AccScience Publishing / IJOCTA / Volume 7 / Issue 3 / DOI: 10.11121/ijocta.01.2017.00492
RESEARCH ARTICLE

Numerical approach for solving time fractional diffusion equation

Dilara Altan Koç1 Mustafa Gülsu1
Show Less
1 Department Mathematics, Mugla Sitki Kocman University, Turkey
IJOCTA 2017, 7(3), 281–287; https://doi.org/10.11121/ijocta.01.2017.00492
Submitted: 16 June 2017 | Accepted: 13 November 2017 | Published: 21 November 2017
© 2017 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

In this article one of the fractional partial differential equations was solved by  finite difference scheme based on five point and three point central space  method with discretization in time. We use between the Caputo and the  Riemann-Liouville derivative definition and the Grünwald-Letnikov operator for  the fractional calculus. The stability analysis of this scheme is examined by using  von-Neumann method. A comparison between exact solutions and numerical  solutions is made. Some figures and tables are included

Keywords
Diffusion equation
Finite difference schemes
Explicit method
Conflict of interest
The authors declare they have no competing interests.
References

[1] Ciesielski, M., Leszczynski J. (2003). Numerical  simulations of anomalous diffusion, Computer  Methods in Mechanics, Gliwice, Poland, June 3-6.

[2] Luenberger, D.G., (1973). Introduction to Linear  and Nonlinear Programming. Addison-Wesley,  California 

[3] Berkowitz, B., Scher, H., (1997). Anomaloustransport in random fracture networks, Physical  Review Letters, 79, 4038-4041.

[4] Klemm, A., Müller, H.P., Kimmich R., (1997).  NMR-microscopy of pore-space backbones in rock,  Phys. Rev. E, 55,4413.

[5] Crank, J., (1989). The Mathematics of Diffusion – 2nd ed., Oxford University Press.

[6] Palade, L.I., Attane, P., Huilgol, R.R., Mena, B., (1999). Anomalous stability behavior of a properly  invariant constitutive equation which generalises  fractional derivative models, International Journal  of Engineering Science., 37, 315-329.

[7] Amblard, F., Maggs, A.C., Yurke, B.,.Pargellis, A.N., Leibler, S., (1996). Subdiffusion and  anomalous local viscoelasticity in actin networks,  Physical Review Letters, 77, 4470-4473.

[8] Baskonus, H.M., Bulut, H., (2015). On the  Numerical Solutions of Some Fractional Ordinary  Differential Equations by Fractional AdamsBashforth-Moulton Method, Open Mathematics,  13(1), 547–556.

[9] Baskonus, H.M., Mekkaoui, T., Hammouch, Z.  and Bulut, H., (2015). Active Control of a Chaotic  Fractional Order Economic System, Entropy, 17(8),  5771-5783. 

[10] Baskonus, H.M., Bulut, H., (2016).Regarding on  the prototype solutions for the nonlinear fractionalorder biological population model, AIP Conference  Proceedings 1738, 290004.

[11] Baskonus, H.M., Hammouch, Z., Mekkaoui, T. and  Bulut, H., (2016).Chaos in the fractional order  logistic delay system: Circuit realization and  synchronization, AIP Conference Proceedings,  1738, 290005. 

[12] Gencoglu, M. T., Baskonus, H. M. and Bulut,  H.,(2017).Numerical simulations to the nonlinear  model of interpersonal Relationships with time  fractional derivative, AIP Conference Proceedings,  1798, 1-9 (020103). 

[13] Li C., Zeng F., (2015). Numerical Methods for  Fractional Calculus, Taylor & Francis Group.

[14] Nakagawa, J., Sakamoto K., Yamamoto M., (2010).  Overwiev to mathematical analysis for fractional  diffusion equation-new mathematical aspects  motivated by industrial collaboration, Journal of  Math-for-Industry, 2, 99-108.

[15] Narahari Achar B., Hanneken J., (2004). Fractional  radial diffusion in a cylinder, Journal of Molecular  Liquids, 114, 147-151.

[16] Langlands, T., (2006). Fractional Dynamics,  Physica A 367, 136.

[17] Diethelm, K., Ford, J., Freed, A., Luchko, Y.,  (2005). Algorithms for the fractional calculus: a  selection of numerical methods, Computer Methods  in Applied Mechanics and Engineering, 194(6),  743-773.

[18] He, J.H., (1998). Approximate analytical solution  for seepage flow with fractional derivatives in  porous media, Computer Methods in Applied  Mechanics and Engineering, 167, 57-68.

[19] Kurulay, M., Bayram, M., (2009). Approximate  analytical solution for the fractional modified KdV  by differential transform method, Communications  in Nonlinear Science and Numerical Simulation, 15(7), 1777-178.

[20] Reutskiy, S. Yu., A. (2017). New semi-analytical  collocation method for solving multi-term  fractional partial differential equations with time  variable coefficients, Applied Mathematical  Modelling, 45, 238–254.

[21] Smith, G. D., (1985). Numerical Solution of Partial  Difference Equations, Finite Difference Methods, Oxford University.

[22] Yuste, S. B., Acedo, L., (2005). An explicit finite  difference method and a new Von Neumann-type  stability analysis for fractional diffusion equations,  Society for Industrial and Applied Mathematics, 42(5), 1862-1874.

[23] Murillo, J. Q., Yuste, S. B., (2011). An Explicit  Numerical Method for the Fractional Cable  Equation, Hindawi Publishing Corporation  International Journal of Differential Equations.

[24] Lubich, C.,(1986).Discretized fractional calculus,  SIAM Journal on Mathematical Analysis,  17(3),704-719.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing