AccScience Publishing / MI / Online First / DOI: 10.36922/mi.4264
REVIEW

Interplays between host pattern-recognition receptors and pathogen ligands in immunogenic cell death

Chuang Li1,2 Chao Qin3,4 Yichen Wei5 Xiaolong Shao1*
Show Less
1 Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
2 Department of Biological Sciences, College of Science, Purdue University, West Lafayette, Indiana, United States of America
3 Department of Veterinary Biomedical Sciences, College of Veterinary Medicine Agricultural University, Beijing, China
4 Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
5 Department of Molecules and Cells, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
Submitted: 17 July 2024 | Accepted: 2 September 2024 | Published: 24 September 2024
© 2024 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The strategic induction of cell death serves as a crucial immune defense mechanism for the eradication of pathogen infections within host cells. Investigating the molecular mechanisms underlying immunogenic cell pathways has significantly enhanced our understanding of the host’s immunity. This review provides a comprehensive overview of the immunogenic cell death mechanisms triggered by pathogen infections, focusing on the critical role of pattern recognition receptors. In response to infections, host cells dictate a variety of cell death pathways, including apoptosis, pyroptosis, necrosis, and lysosomal cell death, which are essential for amplifying immune responses and controlling pathogen dissemination. Key components of these mechanisms are host cellular receptors that recognize pathogen-associated ligands. These receptors activate downstream signaling cascades, leading to the expression of immunoregulatory genes and the production of antimicrobial cytokines and chemokines. Particularly, the inflammasome, a multi-protein complex, plays a pivotal role in these responses by processing pro-inflammatory cytokines and inducing pyroptotic cell death. Pathogens, in turn, have evolved strategies to manipulate these cell death pathways, either by inhibiting them to facilitate their replication or by triggering them to evade host defenses. A deeper understanding of immunogenic cell death is crucial for developing novel immunotherapies, advancing infectious disease and cancer treatment, and revealing the complex interactions between dying cells and the immune system. This review aims to provide systematic summarization as well as recent proceedings regarding the dynamic interplay between host immune mechanisms and pathogen strategies, highlighting the intricate co-evolution of microbial virulence and host immunity.

Keywords
Cell death
Ligands
Receptors
Inflammasome
Pathogens
Apoptosis
Pyroptosis
Lysosomes
Funding
The study was supported by the National Natural Science Foundation of China (32272619 to X. S.). The funders had no role in study design, data collection, interpretation, or the decision to submit the work for publication.
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
  1. Labbé K, Saleh M. Cell death in the host response to infection. Cell Death Differ. 2008;15(9):1339-1349. doi: 10.1038/cdd.2008.91

 

  1. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240-273. doi: 10.1128/cmr.00046-08

 

  1. Li D, Wu M. Pattern recognition receptors in health and diseases. Sig Transduct Target Ther. 2021;6(1):291. doi: 10.1038/s41392-021-00687-0

 

  1. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783-801. doi: 10.1016/j.cell.2006.02.015

 

  1. Zhai Y, Wang C, Jiang Z. Cross-talk between bacterial PAMPs and host PRRs. Natl Sci Rev. 2018;5(6):791-792. doi: 10.1093/nsr/nwy103

 

  1. Petersone L, Edner NM, Ovcinnikovs V, et al. T Cell/B cell collaboration and autoimmunity: An intimate relationship. Front Immunol. 2018;9:1941. doi: 10.3389/fimmu.2018.01941

 

  1. Amarante-Mendes GP, Adjemian S, Branco LM, Zanetti LC, Weinlich R, Bortoluci KR. Pattern recognition receptors and the host cell death molecular machinery. Front Immunol. 2018;9:2379. doi: 10.3389/fimmu.2018.02379

 

  1. Zhang G, Wang J, Zhao Z, et al. Regulated necrosis, a proinflammatory cell death, potentially counteracts pathogenic infections. Cell Death Dis. 2022;13(7):1-14. doi: 10.1038/s41419-022-05066-3

 

  1. Aits S, Jäättelä M. Lysosomal cell death at a glance. J Cell Sci. 2013;126(Pt 9):1905-1912. doi: 10.1242/jcs.091181

 

  1. Khan A, Khanzada MH, Khan K, Jalal K, Uddin R. Integrating core subtractive proteomics and reverse vaccinology for multi-epitope vaccine design against Rickettsia prowazekii endemic typhus. Immunol Res. 2024;72(1):82-95. doi: 10.1007/s12026-023-09415-y

 

  1. Solstad A, Hogaboam O, Forero A, Hemann EA. RIG-I-like receptor regulation of immune cell function and therapeutic implications. J Immunol. 2022;209(5):845-854. doi: 10.4049/jimmunol.2200395

 

  1. Walczak H. Death receptor-ligand systems in cancer, cell death, and inflammation. Cold Spring Harb Perspect Biol. 2013;5(5):a008698. doi: 10.1101/cshperspect.a008698

 

  1. Janeway CA Jr., Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20(1):197-216. doi: 10.1146/annurev.immunol.20.083001.084359

 

  1. Martinon F, Burns K, Tschopp J. The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell. 2002;10(2):417-426. doi: 10.1016/S1097-2765(02)00599-3

 

  1. Rojas-Lopez M, Gil-Marqués ML, Kharbanda V, et al. NLRP11 is a pattern recognition receptor for bacterial lipopolysaccharide in the cytosol of human macrophages. Sci Immunol. 2023;8(85):eabo4767. doi: 10.1126/sciimmunol.abo4767

 

  1. Barton GM, Kagan JC. A cell biological view of Toll-like receptor function: Regulation through compartmentalization. Nat Rev Immunol. 2009;9(8):535-542. doi: 10.1038/nri2587

 

  1. Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA. The dorsoventral regulatory gene cassette spätzle/toll/ cactus controls the potent antifungal response in Drosophila adults. Cell. 1996;86(6):973-983. doi: 10.1016/S0092-8674(00)80172-5

 

  1. Bellocchio S, Montagnoli C, Bozza S, et al. The contribution of the toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol. 2004;172(5):3059-3069. doi: 10.4049/jimmunol.172.5.3059

 

  1. Chen YH, Wu KH, Wu HP. Unraveling the complexities of toll-like receptors: From molecular mechanisms to clinical applications. Int J Mol Sci. 2024;25(9):5037. doi: 10.3390/ijms25095037

 

  1. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: Update on toll-like receptors. Nat Immunol. 2010;11(5):373-384. doi: 10.1038/ni.1863

 

  1. Blasius AL, Beutler B. Intracellular toll-like receptors. Immunity. 2010;32(3):305-315. doi: 10.1016/j.immuni.2010.03.012

 

  1. Sengprasert P, Waitayangkoon P, Kamenkit O, et al. Catabolic mediators from TLR2-mediated proteoglycan aggrecan peptide-stimulated chondrocytes are reduced by Lactobacillus-conditioned media. Sci Rep. 2024;14(1):18043. doi: 10.1038/s41598-024-68404-9

 

  1. Vijay K. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int Immunopharmacol. 2018;59:391-412. doi: 10.1016/j.intimp.2018.03.002

 

  1. Wang S, Zhang K, Huang Q, Meng F, Deng S. TLR4 signalling in ischemia/reperfusion injury: A promising target for linking inflammation, oxidative stress and programmed cell death to improve organ transplantation outcomes. Front Immunol. 2024;15:1447060. doi: 10.3389/fimmu.2024.1447060

 

  1. Hayashi F, Smith KD, Ozinsky A, et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature. 2001;410(6832):1099-1103. doi: 10.1038/35074106

 

  1. Yang J, Yan H. TLR5: Beyond the recognition of flagellin. Cell Mol Immunol. 2017;14(12):1017-1019. doi: 10.1038/cmi.2017.122

 

  1. Yoon SI, Kurnasov O, Natarajan V, et al. Structural basis of TLR5-flagellin recognition and signaling. Science. 2012;335(6070):859-864. doi: 10.1126/science.1215584

 

  1. Park BS, Lee JO. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med. 2013;45(12):e66-e66. doi: 10.1038/emm.2013.97

 

  1. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34(5):637-650. doi: 10.1016/j.immuni.2011.05.006

 

  1. Loo YM, Gale M. Immune signaling by RIG-I-like receptors. Immunity. 2011;34(5):680-692. doi: 10.1016/j.immuni.2011.05.003

 

  1. Kanneganti TD, Özören N, Body-Malapel M, et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature. 2006;440(7081):233-236. doi: 10.1038/nature04517

 

  1. Song J, Li M, Li C, Liu K, Zhu Y, Zhang H. Friend or foe: RIG- I like receptors and diseases. Autoimmun Rev. 2022;21(10):103161. doi: 10.1016/j.autrev.2022.103161

 

  1. Najem MY, Rys RN, Laurance S, et al. Extracellular RNA induces neutrophil recruitment via toll‐like receptor 3 during venous thrombosis after vascular injury. J Am Heart Assoc 2024;13:e034492. doi: 10.1161/JAHA.124.034492

 

  1. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature. 2001;413(6857):732-738. doi: 10.1038/35099560

 

  1. Ko KH, Cha SB, Lee SH, et al. A novel defined TLR3 agonist as an effective vaccine adjuvant. Front Immunol. 2023;14:1075291. doi: 10.3389/fimmu.2023.1075291

