AccScience Publishing / JCBP / Online First / DOI: 10.36922/jcbp.4160
REVIEW

Functional neurological disorder and gut microbiome: Casual or causal relationship?

Alejandro Borrego-Ruiz1* Juan J. Borrego2
Show Less
1 Department of Social and Organizational Psychology, National University of Distance Education (UNED), Madrid, Spain
2 Department of Microbiology, University of Malaga, Malaga, Spain
Submitted: 7 July 2024 | Accepted: 2 August 2024 | Published: 19 September 2024
© 2024 by the Author (s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Functional neurological disorder (FND), or conversion disorder, is a psychosomatic condition that affects the voluntary motor and/or sensory functions of the patient. Its origin is not yet fully understood, but the main risk factors related to this disorder include exposure to recent psychological stressors and previous experience of aversive episodes during childhood, such as abuse, family dysfunction, and neglect. The symptoms of FND result from complex interactions involving the central nervous system and also the endocrine and immune systems. In this work, we hypothesized the relationship between the gut microbiome and the pathophysiology of FND because both share several common features, such as the effects of neurotransmitters, the hippocampal expression of brain-derived neurotrophic factor, and the inflammatory responses. Based on these common aspects, we suggested that stress, gut microbiome, and inflammation factors induce chronic and systemic inflammation of the brain causing neurological disorders, including FND. More specific studies are warranted to validate the casual or causal relationship between FND and the gut microbiome.

Keywords
Functional neurological disorder
Conversion disorder
Gut microbiome
Neurotransmitters
Microbial metabolites
Neuroinflammation
Funding
None.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Dhimole A, Bhasin N, Pandya D, et al. Psychosomatic disorders affecting the mouth: A critical review. J Adv Med Med Res. 2016;14(5):1-9. doi: 10.9734/BJMMR/2016/24743

 

  1. Hidaka BH. Depression as a disease of modernity: Explanations for increasing prevalence. J Affect Disord. 2012;140(3):205-214. doi: 10.1016/j.jad.2011.12.036

 

  1. Lipowski ZJ. What does the word “psychosomatic” really mean? A historical and semantic inquiry. Psychosom Med. 1984;46(2):153-171. doi: 10.1097/00006842-198403000-00007

 

  1. Sharma SC. Psychosomatic medicine: Bridging emotion and disease. Kathmandu Univ Med J (KUMJ). 2007;5(2):151-152.

 

  1. Kanaan RAA. Freud’s hysteria and its legacy. Handb Clin Neurol. 2016;139:37-44. doi: 10.1016/B978-0-12-801772-2.00004-7

 

  1. Trimble M, Reynolds EH. A brief history of hysteria: From the ancient to the modern. Handb Clin Neurol. 2016;139:3-10. doi: 10.1016/B978-0-12-801772-2.00001-1

 

  1. Nemiah JC, Freyberger H, Sifneos PE. Alexithymia: A view of the psychosomatic process. In: Modern Trends in Psychosomatic Medicine. London: Butterworths; 1976. p. 430-439.

 

  1. Pourkalbassi D, Patel P, Espinosa PS. Conversion disorder: The brain’s way of dealing with psychological conflicts. Case report of a patient with non-epileptic seizures. Cureus. 2019;11(1):e3902. doi: 10.7759/cureus.3902

 

  1. Espay AJ, Aybek S, Carson A, et al. Current concepts in diagnosis and treatment of functional neurological disorders. JAMA Neurol. 2018;75(9):1132-1141. doi: 10.1001/jamaneurol.2018.1264

 

  1. Drane DL, Fani N, Hallett M, Khalsa SS, Perez DL, Roberts NA. A framework for understanding the pathophysiology of functional neurological disorder. CNS Spectr. 2021;26(6):555-561. doi: 10.1017/S1092852920001789

 

  1. Kozlowska K, Chung J, Cruickshank B, et al. Blood CRP levels are elevated in children and adolescents with functional neurological symptom disorder. Eur Child Adolesc Psychiatry. 2019;28(4):491-504. doi: 10.1007/s00787-018-1212-2

 

  1. Hallett M, Aybek S, Dworetzky BA, McWhirter L, Staab JP, Stone J. Functional neurological disorder: New subtypes and shared mechanisms. Lancet Neurol. 2022;21(6):537-550. doi: 10.1016/S1474-4422(21)00422-1

 

  1. Dar LK, Hasan S. Traumatic experiences and dissociation in patients with conversion disorder. J Pak Med Assoc. 2018;68(12):1776-1781.

 

  1. Nicholson TR, Aybek S, Craig T, et al. Life events and escape in conversion disorder. Psychol Med. 2016;46(12):2617-2626. doi: 10.1017/S0033291716000714

 

  1. Teicher MH, Samson JA, Anderson CM, Ohashi K. The effects of childhood maltreatment on brain structure, function and connectivity. Nat Rev Neurosci. 2016;17(10):652-666. doi: 10.1038/nrn.2016.111

 

  1. Ballmaier M, Schmidt R. Conversion disorder revisited. Funct Neurol. 2005;20(3):105-113.

 

  1. Sar V, Akyüz G, Kundakçi T, Kiziltan E, Dogan O. Childhood trauma, dissociation, and psychiatric comorbidity in patients with conversion disorder. Am J Psychiatry. 2004;161(12):2271-2276. doi: 10.1176/appi.ajp.161.12.2271

 

  1. Raise-Abdullahi P, Meamar M, Vafaei AA, et al. Hypothalamus and post-traumatic stress disorder: A review. Brain Sci. 2023;13(7):1010. doi: 10.3390/brainsci13071010

 

  1. Knezevic E, Nenic K, Milanovic V, Knezevic NN. The role of cortisol in chronic stress, neurodegenerative diseases, and psychological disorders. Cells. 2023;12(23):2726. doi: 10.3390/cells12232726

 

  1. Lobionda S, Sittipo P, Kwon HY, Lee YK. The role of gut microbiota in intestinal inflammation with respect to diet and extrinsic stressors. Microorganisms. 2019;7(8):271. doi: 10.3390/microorganisms7080271

 

  1. Borrego-Ruiz A, Borrego JJ. An updated overview on the relationship between human gut microbiome dysbiosis and psychiatric and psychological disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2024;128:110861. doi: 10.1016/j.pnpbp.2023.110861

 

  1. Mhanna A, Martini N, Hmaydoosh G, et al. The correlation between gut microbiota and both neurotransmitters and mental disorders: A narrative review. Medicine (Baltimore). 2024;103(5):e37114. doi: 10.1097/MD.0000000000037114

 

  1. Bercik P, Denou E, Collins J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011;141(2):599-609, 609.e1-e3. doi: 10.1053/j.gastro.2011.04.052

 

  1. Berk M, Williams LJ, Jacka FN, et al. So depression is an inflammatory disease, but where does the inflammation come from? BMC Med. 2013;11(1):200. doi: 10.1186/1741-7015-11-200

 

  1. Bègue I, Adams C, Stone J, Perez DL. Structural alterations in functional neurological disorder and related conditions: A software and hardware problem? Neuroimage Clin. 2019;22:101798. doi: 10.1016/j.nicl.2019.101798

 

  1. Foroughi AA, Nazeri M, Asadi-Pooya AA. Brain connectivity abnormalities in patients with functional (psychogenic nonepileptic) seizures: A systematic review. Seizure. 2020;81:269-275. doi: 10.1016/j.seizure.2020.08.024

 

  1. Gallucci-Neto J, Brunoni AR, Ono CR, et al. Ictal SPECT in psychogenic nonepileptic and epileptic seizures. J Acad Consult Liaison Psychiatry. 2021;62(1):29-37. doi: 10.1016/j.psym.2020.05.016

 

  1. Demartini B, Nisticò V, Edwards MJ, Gambini O, Priori A. The pathophysiology of functional movement disorders. Neurosci Biobehav Rev. 2021;120:387-400. doi: 10.1016/j.neubiorev.2020.10.019

 

  1. Gelauff J, Stone J, Edwards M, Carson A. The prognosis of functional (psychogenic) motor symptoms: A systematic review. J Neurol Neurosurg Psychiatry. 2014;85(2):220-226. doi: 10.1136/jnnp-2013-305321

 

  1. Demartini B, Gambini O, Uggetti C, et al. Limbic neurochemical changes in patients with functional motor symptoms. Neurology. 2019;93(1):e52-e58. doi: 10.1212/WNL.0000000000007717

 

  1. Demartini B, Invernizzi RW, Campiglio L, et al. Cerebrospinal fluid glutamate changes in functional movement disorders. NPJ Parkinsons Dis. 2020;6(1):37. doi: 10.1038/s41531-020-00140-z

 

  1. Deveci A, Aydemir O, Taskin O, Taneli F, Esen-Danaci A. Serum brain-derived neurotrophic factor levels in conversion disorder: Comparative study with depression. Psychiatry Clin Neurosci. 2007;61(5):571-573. doi: 10.1111/j.1440-1819.2007.01710.x

 

  1. LaFrance WC Jr., Leaver K, Stopa EG, Papandonatos GD, Blum AS. Decreased serum BDNF levels in patients with epileptic and psychogenic nonepileptic seizures. Neurology. 2010;75(14):1285-1291. doi: 10.1212/WNL.0b013e3181f612bb

 

  1. Demartini B, Nisticò V, Benayoun C, et al. Glutamatergic dysfunction, neuroplasticity, and redox status in the peripheral blood of patients with motor conversion disorders (functional movement disorders): A first step towards potential biomarkers discovery. Transl Psychiatry. 2023;13(1):212. doi: 10.1038/s41398-023-02500-8

 

  1. Vaváková M, Ďuračková Z, Trebatická J. Markers of oxidative stress and neuroprogression in depression disorder. Oxid Med Cell Longev. 2015;2015:898393. doi: 10.1155/2015/898393

 

  1. Ng F, Berk M, Dean O, Bush AI. Oxidative stress in psychiatric disorders: Evidence base and therapeutic implications. Int J Neuropsychopharmacol. 2008;11(6):851-876. doi: 10.1017/S1461145707008401

 

  1. Sizer E, Çobanoğlu T, Kaplan İ. The role of oxidative stress levels and S100B levels in children with functional neurological disorder: Pediatric functional neurological disorder. J Surg Med. 2023;7(12):748-753. doi: 10.28982/josam.7856

 

  1. Ulrich K, Jakob U. The role of thiols in antioxidant systems. Free Radic Biol Med. 2019;140:14-27. doi: 10.1016/j.freeradbiomed.2019.05.035

 

  1. Ratcliff J, van der Feltz-Cornelis C. Conversion disorder/ functional neurological disorder - A narrative review on current research into its pathological mechanism. Eur J Psychiatry. 2020;34(3):143-152. doi: 10.1016/j.ejpsy.2020.03.004

 

  1. Calcia MA, Bonsall DR, Bloomfield PS, Selvaraj S, Barichello T, Howes OD. Stress and neuroinflammation: A systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology. 2016;233(9):163750. doi: 10.1007/s00213-016-4218-9

 

  1. Liu YZ, Wang YX, Jiang CL. Inflammation: The common pathway of stress-related diseases. Front Hum Neurosci. 2017;11:316. doi: 10.3389/fnhum.2017.00316

 

  1. Bellavance MA, Rivest S. The HPA - Immune axis and the immunomodulatory actions of glucocorticoids in the brain. Front Immunol. 2014;5:136. doi: 10.3389/fimmu.2014.00136

 

  1. Apazoglou K, Mazzola V, Wegrzyk J, Frasca Polara G, Aybek S. Biological and perceived stress in motor functional neurological disorders. Psychoneuroendocrinology. 2017;85:142-150. doi: 10.1016/j.psyneuen.2017.08.023

 

  1. Morais LH, Schreiber HL 4th, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol. 2021;19(4):241-255. doi: 10.1038/s41579-020-00460-0

 

  1. Ullah H, Arbab S, Tian Y, et al. The gut microbiota-brain axis in neurological disorder. Front Neurosci. 2023;17:1225875. doi: 10.3389/fnins.2023.1225875

 

  1. Chen Y, Xu J, Chen Y. Regulation of neurotransmitters by the gut microbiota and effects on cognition in neurological disorders. Nutrients. 2021;13(6):2099. doi: 10.3390/nu13062099

 

  1. Strandwitz P, Kim KH, Terekhova D, et al. GABA-modulating bacteria of the human gut microbiota. Nat Microbiol. 2019;4(3):396-403. doi: 10.1038/s41564-018-0307-3

 

