman S. Association between Candida species and periodontal disease: A systematic review. Curr Med Mycol. 2020;6(2):63-68. doi: 10.18502/CMM.6.2.3420
- Bartnicka D, Gonzalez-Gonzalez M, Sykut J, et al. Candida albicans shields the periodontal killer Porphyromonas gingivalis from recognition by the host immune system and supports the bacterial infection of gingival tissue. Int J Mol Sci. 2020;21(6):1984. doi: 10.3390/ijms21061984
- Shigeishi H, Nakamura M, Oka I, et al. The associations of periodontopathic bacteria and oral Candida with periodontal inflamed surface area in older adults receiving supportive periodontal therapy. Diagnostics (Basel). 2021;11(8):1397. doi: 10.3390/diagnostics11081397
- Liu W, Zhang W, Ye M. Association between carbohydrate-to-fiber ratio and the risk of periodontitis. J Dent Sci. 2024;19:246-253. doi: 10.1016/j.jds.2023.04.012
- Molek M, Florenly F, Lister INE, Wahab TA, Lister C, Fioni F. Xerostomia and hyposalivation in association with oral candidiasis: A systematic review and meta-analysis. Evid Based Dent. 2022. doi: 10.1038/s41432-021-0210-2
- Patel D, Louca C, Machuca Vargas, C. Oral manifestations of long COVID and the views of healthcare professionals. Br Dent J. 2024;236:111-116. doi: 10.1038/s41415-023-6715-7
- Wright CD. Zonulin as a Mediator of Psychological Stress and Periodontal Disease. Graduate Theses, Dissertations, and Problem Reports; 2022. p. 11331. Available from: https:// researchrepository.wvu.edu/etd/11331 [Last accessed on 2024 Dec 09].
- Abigail E, Haytham E. Assessment of the Relevance of Intestinal Zonulin Test for Inflammatory Conditions in An Integrated Clinical Setting; 2018. Available from: https://api. semanticscholar.org/corpusid:53624540 [Last accessed on 2024 Dec 09].
- DaFonte TM, Valitutti F, Kenyon V, et al. Zonulin as a biomarker for the development of celiac disease. Pediatrics. 2024;153(1):e2023063050. doi: 10.1542/peds.2023-063050
- Caviglia GP, Dughera F, Ribaldone DG, et al. Serum zonulin in patients with inflammatory bowel disease: A pilot study. Minerva Med. 2019;110(2):95-100. doi: 10.23736/S0026-4806.18.05787-7
- Jangi S, Hsia K, Zhao N, et al. Dynamics of the gut mycobiome in patients with ulcerative colitis. Clin Gastroenterol Hepatol. 2024;22(4):821-830.e7. doi: 10.1016/j.cgh.2023.09.023
- Chambers P. Candida and Long Covid: Mannan Not from Heaven. London: Qeios; 2024. doi: 10.32388/JE31EO.5
- Riemekasten G, Petersen F, Heidecke H. What makes antibodies against G protein-coupled receptors so special? A novel concept to understand chronic diseases. Front Immunol. 2020;11:564526. doi: 10.3389/fimmu.2020.564526
- Xie AX, Madayag A, Minton SK, McCarthy KD, Malykhina AP. Sensory satellite glial Gq-GPCR activation alleviates inflammatory pain via peripheral adenosine 1 receptor activation. Sci Rep. 2020;10:14181. doi: 10.1038/s41598-020-71073-z
- Li H, Wang R, Lu Y, Xu X, Ni J. Targeting G protein-coupled receptor for pain management. Brain Circ. 2017;3(2):109-113. doi: 10.4103/bc.bc_3_17
- An SS, Liggett SB. Taste and smell GPCRs in the lung: Evidence for a previously unrecognized widespread chemosensory system. Cell Signal. 2018;41:82-88. doi: 10.1016/j.cellsig.2017.02.002
- Chan CK, Liao SY, Zhang YL, Xu A, Tse HF, Vanhoutte PM. Protective effects of histamine on Gq-mediated relaxation in regenerated endothelium. Am J Physiol Heart Circ Physiol. 2014;306(2):H286-H290. doi: 10.1152/ajpheart.00733.2013
- Shen J, Zhang D, Fu Y, Chen A, Yang X, Zhang H. Cryo-EM structures of human bradykinin receptor-Gq proteins complexes. Nat Commun. 2022;13(1):714. doi: 10.1038/s41467-022-28399-1
- Kumar R, Rojas IG, Edgerton M. Candida albicans Sap6 initiates oral mucosal inflammation via the protease activated receptor PAR2. Front Immunol. 2022;13:912748. doi: 10.3389/fimmu.2022.912748
- Yu J, Shen Y, Zhou N. Advances in the role and mechanism of zonulin pathway in kidney diseases. Int Urol Nephrol. 2021;53:2081-2088. doi: 10.1007/s11255-020-02756-9
- Choi E, Murray B, Choi S. Biofilm and cancer: Interactions and future directions for cancer therapy. Int J Mol Sci. 2023;24(16):12836. doi: 10.3390/ijms241612836
