Progress in the development of an Advax-adjuvanted protein capsular matrix vaccine against typhoid fever
Typhoid fever, caused by Salmonella Typhi, remains a significant global public health concern, with an estimated 11 – 20 million cases annually. Vaccines are critical to controlling typhoid fever. Widespread vaccination diminishes the emergence of antibiotic-resistant strains of S. Typhi. The economic benefits of vaccination are also substantial, as the costs of treating typhoid fever and its complications can be significant. Ty21a®, a killed whole-cell vaccine, and Vivotif®, a live-attenuated vaccine, have been available for decades but have relatively short durations of action and only provide partial protection. Vi polysaccharide-conjugate vaccines have improved the durability of protection, but there is still room for improvement. Typhax™, a novel alternative to traditional conjugate vaccines, utilizes Vi polysaccharide that is non-covalently entrapped in a poly-L-lysine and CRM197 protein matrix crosslinked by glutaraldehyde. When formulated with Advax-CpG™ adjuvant, Typhax demonstrated promising results in a range of animal models including mice, rabbits, and non-human primates in which it induces high and sustained serum anti-Vi immunoglobulin G and serum bactericidal activity, without any safety or reactogenicity issues. This novel vaccine approach offers the potential for a low-cost, more effective, and durable vaccine against typhoid fever, avoiding the need for frequent booster doses.
- Khan MI, Soofi SB, Ochiai RL, et al. Epidemiology, clinical presentation, and patterns of drug resistance of Salmonella Typhi in Karachi, Pakistan. J Infect Dev Ctries. 2012;6:704-14. doi: 10.3855/jidc.1967
- Typhoid GBD, Paratyphoid C. The global burden of typhoid and paratyphoid fevers: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect Dis. 2019;19:369-381. doi: 10.1016/S1473-3099(18)30685-6
- Mohsen Y, Tarchichi N, Barakat R, et al. The different types of metallophores produced by Salmonella enterica: A review. Microbiol Res. 2023;14:1457-1469.
- Karkey A, Thwaites GE, Baker S. The evolution of antimicrobial resistance in Salmonella Typhi. Curr Opin Gastroenterol. 2018;34:25-30. doi: 10.1097/MOG.0000000000000406
- Levine MM. Use of vaccines for the prevention of typhoid fever. Indian Pediatr. 2003;40:1029-1034.
- Sarma VN, Malaviya AN, Kumar R, Ghai OP, Bakhtary MM. Development of immune response during typhoid fever in man. Clin Exp Immunol. 1977;28:35-39.
- Levine MM, Ferreccio C, Abrego P, Martin OS, Ortiz E, Cryz S. Duration of efficacy of Ty21a, attenuated Salmonella typhi live oral vaccine. Vaccine. 1999;17 Suppl 2:S22-S27. doi: 10.1016/s0264-410x(99)00231-5
- Darton TC, Jones C, Blohmke CJ, et al. Using a human challenge model of infection to measure vaccine efficacy: A randomised, controlled trial comparing the typhoid vaccines M01ZH09 with Placebo and Ty21a. PLoS Negl Trop Dis. 2016;10:e0004926. doi: 10.1371/journal.pntd.0004926
- Sur D, Ochiai RL, Bhattacharya SK, et al. A cluster-randomized effectiveness trial of Vi typhoid vaccine in India. N Engl J Med. 2009;361:335-344. doi: 10.1056/NEJMoa0807521
- Khan MI, Soofi SB, Ochiai RL, et al. Effectiveness of Vi capsular polysaccharide typhoid vaccine among children: A cluster randomized trial in Karachi, Pakistan. Vaccine. 2012;30:5389-5395. doi: 10.1016/j.vaccine.2012.06.015
- Anwar E, Goldberg E, Fraser A, Acosta CJ, Paul M, Leibovici L. Vaccines for preventing typhoid fever. Cochrane Database Syst Rev. 2014;2014:CD001261. doi: 10.1002/14651858.CD001261.pub3