 

  1. Takaoka A, Wang Z, Choi MK, et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature. 2007;448(7152):501-505. doi: 10.1038/nature06013

 

  1. Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature. 2008;455(7213):674-678. doi: 10.1038/nature07317

 

  1. Latz E, Schoenemeyer A, Visintin A, et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol. 2004;5(2):190-198. doi: 10.1038/ni1028

 

  1. Hornung V, Ablasser A, Charrel-Dennis M, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009;458(7237):514-518. doi: 10.1038/nature07725

 

  1. Li YP, Liu CR, Deng HL, et al. DNA methylation and single-nucleotide polymorphisms in DDX58 are associated with hand, foot and mouth disease caused by enterovirus 71. PLoS Negl Trop Dis. 2022;16(1):e0010090. doi: 10.1371/journal.pntd.0010090

 

  1. Miya TV, Groome MJ, de Assis Rosa D. TLR genetic variation is associated with Rotavirus-specific IgA seroconversion in South African Black infants after two doses of Rotarix vaccine. Vaccine. 2021;39(48):7028-7035. doi: 10.1016/j.vaccine.2021.10.051

 

  1. Zhong Y, Kinio A, Saleh M. Functions of NOD-like receptors in human diseases. Front Immunol. 2013;4:333. doi: 10.3389/fimmu.2013.00333

 

  1. Davis BK, Wen H, Ting JPY. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol. 2011;29(1):707-735. doi: 10.1146/annurev-immunol-031210-101405

 

  1. Franchi L, Warner N, Viani K, Nuñez G. Function of nod-like receptors in microbial recognition and host defense. Immunol Rev. 2009;227(1):106-128. doi: 10.1111/j.1600-065X.2008.00734.x

 

  1. Zhao Y, Yang J, Shi J, et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 2011;477(7366):596-600. doi: 10.1038/nature10510

 

  1. Wright EK, Goodart SA, Growney JD, et al. Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr Biol. 2003;13(1):27-36. doi: 10.1016/S0960-9822(02)01359-3

 

  1. Kanneganti TD, Lamkanfi M, Núñez G. Intracellular NOD-like receptors in host defense and disease. Immunity. 2007;27(4):549-559. doi: 10.1016/j.immuni.2007.10.002

 

  1. Girardin SE, Boneca IG, Carneiro LAM, et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science. 2003;300(5625):1584-1587. doi: 10.1126/science.1084677

 

  1. Hsu LC, Ali SR, McGillivray S, et al. A NOD2–NALP1 complex mediates caspase-1-dependent IL-1β secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc Natl Acad Sci. 2008;105(22):7803-7808. doi: 10.1073/pnas.0802726105

 

  1. Levinsohn JL, Newman ZL, Hellmich KA, et al. Anthrax lethal factor cleavage of Nlrp1 is required for activation of the inflammasome. PLoS Pathog. 2012;8(3):e1002638. doi: 10.1371/journal.ppat.1002638

 

  1. Babamale AO, Chen ST. Nod-like receptors: Critical intracellular sensors for host protection and cell death in microbial and parasitic infections. Int J Mol Sci. 2021;22(21):11398. doi: 10.3390/ijms222111398

 

  1. Zhang J, Wu H, Yao X, et al. Pyroptotic macrophages stimulate the SARS-CoV-2-associated cytokine storm. Cell Mol Immunol. 2021;18(5):1305-1307. doi: 10.1038/s41423-021-00665-0

 

  1. Pei G, Dorhoi A. NOD-like receptors: Guards of cellular homeostasis perturbation during infection. Int J Mol Sci. 2021;22(13):6714. doi: 10.3390/ijms22136714

 

  1. Alvarez-Simon D, Ait Yahia S, de Nadai P, et al. NOD-like receptors in asthma. Front Immunol. 2022;13:928886. doi: 10.3389/fimmu.2022.928886

 

  1. Rathinam VAK, Fitzgerald KA. Inflammasome complexes: Emerging mechanisms and effector functions. Cell. 2016;165(4):792-800. doi: 10.1016/j.cell.2016.03.046

 

  1. Zheng D, Liwinski T, Elinav E. Inflammasome activation and regulation: Toward a better understanding of complex mechanisms. Cell Discov. 2020;6(1):36. doi: 10.1038/s41421-020-0167-x

 

  1. Rathinam VAK, Vanaja SK, Fitzgerald KA. Regulation of inflammasome signaling. Nat Immunol. 2012;13(4):333-342. doi: 10.1038/ni.2237

 

  1. Choi M, Shin J, Lee CE, et al. Immunogenic cell death in cancer immunotherapy. BMB Rep. 2023;56(5):275-286. doi: 10.5483/BMBRep.2023-0024