- Chakravarthi ST, Joshi SG. An association of pathogens and biofilms with Alzheimer’s disease. Microorganisms. 2021;10(1):56. doi: 10.3390/microorganisms10010056
- Tonelli A, Lumngwena EN, Ntusi NAB. The oral microbiome in the pathophysiology of cardiovascular disease. Nat Rev Cardiol. 2023;20:386-403. doi: 10.1038/s41569-022-00825-3
- Miller AL, de Anda J, Wong GCL, Tükel Ç. Amyloid-containing biofilms and autoimmunity. Curr Opin Struct Biol. 2022;75:102435. doi: 10.1016/j.sbi.2022.102435
- Aloyouny AY, Bepari A, Rahman I. Evaluating the role of CXCR3 in pain modulation: A literature review. J Pain Res. 2020;13:1987-2001. doi: 10.2147/JPR.S254276
- Hedrick MN, Lonsdorf AS, Hwang ST, Farber JM. CCR6 as a possible therapeutic target in psoriasis. Expert Opin Ther Targets. 2010;14(9):911-922.doi: 10.1517/14728222.2010.504716
- Ito T, Kageyama R, Nakazawa S, Honda T. Understanding the significance of cytokines and chemokines in the pathogenesis of alopecia areata. Exp Dermatol. 2020;29(8):726-732. doi: 10.1111/exd.14129
- He Q, Yuan Q, Shan H, et al. Mechanisms of ligand recognition and activation of melanin-concentrating hormone receptors. Cell Discov. 2024;10:48. doi: 10.1038/s41421-024-00679-8
- Unger L, Skoluda S, Backman E, et al. Candida albicans induces neutrophil extracellular traps and leucotoxic hypercitrullination via candidalysin. EMBO Rep. 2023;24(11):e57571. doi: 10.15252/embr.202357571
- Ciesielski O, Biesiekierska M, Panthu B, Soszyński M, Pirola L, Balcerczyk A. Citrullination in the pathology of inflammatory and autoimmune disorders: Recent advances and future perspectives. Cell Mol Life Sci. 2022;79(2):94. doi: 10.1007/s00018-022-04126-3
- Martos R, Tar I, Nagy AC, Csősz É, Kiss C, Márton I. Hypercitrullination and anti-citrullinated protein antibodies in chronic apical periodontitis, a laboratory investigation. Does autoimmunity contribute to the pathogenesis? Int Endod J. 2023;56(5):584-592. doi: 10.1111/iej.13903
- Alghamdi M, Alasmari D, Assiri A, et al. An overview of the intrinsic role of citrullination in autoimmune disorders. J Immunol Res. 2019;2019:7592851. doi: 10.1155/2019/7592851
- Liu J, Gao J, Wu Z, et al. Anti-citrullinated protein antibody generation, pathogenesis, clinical application, and prospects. Front Med (Lausanne). 2022;8:802934. doi: 10.3389/fmed.2021.802934
- Roghani SA, Dastbaz M, Lotfi R, et al. The development of anticyclic citrullinated peptide (anti-CCP) antibody following severe COVID-19. Immun Inflamm Dis. 2024;12(5):e1276. doi: 10.1002/iid3.1276
- Payet J, Belkhir R, Gottenberg JE, et al. ACPA-positive primary Sjögren’s syndrome: True primary or rheumatoid arthritis-associated Sjögren’s syndrome? RMD Open. 2015;1(1):e000066. doi: 10.1136/rmdopen-2015-000066
- Paksoy T, Ustaoglu G, Tasci M, Demirci M, Unlu O, Yasar MF. Assessment of Epstein-Barr virus, Candida albicans, and some periodontal pathogens in rheumatoid arthritis patients with periodontitis. North Clin Istanb. 2023;10(4):490-500. doi: 10.14744/nci.2023.58998
- Ceccarelli F, Perricone C, Colasanti T, et al. Anti-carbamylated protein antibodies as a new biomarker of erosive joint damage in systemic lupus erythematosus. Arthritis Res Ther. 2018;20:126. doi: 10.1186/s13075-018-1622-z
- Lammers KM, Lu R, Brownley J, et al. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology. 2008;135(1):194-204.e3. doi: 10.1053/j.gastro.2008.03.023
- Rork JF, Rashighi M, Harris JE. Understanding autoimmunity of vitiligo and alopecia areata. Curr Opin Pediatr. 2016;28(4):463-469. doi: 10.1097/MOP.0000000000000375
- Ho J, Camilli G, Griffiths JS, Richardson JP, Kichik N, Naglik JR. Candida albicans and candidalysin in inflammatory disorders and cancer. Immunology. 2021;162(1):11-16. doi: 10.1111/imm.13255
- Yamada H, Ozawa T, Kishi H, et al. Cutting edge: B cells expressing cyclic citrullinated peptide-specific antigen receptor are tolerized in normal conditions. J Immunol. 2018;201(12):3492-3496. doi: 10.4049/jimmunol.1800826
- Houen G, Trier NH. Epstein-barr virus and systemic autoimmune diseases. Front Immunol. 2021;11:587380. doi: 10.3389/fimmu.2020.587380
- Cuomo L, Cirone M, Di Gregorio AO, et al. Elevated antinuclear antibodies and altered anti-Epstein-Barr virus immune responses. Virus Res. 2015;195:95-99. doi: 10.1016/j.virusres.2014.09.014
- Pratesi F, Tommasi C, Anzilotti C, Chimenti D, Migliorini P. Deiminated epstein-barr virus nuclear antigen 1 is a target of anti-citrullinated protein antibodies in rheumatoid arthritis. Arthritis Rheum. 2006;54:733-741. doi: 10.1002/art.21629
- Skare TL, Nisihara R, Barbosa BB, da Luz A, Utiyama S, Picceli V. Anti-CCP in systemic lupus erythematosus patients: A cross sectional study in Brazilian patients. Clin Rheumatol. 2013;32(7):1065-1070. doi: 10.1007/s10067-013-2213-7
- Draborg AH, Duus K, Houen G. Epstein-Barr virus and systemic lupus erythematosus. Clin Dev Immunol. 2012;2012:370516. doi: 10.1155/2012/370516
- Ashangari C, Asghar SF, Syed S, Sulema A. Abstract 116: Antinuclear antibody levels study in postural orthostatic tachycardia syndrome. Circ Cardiovasc Qual Outcomes. 2016;9. doi: 10.1161/circoutcomes.9.suppl_2.116
- Bernal KDE, Whitehurst CB. Incidence of Epstein-Barr virus reactivation is elevated in COVID-19 patients. Virus Res. 2023;334:199157. doi: 10.1016/j.virusres.2023.199157
- Gold JE, Okyay RA, Licht WE, Hurley DJ. Investigation of long COVID Prevalence and its relationship to Epstein-Barr virus reactivation. Pathogens. 2021;10(6):763. doi: 10.3390/pathogens10060763
- Harley JB, Chen X, Pujato M, et al. Transcription factors operate across disease loci, with EBNA2 implicated in autoimmunity. Nat Genet. 2018;50(5):699-707. doi: 10.1038/s41588-018-0102-3
- James JA, Harley JB, Scofield RH. Epstein-Barr virus and systemic lupus erythematosus. Curr Opin Rheumatol. 2006;18(5):462-467. doi: 10.1097/01.bor.0000240355.37927.94
- Trimarchi M, Lauritano D, Ronconi G, et al. Mast cell cytokines in acute and chronic gingival tissue inflammation: Role of IL-33 and IL-37. Int J Mol Sci. 2022;23(21):13242. doi: 10.3390/ijms232113242
- Lagdive SS, Lagdive SB, Mani A, et al. Correlation of mast cells in periodontal diseases. J Indian Soc Periodontol. 2013;17(1):63-67. doi: 10.4103/0972-124X.107500
- Yu M, Song XT, Liu B, Luan TT, Liao SL, Zhao ZT. The emerging role of mast cells in response to fungal infection. Front Immunol. 2021;12:688659. doi: 10.3389/fimmu.2021.688659
- Louisa M, Amalina A, Putranto RA, Komala ON, Anggraini W. Periodontal disease severity in patients with long COVID and non-COVID-19. Dent J. 2024;57(1):50-55. doi: 10.20473/j.djmkg.v57.i1.p50-55
- Schenkein HA, Berry CR, Burmeister JA, et al. Anti-cardiolipin antibodies in sera from patients with periodontitis. J Dent Res. 2003;82(11):919-922. doi: 10.1177/154405910308201114
- Brooks JK, Francis LA. Postural orthostatic tachycardia syndrome: Dental treatment considerations. J Am Dent Assoc. 2006;137(4):488-493. doi: 10.14219/jada.archive.2006.0221
- Kapferer-Seebacher I, Pepin M, Werner R, et al. Periodontal ehlers-danlos syndrome is caused by mutations in C1R and C1S, which encode subcomponents C1r and C1s of complement. Am J Hum Genet. 2016;99(5):1005-1014. doi: 10.1016/j.ajhg.2016.08.019
- Kak MM, Bharali J, Rastogi P, Chaubey KK. Role of mast cells in periodontal health and disease: A comparative study. Int J Appl Dent Sci. 2021;7(4):113-116. doi: 10.22271/ORAL.2021.V7.I4B.1361
- Jones MK, Nair A, Gupta M. Mast cells in neurodegenerative disease. Front Cell Neurosci. 2019;13:171. doi: 10.3389/fncel.2019.00171
- Guo X, Sun M, Yang P, Meng X, Liu R. Role of mast cells activation in the tumor immune microenvironment and immunotherapy of cancers. Eur J Pharmacol. 2023;960:176103. doi: 10.1016/j.ejphar.2023.176103
- Kovanen PT, Bot I. Mast cells in atherosclerotic cardiovascular disease - Activators and actions. Eur J Pharmacol. 2017;816:37-46. doi: 10.1016/j.ejphar.2017.10.013
- Kaczmarczyk-Sekuła K, Dyduch G, Kostański M, et al. Mast cells in systemic and cutaneous lupus erythematosus. Pol J Pathol. 2015;66(4):397-402. doi: 10.5114/pjp.2015.57253
- Suurmond J, Dorjée AL, Boon MR, et al. Mast cells are the main interleukin 17-positive cells in anticitrullinated protein antibody-positive and -negative rheumatoid arthritis and osteoarthritis synovium. Arthritis Res Ther. 2015;17:354. doi: 10.1186/s13075-015-0847-3
- Nakae S, Suto H, Berry GJ, Galli SJ. Mast cell-derived TNF can promote Th17 cell-dependent neutrophil recruitment in ovalbumin-challenged OTII mice. Blood. 2007;109:3640-3648. doi: 10.1182/blood-2006-09-046128
- Kenna T, Brown MA. The role of IL-17-secreting mast cells in inflammatory joint disease. Nat Rev Rheumatol. 2012;9:375-379. doi: 10.1038/nrrheum.2012.205
- De Zuani M, Dal Secco C, Frossi B. Mast cells at the crossroads of microbiota and IBD. Eur J Immunol. 2018;48(12):1929-1937. doi: 10.1002/eji.201847504
- Kempuraj D, Tagen M, Iliopoulou BP, et al. Luteolin inhibits myelin basic protein-induced human mast cell activation and mast cell-dependent stimulation of Jurkat T cells. Br J Pharmacol. 2008;155:1076-1084. doi: 10.1038/bjp.2008.356
- Schofield JR. Persistent antiphospholipid antibodies, mast cell activation syndrome, postural orthostatic tachycardia syndrome and post-COVID syndrome: 1 year on. Eur J Case Rep Intern Med. 2021;8(3):002378. doi: 10.12890/2021_002378
- Gutowski Ł, Kanikowski S, Formanowicz D. Mast cell involvement in the pathogenesis of selected musculoskeletal diseases. Life (Basel). 2023;13(8):1690. doi: 10.3390/life13081690
- Sumantri S, Rengganis I. Immunological dysfunction and mast cell activation syndrome in long COVID. Asia Pac Allergy. 2023;13(1):50-53. doi: 10.5415/apallergy.0000000000000022
- Monaco A, Choi D, Uzun S, Maitland A, Riley B. Association of mast-cell-related conditions with hypermobile syndromes: A review of the literature. Immunol Res. 2022;70(4):419-431. doi: 10.1007/s12026-022-09280-1
- Kohno R, Cannom DS, Olshansky B, et al. Mast cell activation disorder and postural orthostatic tachycardia syndrome: A clinical association. J Am Heart Assoc. 2021;10(17):e021002. doi: 10.1161/JAHA.121.021002
- Gazit Y, Nahir AM, Grahame R, Jacob G. Dysautonomia in the joint hypermobility syndrome. Am J Med. 2003;115:33-40. doi: 10.1016/S0002-9343(03)00235-3
- Wang Y, Wang T, Cai M, Zhu S, Song L, Wang Q. Expression and existence forms of mast cell activating molecules and their antibodies in systemic lupus erythematosus. Immun Inflamm Dis. 2022;10(2):235-240. doi: 10.1002/iid3.567
- Gumà M, Olivé A, Roca J, et al. Association of systemic lupus erythematosus and hypermobility. Ann Rheum Dis. 2002;61:1024-1026. doi: 10.1136/ard.61.11.1024
- Shaw BH, Stiles LE, Bourne K, et al. The face of postural tachycardia syndrome - insights from a large cross-sectional online community-based survey. J Intern Med. 2019;286(4):438-448. doi: 10.1111/joim.12895
- Abu-Shakra M, Gladman DD, Urowitz MB, Farewell V. Anticardiolipin antibodies in systemic lupus erythematosus: Clinical and laboratory correlations. Am J Med. 1995;99(6):624-628. doi: 10.1016/s0002-9343(99)80249-6
- Meroni PL, Tsokos GC. Editorial: Systemic lupus erythematosus and antiphospholipid syndrome. Front Immunol. 2019;10:199. doi: 10.3389/fimmu.2019.00199
- Mangani D, Yang D, Anderson AC. Learning from the nexus of autoimmunity and cancer. Immunity. 2023;56(2):256-271. doi: 10.1016/j.immuni.2023.01.022
- Weaver DF. Alzheimer’s disease as an innate autoimmune disease (AD2): A new molecular paradigm. Alzheimers Dement. 2022;19:1086-1098. doi: 10.1002/alz.12789
- Mortensen, MB, Jensen, JM, Sand, NPR, et al. Association of autoimmune diseases with coronary atherosclerosis severity and ischemic events. J Am Coll Cardiol. 2024;83(25):2643-2654. doi: 10.1016/j.jacc.2024.04.030
- Keyes E, Grinnell M, Jacoby D, et al. Assessment and management of the heightened risk for atherosclerotic cardiovascular events in patients with lupus erythematosus or dermatomyositis. Int J Womens Dermatol. 2021;7(5A):560-575. doi: 10.1016/j.ijwd.2021.08.015
- Popescu D, Rezus E, Badescu MC, et al. Cardiovascular risk assessment in rheumatoid arthritis: Accelerated atherosclerosis, new biomarkers, and the effects of biological therapy. Life (Basel). 2023;13(2):319. doi: 10.3390/life13020319
- Jin T, Huang W, Cao F, et al. Causal association between systemic lupus erythematosus and the risk of dementia: A mendelian randomization study. Front Immunol. 2022;13:1063110. doi: 10.3389/fimmu.2022.1063110
- Kodishala, C, Hulshizer, CA, Kronzer, VL, et al. Risk factors for dementia in patients with incident rheumatoid arthritis: A population-based cohort study. J Rheumatol. 2023;50(1):48-55. doi: 10.3899/jrheum.220200
- Song L, Wang Y, Zhang J, Song N, Xu X, Lu Y. The risks of cancer development in Systemic Lupus Erythematosus (SLE) patients: A systematic review and meta-analysis. Arthritis Res Ther. 2018;20:270. doi: 10.1186/s13075-018-1760-3
- Beydon M, Pinto S, De Rycke Y, et al. Risk of cancer for patients with rheumatoid arthritis versus general population: A national claims database cohort study. Lancet Reg Health Eur. 2023;35:100768. doi: 10.1016/j.lanepe.2023.100768
- Zamani M, Ebrahimtabar F, Alizadeh-Tabari S, et al. Risk of common neurological disorders in adult patients with inflammatory bowel disease: A systematic review and meta-analysis. Inflamm Bowel Dis. 2024;30:2195-2204. doi: 10.1093/ibd/izae012
- Bozza S, Fallarino F, Pitzurra L, et al. A crucial role for tryptophan catabolism at the host/Candida albicans interface. J Immunol. 2005;174(5):2910-2918. doi: 10.4049/jimmunol.174.5.2910
- Eroğlu İ, Eroğlu BÇ, Güven GS. Altered tryptophan absorption and metabolism could underlie long-term symptoms in survivors of coronavirus disease 2019 (COVID-19). Nutrition. 2021;90:111308. doi: 10.1016/j.nut.2021.111308
- Kurgan Ş, Önder C, Balcı N, et al. Influence of periodontal inflammation on tryptophan-kynurenine metabolism: A cross-sectional study. Clin Oral Investig. 2022;26(9):5721-5732. doi: 10.1007/s00784-022-04528-4
- Harris DMM, Szymczak S, Schuchardt S, et al. Tryptophan degradation as a systems phenomenon in inflammation - an analysis across 13 chronic inflammatory diseases. EBioMedicine. 2024;102:105056. doi: 10.1016/j.ebiom.2024.105056
- Brown AJ, Brown GD, Netea MG, Gow NA. Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends Microbiol. 2014;22(11):614-22. doi: 10.1016/j.tim.2014.07.001
- Modoux M, Rolhion N, Lefevre JH, et al. Butyrate acts through HDAC inhibition to enhance aryl hydrocarbon receptor activation by gut microbiota-derived ligands. Gut Microbes. 2022;14(1):2105637. doi: 10.1080/19490976.2022.2105637
- McCrory C, Lenardon M, Traven A. Bacteria-derived short-chain fatty acids as potential regulators of fungal commensalism and pathogenesis. Trends Microbiol. 2024;32:1106-1118. doi: 10.1016/j.tim.2024.04.004
- Badawy AA. Tryptophan metabolism and disposition in cancer biology and immunotherapy. Biosci Rep. 2022;42(11):BSR20221682. doi: 10.1042/BSR20221682
- Seo SK, Kwon B. Immune regulation through tryptophan metabolism. Exp Mol Med. 2023;55(7):1371-1379. doi: 10.1038/s12276-023-01028-7
- Savonije K, Weaver DF. The role of tryptophan metabolism in Alzheimer’s disease. Brain Sci. 2023;13(2):292. doi: 10.3390/brainsci13020292
- Xie L, Wu Q, Li K, et al. Tryptophan metabolism in Alzheimer’s disease with theinvolvement of microglia and astrocyte crosstalk and gut-brain axis. Aging Dis. 2024;15(5):2168-2190. doi: 10.14336/AD.2024.0134
- Xue C, Li G, Zheng Q, et al. Tryptophan metabolism in health and disease. Cell Metab. 2023;35(8):1304-1326. doi: 10.1016/j.cmet.2023.06.004
- Ojo ES, Tischkau SA. The role of AhR in the hallmarks of brain aging: Friend and foe. Cells. 2021;10(10):2729. doi: 10.3390/cells10102729
- Wang Z, Snyder M, Kenison JE, et al. How the AhR became important in cancer: The role of chronically active AhR in cancer aggression. Int J Mol Sci. 2020;22(1):387. doi: 10.3390/ijms22010387
- Zhu K, Meng Q, Zhang Z, et al. Aryl hydrocarbon receptor pathway: Role, regulation and intervention in atherosclerosis therapy (Review). Mol Med Rep. 2019;20(6):4763-4773. doi: 10.3892/mmr.2019.10748
- Zeng X, Feng M, Lu J, et al. Beyond transcription, aryl hydrocarbon receptor plays a protective role in periodontitis by interacting with CaMKII. J Periodontol. 2024. doi: 10.1002/JPER.24-0021
- Meissner WG, Remy P, Giordana C, et al. Trial of lixisenatide in early Parkinson’s disease. N Engl J Med. 2024;390(13):1176-1185. doi: 10.1056/NEJMoa2312323
- Edison P. GLP-1 Drug Liraglutide May Protect Against Dementia. Philadelphia: Alzheimer’s Association International Conference® (AAIC®); 2024, Available from: https://aaic.alz.org/downloads2024/aaic-2024-glp-1-ph2- trial.pdf [Last accessed on 2024 Dec 09].
- Wang L, Xu R, Kaelber DC, Berger NA. Glucagon-like peptide 1 receptor agonists and 13 obesity-associated cancers in patients with type 2 diabetes. JAMA Netw Open. 2024;7(7):e2421305. doi: 10.1001/jamanetworkopen.2024.21305
- Kherad Z, Yazdanpanah S, Saadat F, Pakshir K, Zomorodian K. Vitamin D3: A promising antifungal and antibiofilm agent against Candida species. Curr Med Mycol. 2023;9(2):17-22. doi: 10.18502/cmm.2023.345062.1416
- Lei J, Xiao W, Zhang J, et al. Antifungal activity of vitamin D3 against Candida albicans in vitro and in vivo. Microbiol Res. 2022;265:127200. doi: 10.1016/j.micres.2022.127200
- Zhang Y, Yan R, Zhou Q. ACE2, B0AT1, and SARS-CoV-2 spike protein: Structural and functional implications. Curr Opin Struct Biol. 2022;74:102388. doi: 10.1016/j.sbi.2022.102388
- Essex M, Millet Pascual-Leone B, Löber U, et al. Gut microbiota dysbiosis is associated with altered tryptophan metabolism and dysregulated inflammatory response in COVID-19. NPJ Biofilms Microbiomes. 2024;10:66. doi: 10.1038/s41522-024-00538-0
- Centers for Disease Control and Prevention. MTHFR Gene Variant and Folic Acid Facts. Available from: https://www. cdc.gov/folic-acid/data-research/mthfr/index.html [Last accessed on 2024 Dec 09].
- Barak AJ, Beckenhauer HC, Tuma DJ. Methionine synthase. A possible prime site of the ethanolic lesion in liver. Alcohol. 2002;26(2):65-67. doi: 10.1016/s0741-8329(01)00201-4
- Ponti G, Pastorino L, Manfredini M, et al. COVID-19 spreading across world correlates with C677T allele of the methylenetetrahydrofolate reductase (MTHFR) gene prevalence. J Clin Lab Anal. 2021;35(7):e23798. doi: 10.1002/jcla.23798
- Meng LH, Awakawa T, Li XM, et al. Discovery of (±)-penindolenes reveals an unusual indole ring cleavage pathway catalyzed by P450 monooxygenase. Angew Chem Int Ed Engl. 2024;63(26):e202403963. doi: 10.1002/anie.202403963
- Mansmann HC Jr. Consider magnesium homeostasis: III: Cytochrome P450 enzymes and drug toxicity. Appl Immunohistochem Mol Morphol. 1994;8:7-28. doi: 10.1089/pai.1994.8.7
- Kong F, Wang J, Han R, et al. Antifungal activity of magnesium oxide nanoparticles: Effect on the growth and key virulence factors of Candida albicans. Mycopathologia. 2020;185:485-494. doi: 10.1007/s11046-020-00446-9
- Ashique S, Kumar S, Hussain A, et al. A narrative review on the role of magnesium in immune regulation, inflammation, infectious diseases, and cancer. J Health Popul Nutr. 2023;42(1):74. doi: 10.1186/s41043-023-00423-0
- Yang Z, Zhang Y, Gao J, Yang Q, Qu H, Shi J. Association between dietary magnesium and 10-year risk of a first hard atherosclerotic cardiovascular disease event. Am J Med Sci. 2024;68(4):355-360. doi: 10.1016/j.amjms.2024.05.014
- Rosanoff A, Dai Q, Shapses SA. Essential nutrient interactions: Does low or suboptimal magnesium status interact with vitamin D and/or calcium status? Adv Nutr. 2016;7(1):25-43. doi: 10.3945/an.115.008631
- Du K, Zheng X, Ma ZT, Lv JY, Jiang WJ, Liu MY. Association of circulating magnesium levels in patients with Alzheimer’s disease from 1991 to 2021: A systematic review and meta-analysis. Front Aging Neurosci. 2022;13:799824. doi: 10.3389/fnagi.2021.799824
- Chen F, Wang J, Cheng Y, et al. Magnesium and cognitive health in adults: A systematic review and meta-analysis. Adv Nutr. 2024;15:100272. doi: 10.1016/j.advnut.2024.100272
- Garnaud C, Champleboux M, Maubon D, Cornet M, Govin J. Histone deacetylases and their inhibition in Candida species. Front Microbiol. 2016;7:1238. doi: 10.3389/fmicb.2016.01238
- Singh V, Lee G, Son H, et al. Butyrate producers, “The Sentinel of Gut”: Their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front Microbiol. 2023;13:1103836. doi: 10.3389/fmicb.2022.1103836
- Patman G. Gut microbiota: Lactobacillus acidophilus opens the door to butyrate. Nat Rev Gastroenterol Hepatol. 2015;12:552. doi: 10.1038/nrgastro.2015.153
- Spacova I, Allonsius CN, De Boeck I, et al. Multifactorial inhibition of Candida albicans by combinations of lactobacilli and probiotic Saccharomyces cerevisiae CNCM I-3856. Sci Rep. 2024;14:9365. doi: 10.1038/s41598-024-59869-9
- Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr. 2003;133(7 Suppl):2485S-2493S. doi: 10.1093/jn/133.7.2485S
- Simonetti G, Passariello C, Rotili D, Mai A, Garaci E, Palamara AT. Histone deacetylase inhibitors may reduce pathogenicity and virulence in Candida albicans. FEMS Yeast Res. 2007;7(8):1371-1380. doi: 10.1111/j.1567-1364.2007.00276.x
- Yang C, Li G, Zhang Q, et al. Histone deacetylase Sir2 promotes the systemic Candida albicans infection by facilitating its immune escape via remodeling the cell wall and maintaining the metabolic activity. mBio. 2024;15:e00445. doi: 10.1128/mbio.00445-24
- Sanaei M, Kavoosi F. Histone deacetylases and histone deacetylase inhibitors: Molecular mechanisms of action in various cancers. Adv Biomed Res. 2019;8:63. doi: 10.4103/abr.abr_142_19
- Xu K, Dai XL, Huang HC, Jiang ZF. Targeting HDACs: A promising therapy for Alzheimer’s disease. Oxid Med Cell Longev. 2011;2011:143269. doi: 10.1155/2011/143269
- Liaw A, Liu C, Bartold M, Ivanovski S, Han P. Salivary histone deacetylase in periodontal disease: A cross-sectional pilot study. J Periodontal Res. 2023;58(2):433-443. doi: 10.1111/jre.13104
- Jane Tseng C, McDougle CJ, Hooker JM, Zürcher NR. Epigenetics of autism spectrum disorder: Histone deacetylases. Biol Psychiatry. 2021;91:922-933. doi: 10.1016/j.biopsych.2021.11.021
- Siddiqui MT, Cresci GAM. The immunomodulatory functions of butyrate. J Inflamm Res. 2021;14:6025-6041. doi: 10.2147/JIR.S300989
- Ivashkiv LB. IFNγ: Signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat Rev Immunol. 2018;18:545-558. doi: 10.1038/s41577-018-0029-z
- Liu S, Ren J, Ten Dijke P. Targeting TGFβ signal transduction for cancer therapy. Sig Transduct Target Ther. 2021;6:8. doi: 10.1038/s41392-020-00436-9
- Ku S, Haque MA, Jang MJ, et al. The role of Bifidobacterium in longevity and the future of probiotics. Food Sci Biotechnol. 2024;33:2097-2110. doi: 10.1007/s10068-024-01631-y
- Badal VD, Vaccariello ED, Murray ER, et al. The gut microbiome, aging, and longevity: A systematic review. Nutrients. 2020;12(12):3759. doi: 10.3390/nu12123759
- Yu R, Cao X, Sun L, et al. Inactivating histone deacetylase HDA promotes longevity by mobilizing trehalose metabolism. Nat Commun. 2021;12:1981. doi: 10.1038/s41467-021-22257-2
- Seitz HK, Stickel F. Acetaldehyde as an underestimated risk factor for cancer development: Role of genetics in ethanol metabolism. Genes Nutr. 2010;5(2):121-128. doi: 10.1007/s12263-009-0154-1
- Rehm J, Hasan OSM, Black SE, Shield KD, Schwarzinger M. Alcohol use and dementia: A systematic scoping review. Alzheimers Res Ther. 2019;11(1):1. doi: 10.1186/s13195-018-0453-0
- Gibson A, Woodside JV, Young IS, et al. Alcohol increases homocysteine and reduces B vitamin concentration in healthy male volunteers--a randomized, crossover intervention study. QJM. 2008;101(11):881-887. doi: 10.1093/qjmed/hcn112
- Hasan T, Arora R, Bansal AK, et al. Disturbed homocysteine metabolism is associated with cancer. Exp Mol Med. 2019;51:1-13. doi: 10.1038/s12276-019-0216-4
- Smith AD, Refsum H, Bottiglieri T, et al. Homocysteine and dementia: An international consensus statement. J Alzheimers Dis. 2018;62(2):561-570. doi: 10.3233/JAD-171042
- Hu X, Wang JB, Zhao Y, et al. Homocysteine as a trigger and potential therapeutic target for autoimmune diseases. Autoimmun Rev. 2023;22(9):103389. doi: 10.1016/j.autrev.2023.103389