  1. Liu XF, Shao JH, Liao YT, et al. Regulation of short-chain fatty acids in the immune system. Front Immunol. 2023;14:1186892. doi: 10.3389/fimmu.2023.1186892

 

  1. Łoniewska B, Fraszczyk-Tousty M, Tousty P, Skonieczna-Żydecka K, Maciejewska-Markiewicz D, Łoniewski I. Analysis of fecal short-chain fatty acids (SCFAs) in healthy children during the first two years of life: An observational prospective cohort study. Nutrients. 2023;15(2):367. doi: 10.3390/nu15020367

 

  1. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota gut-brain communication. Nat Rev Gastroenterol Hepatol. 2019;16(8):461-478. doi: 10.1038/s41575-019-0157-3

 

  1. Morris G, Berk M, Carvalho A, et al. The role of the microbial metabolites including tryptophan catabolites and short chain fatty acids in the pathophysiology of immune-inflammatory and neuroimmune disease. Mol Neurobiol. 2017;4(6):4432-4451. doi: 10.1007/s12035-016-0004-2

 

  1. Larraufie P, Martin-Gallausiaux C, Lapaque N, et al. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci Rep. 2018;8(1):74. doi: 10.1038/s41598-017-18259-0

 

  1. Psichas A, Sleeth ML, Murphy KG, et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes (Lond). 2015;39(3):424-429. doi: 10.1038/ijo.2014.153

 

  1. Porter DW, Irwin N, Flatt PR, Gault VA. Prolonged GIP receptor activation improves cognitive function, hippocampal synaptic plasticity and glucose homeostasis in high-fat fed mice. Eur J Pharmacol. 2011;650(2-3):688-693. doi: 10.1016/j.ejphar.2010.10.059

 

  1. Borrego-Ruiz A, Borrego JJ. Influence of human gut microbiome on the healthy and the neurodegenerative aging. Exp Gerontol. 2024;194:112497. doi: 10.1016/j.exger.2024.112497

 

  1. Muller PA, Schneeberger M, Matheis F, et al. Microbiota modulate sympathetic neurons via a gut-brain circuit. Nature. 2020;583(7816):441-446. doi: 10.1038/s41586-020-2474-7

 

  1. Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology. 2017;112(Pt B):399-412. doi: 10.1016/j.neuropharm.2016.07.002

 

  1. Dinan TG, Cryan J. Regulation of the stress response by the gut microbiota: Implications for psychoneuroendocrinology. Psychoneuroendocrinology. 2012;37(9):1369-1378. doi: 10.1016/j.psyneuen.2012.03.007

 

  1. Farooq RK, Alamoudi W, Alhibshi A, Rehman S, Sharma AR, Abdulla FA. Varied composition and underlying mechanisms of gut microbiome in neuroinflammation. Microorganisms. 2022;10(4):705. doi: 10.3390/microorganisms10040705

 

  1. Stolzer I, Scherer E, Süß P, et al. Impact of microbiome-brain communication on neuroinflammation and neurodegeneration. Int J Mol Sci. 2023;24(19):14925. doi: 10.3390/ijms241914925

 

  1. Acioglu C, Heary RF, Elkabes S. Roles of neuronal toll-like receptors in neuropathic pain and central nervous system injuries and diseases. Brain Behav Immun. 2022;102:163-178. doi: 10.1016/j.bbi.2022.02.016

 

  1. Mitchell L, Smith SH, Braun JS, Herzog KH, Weber JR, Tuomanen EI. Dual phases of apoptosis in pneumococcal meningitis. J Infect Dis. 2004;190(11):2039-2046. doi: 10.1086/425520

 

  1. Arentsen T, Qian Y, Gkotzis S, et al. The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain development and behavior. Mol Psychiatry. 2017;22(2):257-266. doi: 10.1038/mp.2016.182

 

  1. Acarin L, González B, Castellano B. Neuronal, astroglial and microglial cytokine expression after an excitotoxic lesion in the immature rat brain. Eur J Neurosci. 2000;12(10):3505-3520. doi: 10.1046/j.1460-9568.2000.00226.x

 

  1. Bittel M, Reichert P, Sarfati I, et al. Visualizing transfer of microbial biomolecules by outer membrane vesicles in microbe-host-communication in vivo. J Extracell Vesicles. 2021;10(12):e12159. doi: 10.1002/jev2.12159

 

  1. Toyofuku M, Schild S, Kaparakis-Liaskos M, Eberl L. Composition and functions of bacterial membrane vesicles. Nat Rev Microbiol. 2023;21(7):415-430. doi: 10.1038/s41579-023-00875-5

 

  1. Van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213-228. doi: 10.1038/nrm.2017.125

 

  1. Park AM, Tsunoda I. Helicobacter pylori infection in the stomach induces neuroinflammation: The potential roles of bacterial outer membrane vesicles in an animal model of Alzheimer’s disease. Inflamm Regen. 2022;42(1):39. doi: 10.1186/s41232-022-00224-8

 

  1. D’anca M, Fenoglio C, Buccellato FR, Visconte C, Galimberti D, Scarpini E. Extracellular vesicles in multiple sclerosis: Role in the pathogenesis and potential usefulness as biomarkers and therapeutic tools. Cells. 2021;10(7):1733. doi: 10.3390/cells10071733

 

  1. Wei S, Peng W, Mai Y, et al. Outer membrane vesicles enhance tau phosphorylation and contribute to cognitive impairment. J Cell Physiol. 2020;235(5):4843-4855. doi: 10.1002/jcp.29362

 

  1. Liu P, Wang X, Yang Q, et al. Collaborative action of microglia and astrocytes mediates neutrophil recruitment to the CNS to defend against Escherichia coli K1 infection. Int J Mol Sci. 2022;23(12):6540. doi: 10.3390/ijms23126540

 

  1. Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461. doi: 10.3389/fimmu.2014.00461

 

  1. Cheng H, Guan X, Chen D, Ma W. The Th17/Treg cell balance: A gut microbiota-modulated story. Microorganisms. 2019;7(12):593. doi: 10.3390/microorganisms7120583

 

  1. Parada Venegas D, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277. doi: 10.3389/fimmu.2019.00277

 

  1. Zhou Y, Jiang C, Xu W, Hou Z, Yuan Y. Research progress in psychosomatic medicine in 2023: An overview. JCBP. 2024;2(2):2601. doi: 10.36922/jcbp.2601

 

  1. Ludwig L, Pasman JA, Nicholson T, et al. Stressful life events and maltreatment in conversion (functional neurological) disorder: Systematic review and meta-analysis of case-control studies. Lancet Psychiatry. 2018;5(4):307-320. doi: 10.1016/S2215-0366(18)30051-8

 

  1. Watson C, Sivaswamy L, Agarwal R, Du W, Agarwal R. Functional neurologic symptom disorder in children: Clinical features, diagnostic investigations, and outcomes at a tertiary care children’s hospital. J Child Neurol. 2019;34(6):325-331. doi: 10.1177/0883073819830193

 

  1. Brown RJ, Reuber M. Psychological and psychiatric aspects of psychogenic non-epileptic seizures (PNES): A systematic review. Clin Psychol Rev. 2016;45:157-182. doi: 10.1016/j.cpr.2016.01.003

 

  1. Tinazzi M, Geroin C, Erro R, et al. Functional motor disorders associated with other neurological diseases: Beyond the boundaries of “organic” neurology. Eur J Neurol. 2021;28(5):1752-1758. doi: 10.1111/ene.14674

 

  1. Foster JA, Rinaman L. Cryan JF. Stress and the gut-brain axis: Regulation by the microbiome. Neurobiol Stress. 2017;7:124-136. doi: 10.1016/j.ynstr.2017.03.001

 

  1. Borrego-Ruiz A, Borrego JJ. Psychobiotics: A new perspective on the treatment of stress, anxiety, and depression. Anxiety Stress. 2024;30(2):79-93. doi: 10.5093/anyes2024a11

 

  1. Borrego-Ruiz A, Borrego JJ. Fecal microbiota transplantation as a tool for therapeutic modulation of neurological and mental disorders. SciBase Neurol. 2024;2(2):1018.

 

  1. Cryan JF, O’Mahony SM. The microbiome-gut-brain axis: From bowel to behavior. Neurogastroenterol Motil. 2011;23(3):187-192. doi: 10.1111/j.1365-2982.2010.01664.x
Share
Back to top
Journal of Clinical and Basic Psychosomatics, Electronic ISSN: 2972-4414 Print ISSN: 3060-8562, Published by AccScience Publishing