 

  1. Galluzzi L, Kepp O, Hett E, Kroemer G, Marincola FM. Immunogenic cell death in cancer: concept and therapeutic implications. J Transl Med. 2023;21(1):162. doi: 10.1186/s12967-023-04017-6

 

  1. Fu J, Wu H. Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu Rev Immunol. 2023;41:301-316. doi: 10.1146/annurev-immunol-081022-021207

 

  1. Paik S, Kim JK, Silwal P, Sasakawa C, Jo EK. An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol. 2021;18(5):1141-1160. doi: 10.1038/s41423-021-00670-3

 

  1. Kelley N, Jeltema D, Duan Y, He Y. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int J Mol Sci. 2019;20(13):3328. doi: 10.3390/ijms20133328

 

  1. de Carvalho Ribeiro M, Szabo G. Role of the inflammasome in liver disease. Annu Rev Pathol. 2022;17:345-365. doi: 10.1146/annurev-pathmechdis-032521-102529

 

  1. Tanwar S, Rhodes F, Srivastava A, Trembling PM, Rosenberg WM. Inflammation and fibrosis in chronic liver diseases including non-alcoholic fatty liver disease and hepatitis C. World J Gastroenterol. 2020;26(2):109-133. doi: 10.3748/wjg.v26.i2.109

 

  1. Zhao Y, Shao F. The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus. Immunol Rev. 2015;265(1):85-102. doi: 10.1111/imr.12293

 

  1. Shao W, Yeretssian G, Doiron K, Hussain SN, Saleh M. The Caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J Biol Chem. 2007;282(50):36321-36329. doi: 10.1074/jbc.M708182200

 

  1. Kumari P, Russo AJ, Shivcharan S, Rathinam VA. AIM2 in health and disease: Inflammasome and beyond. Immunol Rev. 2020;297(1):83-95. doi: 10.1111/imr.12903

 

  1. Wang B, Bhattacharya M, Roy S, Tian Y, Yin Q. Immunobiology and structural biology of AIM2 inflammasome. Mol Aspects Med. 2020;76:100869. doi: 10.1016/j.mam.2020.100869

 

  1. Ge J, Gong YN, Xu Y, Shao F. Preventing bacterial DNA release and absent in melanoma 2 inflammasome activation by a Legionella effector functioning in membrane trafficking. PNAS. 2012;109(16):6193-6198.doi: 10.1073/pnas.1117490109

 

  1. Willingham SB, Bergstralh DT, O’Connor W, et al. Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/Cryopyrin/NLRP3 and ASC. Cell Host Microbe. 2007;2(3):147-159. doi: 10.1016/j.chom.2007.07.009

 

  1. Chen S, Sun C, Wang H, Wang J. The role of Rho GTPases in toxicity of Clostridium difficile toxins. Toxins. 2015;7(12):5254-5267. doi: 10.3390/toxins7124874

 

  1. Wilde C, Genth H, Aktories K, Just I. Recognition of RhoA by Clostridium botulinum C3 exoenzyme. J Biol Chem. 2000;275(22):16478-16483. doi: 10.1074/jbc.M910362199

 

  1. Charan HV, Dwivedi DK, Khan S, Jena G. Mechanisms of NLRP3 inflammasome-mediated hepatic stellate cell activation: Therapeutic potential for liver fibrosis. Genes Dis. 2022;10(2):480-494. doi: 10.1016/j.gendis.2021.12.006

 

  1. Wouters F, Bogie J, Wullaert A, van der Hilst J. Recent insights in pyrin inflammasome activation: Identifying potential novel therapeutic approaches in pyrin-associated autoinflammatory syndromes. J Clin Immunol. 2023;44(1):8. doi: 10.1007/s10875-023-01621-5

 

  1. Jiang L, Lunding LP, Webber WS, et al. An antibody to IL-1 receptor 7 protects mice from LPS-induced tissue and systemic inflammation. Front Immunol. 2024;15:1427100. doi: 10.3389/fimmu.2024.1427100

 

  1. Yehya N, Booth TJ, Ardhanari GD, et al. Inflammatory and tissue injury marker dynamics in pediatric acute respiratory distress syndrome. J Clin Invest. 2024;134(10):e177896. doi: 10.1172/JCI177896

 

  1. Spari D, Schmid A, Sanchez-Taltavull D, et al. Released bacterial ATP shapes local and systemic inflammation during abdominal sepsis. Elife. 2024;13:RP96678. doi: 10.7554/eLife.96678

 

  1. Fidelle M, Yonekura S, Picard M, et al. Resolving the paradox of colon cancer through the integration of genetics, immunology, and the microbiota. Front Immunol. 2020;11:600886. doi: 10.3389/fimmu.2020.600886

 

  1. Kroemer G, Galassi C, Zitvogel L, Galluzzi L. Immunogenic cell stress and death. Nat Immunol. 2022;23(4):487-500. doi: 10.1038/s41590-022-01132-2

 

  1. Chiaravalli M, Spring A, Agostini A, Piro G, Carbone C, Tortora G. Immunogenic cell death: An emerging target in gastrointestinal cancers. Cells. 2022;11(19):3033. doi: 10.3390/cells11193033

 

  1. Newton K, Strasser A, Kayagaki N, Dixit VM. Cell death. Cell. 2024;187(2):235-256. doi: 10.1016/j.cell.2023.11.044

 

  1. Weinrauch Y, Zychlinsky A. The induction of apoptosis by bacterial pathogens. Annu Rev Microbiol. 1999;53(1):155-187. doi: 10.1146/annurev.micro.53.1.155

 

  1. Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516. doi: 10.1080/01926230701320337

 

  1. Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: Host cell death and inflammation. Nat Rev Microbiol. 2009;7(2):99-109. doi: 10.1038/nrmicro2070

 

  1. Everett H, McFadden G. Apoptosis: An innate immune response to virus infection. Trends Microbiol. 1999;7(4):160-165. doi: 10.1016/S0966-842X(99)01487-0

 

  1. Wang J, Fan X, Lindholm C, et al. Helicobacter pylori modulates lymphoepithelial cell interactions leading to epithelial cell damage through fas/fas ligand interactions. Infect Immun. 2000;68(7):4303-4311. doi: 10.1128/iai.68.7.4303-4311.2000

 

  1. Jones NL, Day AS, Jennings H, Shannon PT, Galindo- Mata E, Sherman PM. Enhanced disease severity in Helicobacter pylori-infected mice deficient in fas signaling. Infect Immun. 2002;70(5):2591-2597. doi: 10.1128/iai.70.5.2591-2597.2002

 

  1. Guo Q, Bi J, Wang H, Zhang X. Mycobacterium tuberculosis ESX-1-secreted substrate protein EspC promotes mycobacterial survival through endoplasmic reticulum stress-mediated apoptosis. Emerg Microbes Infect. 2021;10:19-36. doi: 10.1080/22221751.2020.1861913

 

  1. Sanders EJ, Parker E. The role of mitochondria, cytochrome c and caspase‐9 in embryonic lens fibre cell. J Anat. 2002;201:212-135. doi: 10.1046/j.1469-7580.2002.00081.x

 

  1. Nogueira CV, Lindsten T, Jamieson AM, et al. Rapid pathogen-induced apoptosis: A mechanism used by dendritic cells to limit intracellular replication of Legionella pneumophila. PLoS Pathog. 2009;5(6):e1000478. doi: 10.1371/journal.ppat.1000478

 

  1. Luo ZQ. Striking a balance: Modulation of host cell death pathways by Legionella pneumophila. Front Microbiol. 2011;2:36. doi: 10.3389/fmicb.2011.00036

 

  1. Banga S, Gao P, Shen X, et al. Legionella pneumophila inhibits macrophage apoptosis by targeting pro-death members of the Bcl2 protein family. Proc Natl Acad Sci. 2007;104(12):5121-5126. doi: 10.1073/pnas.0611030104

 

  1. Creasey EA, Isberg RR. The protein SdhA maintains the integrity of the Legionella-containing vacuole. Proc Natl Acad Sci. 2012;109(9):3481-3486. doi: 10.1073/pnas.1121286109

 

  1. Silva DS, Pereira LMG, Moreira AR, et al. The apoptogenic toxin AIP56 Is a metalloprotease A-B toxin that cleaves NF-κb P65. PLoS Pathog. 2013;9(2):e1003128. doi: 10.1371/journal.ppat.1003128

 

  1. Sherwood RK, Roy CR. Autophagy evasion and endoplasmic reticulum subversion: The Yin and Yang of Legionella intracellular infection. Annu Rev Microbiol. 2016;70(1):413-433. doi: 10.1146/annurev-micro-102215-095557

 

  1. Casanova JE. Bacterial autophagy: Offense and defense at the host-pathogen interface. Cell Mol Gastroenterol Hepatol. 2017;4(2):237-243. doi: 10.1016/j.jcmgh.2017.05.002

 

  1. Wu S, Shen Y, Zhang S, Xiao Y, Shi S. Salmonella interacts with autophagy to offense or defense. Front Microbiol. 2020;11:721. doi: 10.3389/fmicb.2020.00721

 

  1. Tattoli I, Sorbara MT, Philpott DJ, Girardin SE. Bacterial autophagy. Autophagy. 2012;8(12):1848-1850. doi: 10.4161/auto.21863

 

  1. Shin S, Case CL, Archer KA, et al. Type IV secretion-dependent activation of host MAP kinases induces an increased proinflammatory cytokine response to Legionella pneumophila. PLoS Pathog. 2008;4(11):e1000220. doi: 10.1371/journal.ppat.1000220

 

  1. Rana N, Privitera G, Kondolf HC, et al. GSDMB is increased in IBD and regulates epithelial restitution/repair independent of pyroptosis. Cell. 2022;185(2):283-298.e17. doi: 10.1016/j.cell.2021.12.024

 

  1. Morana O, Wood W, Gregory CD. The apoptosis paradox in cancer. Int J Mol Sci. 2022;23(3):1328. doi: 10.3390/ijms23031328

 

  1. Man SM, Karki R, Kanneganti TD. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277(1):61-75. doi: 10.1111/imr.12534

 

  1. Singh T, Bhattacharya M, Mavi AK, et al. Immunogenicity of cancer cells: An overview. Cell Signal. 2024;113:110952. doi: 10.1016/j.cellsig.2023.110952

 

  1. Mu N, Wang Y, Li X, et al. Crotonylated BEX2 interacts with NDP52 and enhances mitophagy to modulate chemotherapeutic agent-induced apoptosis in non-small-cell lung cancer cells. Cell Death Dis. 2023;14(9):645. doi: 10.1038/s41419-023-06164-6

 

  1. Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: Mechanisms and diseases. Sig Transduct Target Ther. 2021;6(1):128. doi: 10.1038/s41392-021-00507-5

 

  1. Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660-665. doi: 10.1038/nature15514

 

  1. Tan Y, Chen Q, Li X, et al. Pyroptosis: A new paradigm of cell death for fighting against cancer. J Exp Clin Cancer Res. 2021;40(1):153. doi: 10.1186/s13046-021-01959-x

 

  1. Wei Y, Yang L, Pandeya A, Cui J, Zhang Y, Li Z. Pyroptosis-induced inflammation and tissue damage. J Mol Biol. 2022;434(4):167301. doi: 10.1016/j.jmb.2021.167301

 

  1. Wen R, Liu YP, Tong XX, Zhang TN, Yang N. Molecular mechanisms and functions of pyroptosis in sepsis and sepsis-associated organ dysfunction. Front Cell Infect Microbiol. 2022;12:962139. doi: 10.3389/fcimb.2022.962139

 

  1. Zhu C, Xu S, Jiang R, Yu Y, Bian J, Zou Z. The gasdermin family: Emerging therapeutic targets in diseases. Signal Transduct Target Ther. 2024;9:87. doi: 10.1038/s41392-024-01801-8

 

  1. Fortier A, Diez E, Gros P. Naip5/Birc1e and susceptibility to Legionella pneumophila. Trends Microbiol. 2005;13(7):328-335. doi: 10.1016/j.tim.2005.05.007

 

  1. Jorgensen I, Rayamajhi M, Miao EA. Programmed cell death as a defence against infection. Nat Rev Immunol. 2017;17(3):151-164. doi: 10.1038/nri.2016.147

 

  1. Qin K, Jiang S, Xu H, Yuan Z, Sun L. Pyroptotic gasdermin exists in Mollusca and is vital to eliminating bacterial infection. Cell Rep. 2023;42(5):112414. doi: 10.1016/j.celrep.2023.112414

 

  1. Wan X, Li J, Wang Y, et al. H7N9 virus infection triggers lethal cytokine storm by activating gasdermin E-mediated pyroptosis of lung alveolar epithelial cells. Natl Sci Rev. 2022;9(1):nwab137. doi: 10.1093/nsr/nwab137

 

  1. Zhou Z, He H, Wang K, et al. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science. 2020;368(6494):eaaz7548. doi: 10.1126/science.aaz7548

 

  1. Ding J, Wang K, Liu W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 2016;535(7610):111-116. doi: 10.1038/nature18590

 

  1. Liu X, Zhang Z, Ruan J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535(7610):153-158. doi: 10.1038/nature18629

 

  1. Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 2015;265:130-142. doi: 10.1111/imr.12287

 

  1. Brodsky IE, Palm NW, Sadanand S, et al. A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the Type III secretion system. Cell Host Microbe. 2010;7(5):376-387. doi: 10.1016/j.chom.2010.04.009

 

  1. Ratner D, Orning MPA, Proulx MK, et al. The Yersinia pestis effector YopM inhibits pyrin inflammasome activation. PLoS Pathog. 2016;12(12):e1006035. doi: 10.1371/journal.ppat.1006035

 

  1. Monroe KM, McWhirter SM, Vance RE. Identification of host cytosolic sensors and bacterial factors regulating the Type I interferon response to Legionella pneumophila. PLoS Pathog. 2009;5(11):e1000665. doi: 10.1371/journal.ppat.1000665

 

  1. Hou Y, Zeng H, Li Z, et al. Structural mechanisms of calmodulin activation of Shigella effector OspC3 to ADP-riboxanate caspase-4/11 and block pyroptosis. Nat Struct Mol Biol. 2023;30(3):261-272. doi: 10.1038/s41594-022-00888-3

 

  1. Li Z, Liu W, Fu J, et al. Shigella evades pyroptosis by arginine ADP-riboxanation of caspase-11. Nature. 2021;599(7884):290-295. doi: 10.1038/s41586-021-04020-1

 

  1. Zhang K, Peng T, Tao X, et al. Structural insights into caspase ADPR deacylization catalyzed by a bacterial effector and host calmodulin. Mol Cell. 2022;82(24):4712-4726.e7. doi: 10.1016/j.molcel.2022.10.032

 

  1. Liu Y, Zeng H, Hou Y, et al. Calmodulin binding activates Chromobacterium CopC effector to ADP-riboxanate host apoptotic caspases. mBio. 2022;13(3):e00690-22. doi: 10.1128/mbio.00690-22

 

  1. Festjens N, Vanden Berghe T, Vandenabeele P. Necrosis, a well-orchestrated form of cell demise: Signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta. 2006;1757(9):1371-1387. doi: 10.1016/j.bbabio.2006.06.014

 

  1. Zong WX, Thompson CB. Necrotic death as a cell fate. Genes Dev. 2006;20(1):1-15. doi: 10.1101/gad.1376506

 

  1. Ashida H, Mimuro H, Ogawa M, et al. Cell death and infection: A double-edged sword for host and pathogen survival. J Cell Biol. 2011;195(6):931-942. doi: 10.1083/jcb.201108081

 

  1. Berube BJ, Bubeck Wardenburg J. Staphylococcus aureus α-toxin: Nearly a century of intrigue. Toxins (Basel). 2013;5(6):1140-1166. doi: 10.3390/toxins5061140

 

  1. Rao RV, Bredesen DE. Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr Opin Cell Biol. 2004;16(6):653-662. doi: 10.1016/j.ceb.2004.09.012

 

  1. Paiva CN, Bozza MT. Are reactive oxygen species always detrimental to pathogens? Antioxid Redox Signal. 2014;20(6):1000-1037. doi: 10.1089/ars.2013.5447

 

  1. Zhao D, Wu H, Li Y, et al. Effects of the pyrE deletion mutant from Bacillus thuringiensis on gut microbiota and immune response of Spodoptera exigua. Front Microbiol. 2023;14:1182699. doi: 10.3389/fmicb.2023.1182699

 

  1. Schuermans S, Kestens C, Marques PE. Systemic mechanisms of necrotic cell debris clearance. Cell Death Dis. 2024;15(8):557. doi: 10.1038/s41419-024-06947-5

 

  1. Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 2008;27(50):6407-6418. doi: 10.1038/onc.2008.308

 

  1. Bround MJ, Abay E, Huo J, et al. MCU-independent Ca2+ uptake mediates mitochondrial Ca2+ overload and necrotic cell death in a mouse model of Duchenne muscular dystrophy. Sci Rep. 2024;14:6751. doi: 10.1038/s41598-024-57340-3

 

  1. Fujiwara Y, Wada K, Kabuta T. Lysosomal degradation of intracellular nucleic acids-multiple autophagic pathways. J Biochem. 2017;161(2):145-154. doi: 10.1093/jb/mvw085

 

  1. Nguyen JA, Yates RM. Better together: Current insights into phagosome-lysosome fusion. Front Immunol. 2021;12:636078.

 

  1. Zhu W, Tao L, Quick ML, Joyce JA, Qu JM, Luo ZQ. Sensing cytosolic RpsL by macrophages induces lysosomal cell death and termination of bacterial infection. PLoS Pathog. 2015;11(3):e1004704. doi: 10.1371/journal.ppat.1004704

 

  1. Man SM, Kanneganti TD. Regulation of lysosomal dynamics and autophagy by CTSB/cathepsin B. Autophagy. 2016;12(12):2504-2505. doi: 10.1080/15548627.2016.1239679

 

  1. Boulares AH, Yakovlev AG, Ivanova V, et al. Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis: CASPASE 3-resistant parp mutant increases rates of apoptosis in transfected cells. J Biol Chem. 1999;274(33):22932-22940. doi: 10.1074/jbc.274.33.22932

 

  1. Boya P, Kroemer G. Lysosomal membrane permeabilization in cell death. Oncogene. 2008;27(50):6434-6451. doi: 10.1038/onc.2008.310

 

  1. Matsuda S, Okada N, Kodama T, Honda T, Iida T. A cytotoxic type III secretion effector of Vibrio parahaemolyticus targets vacuolar H+-ATPase subunit c and ruptures host cell lysosomes. PLoS Pathog. 2012;8:e1002803. doi: 10.1371/journal.ppat.1002803

 

  1. Xian W, Fu J, Zhang Q, et al. The Shigella kinase effector OspG modulates host ubiquitin signaling to escape septin-cage entrapment. Nat Commun. 2024;15(1):3890. doi: 10.1038/s41467-024-48205-4

 

  1. Spooner R, Yilmaz O. The role of reactive-oxygen-species in microbial persistence and inflammation. Int J Mol Sci. 2011;12:334-352. doi: 10.3390/ijms12010334

 

  1. Li C, Fu J, Shao S, Luo ZQ. Legionella pneumophila exploits the endo-lysosomal network for phagosome biogenesis by co-opting SUMOylated Rab7. PLoS Pathog. 2024;20(5):e1011783. doi: 10.1371/journal.ppat.1011783

 

  1. Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 2022;22(7):381-396. doi: 10.1038/s41568-022-00459-0

 

  1. Butkovich N, Tucker JA, Ramirez A, et al. Nanoparticle vaccines can be designed to induce pDC support of mDCs for increased antigen display. Biomater Sci. 2023;11(2):596-610. doi: 10.1039/d2bm01132h

 

  1. Iurescia S, Fioretti D, Rinaldi M. Targeting cytosolic nucleic acid-sensing pathways for cancer immunotherapies. Front Immunol. 2018;9:11. doi: 10.3389/fimmu.2018.00711

 

  1. Stockwell BR, Angeli JPF, Bayir H, et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273-285. doi: 10.1016/j.cell.2017.09.021

 

  1. Chen X, Kang R, Kroemer G, Tang D. Ferroptosis in infection, inflammation, and immunity. J Exp Med. 2021;218(6):e20210518. doi: 10.1084/jem.20210518

 

  1. Sun S, Shen J, Jiang J, Wang F, Min J. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct Target Ther. 2023;8:372. doi: 10.1038/s41392-023-01606-1

 

  1. Boamah DK, Zhou G, Ensminger AW, O’Connor TJ. from many hosts, one accidental pathogen: The diverse protozoan hosts of Legionella. Front Cell Infect Microbiol. 2017;7:477. doi: 10.3389/fcimb.2017.00477

 

  1. Calvillo-Rodríguez KM, Lorenzo-Anota HY, Rodríguez- Padilla C, Martínez-Torres AC, Scott-Algara D. Immunotherapies inducing immunogenic cell death in cancer: Insight of the innate immune system. Front Immunol. 2023;14:1294434. doi: 10.3389/fimmu.2023.1294434

 

  1. Maekawa T, Kashkar H, Coll NS. Dying in self-defence: A comparative overview of immunogenic cell death signalling in animals and plants. Cell Death Differ. 2023;30(2):258-268. doi: 10.1038/s41418-022-01060-6

 

  1. Sun X, Yang Y, Meng X, Li J, Liu X, Liu H. PANoptosis: Mechanisms, biology, and role in disease. Immunol Rev. 2024;321(1):246-262. doi: 10.1111/imr.13279

 

  1. Pandian N, Kanneganti TD. PANoptosis: A unique innate immune inflammatory cell death modality. J Immunol. 2022;209(9):1625-1633. doi: 10.4049/jimmunol.2200508

 

  1. Li Y, Qiang R, Cao Z, Wu Q, Wang J, Lyu W. NLRP3 inflammasomes: Dual function in infectious diseases. J Immunol. 2024;213(4):407-417. doi: 10.4049/jimmunol.2300745

 

  1. Jiang X, Stockwell BR, Conrad M. Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22(4):266-282. doi: 10.1038/s41580-020-00324-8

 

  1. Checkley W, White AC, Jaganath D, et al. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. Lancet Infect Dis. 2015;15(1):85-94. doi: 10.1016/S1473-3099(14)70772-8

 

  1. He L, Wang L, Wang Z, et al. Immune modulating antibody-drug conjugate (IM-ADC) for cancer immunotherapy. J Med Chem. 2021;64(21):15716-15726. doi: 10.1021/acs.jmedchem.1c00961
Share
Back to top
Microbes & Immunity, Electronic ISSN: 3029-2883 Print ISSN: 3041-0886, Published by AccScience Publishing