- Peng J, Wu Z. MTHFR act as a potential cancer biomarker in immune checkpoints blockades, heterogeneity, tumor microenvironment and immune infiltration. Discov Oncol. 2023;14(1):112. doi: 10.1007/s12672-023-00716-0
- Reagan AM, Christensen KE, Haber A, et al. A common risk variant in the MTHFR gene contributes to age‐related cerebrovascular dysfunction in VCID. Alzheimers Dement. 2020;16:e038657. doi: 10.1002/alz.038657
- Rodrigues RR, Gurung M, Li Z, et al. Transkingdom interactions between Lactobacilli and hepatic mitochondria attenuate western diet-induced diabetes. Nat Commun. 2021;12:101. doi: 10.1038/s41467-020-20313-x
- Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H. Trends in insulin resistance: Insights into mechanisms and therapeutic strategy. Sig Transduct Target Ther. 2022;7:216. doi: 10.1038/s41392-022-01073-0
- Sohail MU, Yassine HM, Sohail A, Thani AAA. Impact of physical exercise on gut microbiome, inflammation, and the pathobiology of metabolic disorders. Rev Diabet Stud. 2019;15:35-48. doi: 10.1900/RDS.2019.15.35
- Hu D, Liu J, Yu W, et al. Tryptophan intake, not always the more the better. Front Nutr. 2023;10:1140054. doi: 10.3389/fnut.2023.1140054
- Nikolic DM, Dimitrijevic-Sreckovic V, Ranin LT, et al. Homeostatic microbiome disruption as a cause of insulin secretion disorders. Candida albicans, a new factor in pathogenesis of diabetes: A STROBE compliant cross-sectional study. Medicine (Baltimore). 2022;101(45):e31291. doi: 10.1097/MD.0000000000031291
- Vazquez-Munoz R, Dongari-Bagtzoglou A. Anticandidal activities by Lactobacillus Species: An update on mechanisms of action. Front Oral Health. 2021;2:689382. doi: 10.3389/froh.2021.689382
- Rastogi S, Singh A. Gut microbiome and human health: Exploring how the probiotic genus Lactobacillus modulate immune responses. Front Pharmacol. 2022;13:1042189. doi: 10.3389/fphar.2022.1042189
- Korkmaz H, Sirin FB, Torus B. Could there be a role of serum zonulin increase in the development of hypercalcemia in primary hyperparathyroidism. Endocrine. 2021;72:234-238. doi: 10.1007/s12020-020-02504-0
- Lischka J, Schanzer A, Baumgartner M, de Gier C, Greber- Platzer S, Zeyda M. Tryptophan metabolism is associated with bmi and adipose tissue mass and linked to metabolic disease in pediatric obesity. Nutrients. 2022;14(2):286. doi: 10.3390/nu14020286
- Cussotto S, Delgado I, Anesi A, et al. Tryptophan metabolic pathways are altered in obesity and are associated with systemic inflammation. Front Immunol. 2020;11:557. doi: 10.3389/fimmu.2020.00557
- Mailing LJ, Allen JM, Buford TW, Fields CJ, Woods JA. Exercise and the Gut microbiome: A review of the evidence, potential mechanisms, and implications for human health. Exerc Sport Sci Rev. 2019;47(2):75-85. doi: 10.1249/JES.0000000000000183
- Rogiers O, Frising UC, Kucharíková S, et al. Candidalysin crucially contributes to Nlrp3 inflammasome activation by Candida albicans hyphae. mBio. 2019;10(1):e02221-18. doi: 10.1128/mBio.02221-18
- Gouasmi R, Ferraro-Peyret C, Nancey S, et al. The kynurenine pathway and cancer: Why keep it simple when you can make it complicated. Cancers (Basel). 2022;14(11):2793. doi: 10.3390/cancers14112793
- Fernandes BS, Inam ME, Enduru N, Quevedo J, Zhao Z. The kynurenine pathway in Alzheimer’s disease: A meta-analysis of central and peripheral levels. Braz J Psychiatry. 2023;45(3):286-297. doi: 10.47626/1516-4446-2022-2962
- Pallotta MT, Rossini S, Suvieri C, et al. Indoleamine 2,3-dioxygenase 1 (IDO1): An up-to-date overview of an eclectic immunoregulatory enzyme. FEBS J. 2022;289(20):6099-6118. doi: 10.1111/febs.16086
- Aburto MR, Cryan JF. Gastrointestinal and brain barriers: Unlocking gates of communication across the microbiota-gut-brain axis. Nat Rev Gastroenterol Hepatol. 2024;21:222-247. doi: 10.1038/s41575-023-00890-0