- Milligan R, Paul M, Richardson M, Neuberger A. Vaccines for preventing typhoid fever. Cochrane Database Syst Rev. 2018;5:CD001261. doi: 10.1002/14651858.CD001261.pub4
- Mohan VK, Varanasi V, Singh A, et al. Safety and immunogenicity of a Vi polysaccharide-tetanus toxoid conjugate vaccine (Typbar-TCV) in healthy infants, children, and adults in typhoid endemic areas: A multicenter, 2-cohort, open-label, double-blind, randomized controlled phase 3 study. Clin Infect Dis. 2015;61:393-402. doi: 10.1093/cid/civ295
- Capeding MR, Alberto E, Sil A, et al. Immunogenicity, safety and reactogenicity of a Phase II trial of Vi-DT typhoid conjugate vaccine in healthy Filipino infants and toddlers: A preliminary report. Vaccine. 2020;38:4476-4483. doi: 10.1016/J.VACCINE.2019.09.074
- Mai NL, Phan VB, Vo AH, et al. Persistent efficacy of Vi conjugate vaccine against typhoid fever in young children. N Engl J Med. 2003;349:1390-1391. doi: 10.1056/NEJM200310023491423
- Capeding MR, Teshome S, Saluja T, et al. Safety and immunogenicity of a Vi-DT typhoid conjugate vaccine: Phase I trial in Healthy Filipino adults and children. Vaccine. 2018;36:3794-3801. doi: 10.1016/j.vaccine.2018.05.038
- An SJ, Yoon YK, Kothari S, et al. Immune suppression induced by Vi capsular polysaccharide is overcome by Vi-DT conjugate vaccine. Vaccine. 2012;30:1023-1028. doi: 10.1016/j.vaccine.2011.12.046
- Zuckerman JN, Hatz C, Kantele A. Review of current typhoid fever vaccines, cross-protection against paratyphoid fever, and the European guidelines. Expert Rev Vaccines. 2017;16:1029-1043. doi: 10.1080/14760584.2017.1374861
- Griffin TJ 4th, Thanawastien A, Cartee RT, Mekalanos JJ, Killeen KP. In vitro characterization and preclinical immunogenicity of Typhax, a typhoid fever protein capsular matrix vaccine candidate. Hum Vaccin Immunother. 2019;15:1310-1316. doi: 10.1080/21645515.2019.1599674
- Juel HB, Thomaides-Brears HB, Darton TC, et al. Salmonella Typhi bactericidal antibodies reduce disease severity but do not protect against typhoid fever in a controlled human infection model. Front Immunol. 2017;8:1916. doi: 10.3389/fimmu.2017.01916
- Petrovsky N, Aguilar JC. Vaccine adjuvants: Current state and future trends. Immunol Cell Biol. 2004;82:488-496. doi: 10.1111/j.0818-9641.2004.01272.x
- Stewart EL, Counoupas C, Johansen MD, et al. Mucosal immunization with a delta-inulin adjuvanted recombinant spike vaccine elicits lung-resident immune memory and protects mice against SARS-CoV-2. Mucosal Immunol. 2022;15:1405-1415. doi: 10.1038/s41385-022-00578-9
- Xu S, Yang K, Li R, Zhang L. mRNA vaccine era-mechanisms, drug platform and clinical prospection. Int J Mol Sci. 2020;21:6582. doi: 10.3390/ijms21186582
- Honda-Okubo Y, Cartee RT, Thanawastien A, Seung Yang J, Killeen KP, Petrovsky N. A typhoid fever protein capsular matrix vaccine candidate formulated with Advax- CpG adjuvant induces a robust and durable anti-typhoid Vi polysaccharide antibody response in mice, rabbits and nonhuman primates. Vaccine. 2022;40:4625-4634. doi: 10.1016/j.vaccine.2022.06.043
- Cartee RT, Thanawastien A, Griffin Iv TJ, Mekalanos JJ, Bart S, Killeen KP. A phase 1 randomized safety, reactogenicity, and immunogenicity study of Typhax: A novel protein capsular matrix vaccine candidate for the prevention of typhoid fever. PLoS Negl Trop Dis. 2020;14:e0007912. doi: 10.1371/journal.pntd.0007912
- Katkocin DM. Characterization of multivalent pneumococcal conjugate vaccines. Dev Biol (Basel). 2000;103:113-119.
- Singleton KL, Joffe A, Leitner WW. Review: Current trends, challenges, and success stories in adjuvant research. Front Immunol. 2023;14:1105655. doi: 10.3389/fimmu.2023.1105655
- Cooper PD, Barclay TG, Ginic-Markovic M, Petrovsky N. The polysaccharide inulin is characterized by an extensive series of periodic isoforms with varying biological actions. Glycobiology. 2013;23:1164-1174. doi: 10.1093/glycob/cwt053
- Cooper PD, Petrovsky N. Delta inulin: A novel, immunologically active, stable packing structure comprising beta-D-[2 -> 1] poly(fructo-furanosyl) alpha-D-glucose polymers. Glycobiology. 2011;21:595-606. doi: 10.1093/glycob/cwq201
- Petrovsky N, Cooper PD. Advax, a novel microcrystalline polysaccharide particle engineered from delta inulin, provides robust adjuvant potency together with tolerability and safety. Vaccine. 2015;33:5920-5926. doi: 10.1016/j.vaccine.2015.09.030
- Counoupas C, Pinto R, Nagalingam G, Britton WJ, Petrovsky N, Triccas JA. Delta inulin-based adjuvants promote the generation of polyfunctional CD4(+) T cell responses and protection against Mycobacterium tuberculosis infection. Sci Rep. 2017;7:8582. doi: 10.1038/s41598-017-09119-y
- Honda-Okubo Y, Barnard D, Ong CH, Peng BH, Tseng CT, Petrovsky N. Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. J Virol. 2015;89:2995-3007. doi: 10.1128/JVI.02980-14
- Honda-Okubo Y, Saade F, Petrovsky N. Advax, a polysaccharide adjuvant derived from delta inulin, provides improved influenza vaccine protection through broad-based enhancement of adaptive immune responses. Vaccine. 2012;30:5373-5381. doi: 10.1016/j.vaccine.2012.06.021
- Larena M, Prow NA, Hall RA, Petrovsky N, Lobigs M. JE-ADVAX vaccine protection against Japanese encephalitis virus mediated by memory B cells in the absence of CD8(+) T cells and pre-exposure neutralizing antibody. J Virol. 2013;87:4395-4402. doi: 10.1128/JVI.03144-12
- Li L, Honda-Okubo Y, Li C, Sajkov D, Petrovsky N. Delta inulin adjuvant enhances plasmablast generation, expression of activation-induced cytidine deaminase and B-cell affinity maturation in human subjects receiving seasonal influenza vaccine. PLoS One. 2015;10:e0132003. doi: 10.1371/journal.pone.0132003
- Petrovsky N, Larena M, Siddharthan V, et al. An inactivated cell culture Japanese encephalitis vaccine (JE-ADVAX) formulated with delta inulin adjuvant provides robust heterologous protection against West Nile encephalitis via cross-protective memory B cells and neutralizing antibody. J Virol. 2013;87:10324-10333. doi: 10.1128/JVI.00480-13
- Davtyan H, Zagorski K, Rajapaksha H, et al. Alzheimer’s disease Advax(CpG)-adjuvanted MultiTEP-based dual and single vaccines induce high-titer antibodies against various forms of tau and Abeta pathological molecules. Sci Rep. 2016;6:28912. doi: 10.1038/srep28912
- Gordon D, Kelley P, Heinzel S, Cooper P, Petrovsky N. Immunogenicity and safety of Advax, a novel polysaccharide adjuvant based on delta inulin, when formulated with hepatitis B surface antigen: A randomized controlled Phase 1 study. Vaccine. 2014;32:6469-6477. doi: 10.1016/j.vaccine.2014.09.034
- Gordon DL, Sajkov D, Honda-Okubo Y, et al. Human Phase 1 trial of low-dose inactivated seasonal influenza vaccine formulated with Advax delta inulin adjuvant. Vaccine. 2016;34:3780-3786. doi: 10.1016/j.vaccine.2016.05.071
- Heddle R, Smith A, Woodman R, Hissaria P, Petrovsky N. Randomized controlled trial demonstrating the benefits of delta inulin adjuvanted immunotherapy in patients with bee venom allergy. J Allergy Clin Immunol. 2019;144:504-513. e16. doi: 10.1016/j.jaci.2019.03.035
- Li L, Honda-Okubo Y, Baldwin J, Bowen R, Bielefeldt-Ohmann H, Petrovsky N. Covax-19/Spikogen(R) vaccine based on recombinant spike protein extracellular domain with Advax-CpG55.2 adjuvant provides single dose protection against SARS-CoV-2 infection in hamsters. Vaccine. 2022;40:3182-3192. doi: 10.1016/j.vaccine.2022.04.041
- Tabarsi P, Anjidani N, Shahpari R, et al. Evaluating the efficacy and safety of SpikoGen(R), an Advax-CpG55.2- adjuvanted severe acute respiratory syndrome coronavirus 2 spike protein vaccine: A phase 3 randomized placebo-controlled trial. Clin Microbiol Infect. 2023;29:215-220. doi: 10.1016/j.cmi.2022.09.001
- Tabarsi P, Anjidani N, Shahpari R, et al. Safety and immunogenicity of SpikoGen(R), an Advax-CpG55.2-adjuvanted SARS-CoV-2 spike protein vaccine: A phase 2 randomized placebo-controlled trial in both seropositive and seronegative populations. Clin Microbiol Infect. 2022;28:1263-1271. doi: 10.1016/j.cmi.2022.04.004
- Tabarsi P, Anjidani N, Shahpari R, et al. Immunogenicity and safety of SpikoGen(R), an adjuvanted recombinant SARS-CoV-2 spike protein vaccine as a homologous and heterologous booster vaccination: A randomized placebo-controlled trial. Immunology. 2022;167:340-353. doi: 10.1111/imm.13540
- Sakala IG, Eichinger KM, Petrovsky N. Neonatal vaccine effectiveness and the role of adjuvants. Expert Rev Clin Immunol. 2019;15:869-878. doi: 10.1080/1744666X.2019.1642748
- Honda-Okubo Y, Ong CH, Petrovsky N. Advax delta inulin adjuvant overcomes immune immaturity in neonatal mice thereby allowing single-dose influenza vaccine protection. Vaccine. 2015;33:4892-4900. doi: 10.1016/j.vaccine.2015.07.051
- Sakala IG, Honda-Okubo Y, Li L, Baldwin J, Petrovsky N. A M2 protein-based universal influenza vaccine containing Advax-SM adjuvant provides newborn protection via maternal or neonatal immunization. Vaccine. 2021;39:5162-5172. doi: 10.1016/j.vaccine.2021.07.037
- Poolman J, Borrow R. Hyporesponsiveness and its clinical implications after vaccination with polysaccharide or glycoconjugate vaccines. Expert Rev Vaccines. 2011;10:307-322. doi: 10.1586/erv.11.8
- Keitel WA, Bond NL, Zahradnik JM, Cramton TA, Robbins JB. Clinical and serological responses following primary and booster immunization with Salmonella typhi Vi capsular polysaccharide vaccines. Vaccine. 1994;12:195-199. doi: 10.1016/0264-410x(94)90194-5
- Yang JS, Kim HJ, Yun CH, et al. A semi-automated vibriocidal assay for improved measurement of cholera vaccine-induced immune responses. J Microbiol Methods. 2007;71:141-146. doi: 10.1016/j.mimet.2007.08.009
- Maslanka SE, Gheesling LL, Libutti DE, et al. Standardization and a multilaboratory comparison of Neisseria meningitidis serogroup A and C serum bactericidal assays. The Multilaboratory Study Group. Clin Diagn Lab Immunol. 1997;4:156-167. doi: 10.1128/cdli.4.2.156-167.1997
- Pulickal AS, Gautam S, Clutterbuck EA, et al. Kinetics of the natural, humoral immune response to Salmonella enterica serovar Typhi in Kathmandu, Nepal. Clin Vaccine Immunol. 2009;16:1413-1419. doi: 10.1128/CVI.00245-09
- Feasey NA, Levine MM. Typhoid vaccine development with a human challenge model. Lancet. 2017;390:2419-2421. doi: 10.1016/S0140-6736(17)32407-8
- Waddington CS, Darton TC, Woodward WE, Angus B, Levine MM, Pollard AJ. Advancing the management and control of typhoid fever: A review of the historical role of human challenge studies. J Infect. 2014;68:405-418. doi: 10.1016/j.jinf.2014.01.006