AccScience Publishing / IJOCTA / Volume 7 / Issue 3 / DOI: 10.11121/ijocta.01.2017.00485
RESEARCH ARTICLE

On the exact solutions of the fractional (2+1)- dimensional Davey -  Stewartson equation system

Gülnur Yel1* Zeynep Fidan Koçak2
Show Less
1 Department of Mathematics Education,Final International University, Kyrenia, Cyprus
2 Department of Mathematics, University of Mugla Sıtkı Kocman, Mugla, Turkey
IJOCTA 2017, 7(3), 265–270; https://doi.org/10.11121/ijocta.01.2017.00485
Submitted: 12 June 2017 | Accepted: 2 October 2017 | Published: 31 October 2017
© 2017 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

In this work, we construct the exact traveling wave solutions of the  fractional (2+1)-dimensional Davey-Stewartson equation system (DS) that is complex equation system using the Modified Trial Equation  Method (MTEM). We obtained trigonometric function solutions by  this method that are new in literature.

Keywords
Modified trial equation method
The fractional (2+1)-dimensional Davey-
Stewartson equation system
Trigonometric function solutions
Conflict of interest
The authors declare they have no competing interests.
References

[1] Kocak, Z. F., Bulut, H., and Yel,G., (2014). The  solution of fractional wave equation by using  modified trial equation method and homotopy  analysis method. AIP Conference Proceedings, Vol.  1637, 504-512. 

[2] Bulut, H., Baskonus, H. M., and Pandir, Y., (2013).  The modified trial equation method for fractional  wave equation and time fractional generalized  Burgers equation. Abstract and Applied Analysis,  vol. pp. 1-8. 

[3] Bulut, H., and Pandir, Y., (2013). Modified trial  equation method to the non-linear fractional  Sharma–Tasso–Olever equation. International  Journal of Modeling and Optimization, 3(4), 353- 357. 

[4] Pandir, Y., Gurefe, Y. and Misirli, E., (2013). The  Extended Trial Equation Method for Some Time  Fractional Differential Equations. Discrete  Dynamics in Nature and Society, ID 491359. 

[5] Bekir, A., Guner, O. and Cevikel, A., (2016). The  Exp-function Method for Some Time-fractional  Differential Equations. Journal of Automatica  Sinica,10.1109/2016/7510172. 

[6] Wazwaz, A.M., (2005). The tanh method and the  sine–cosine method for solving the KP-MEWequation. International Journal of Computer  Mathematics, Vol. 82, No. 2, 

[7] Atangana, A., (2016). On the new fractional  derivative and application to nonlinear Fisher’s  reaction-diffusion equation. Applied Mathematics  and Computation, 273, 948-956. 2.1. 

[8] Atangana, A., Baleanu, D., (2016). New fractional  derivatives with nonlocal and non-singular kernel:  Theory and application to heat transfer model.  Thermal Science, 1,763–769. 2.1,2.2, 2.4. 

[9] Atangana, A., Koca, I., (2016). Chaos in a simple  nonlinear system with Atangana- Baleanu  derivatives with fractional order. Chaos, Solitons  and Fractals, 1, 447–454. 2.3. 

[10] Davey,A., Stewartson,K., (1974). On threedimensional packets of surfaces waves.  Proceedings of the Royal Society of London, Ser.  A, 338, pp. 101–110. 

[11] Jafari, H., Kadem, A., Balenu, D. and Yılmaz, T.,  (2012). Solutions of the fractional DaveyStewartson equtions with variational iteration  method. Romanian Reports in Physics, Vol. 64, No.  2, 337–346. 

[12] Zedan, H. A, Barakati, W. and Hamad, N., (2013).  The application of the homotopy analysis method  and the homotopy perturbation method to the  DaveyStewartson equations and comparison  between them and exact solutions. Journal Applied  Mathematics,ID 326473. 

[13] Jafari, H., Sayevand, K., Khan, Y. and Nazari, M.,  (2013). Davey-Stewartson Equation with Fractional  Coordinate Derivatives. The Scientific World  Journal, ID 941645. 

[14] Shehata, A. R, Kamal, E. M and Kareem, H. A.,  (2015). Solutions of the space-Time fractional of  some nonlinear systems of partial differential  equations using modified Kudryashov method.  International Journal of Pure and Applied  Mathematics, 101(4),477-487.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing