AccScience Publishing / IJOCTA / Volume 7 / Issue 3 / DOI: 10.11121/ijocta.01.2017.00503
RESEARCH ARTICLE

Numerical behavior of singular two-point boundary value problems in a comparative way

Selmahan Selim1 Gözde Elver1 Murat Sarı1*
Show Less
1 Department of Mathematics, Yıldız Technical University, Turkey
IJOCTA 2017, 7(3), 288–292; https://doi.org/10.11121/ijocta.01.2017.00503
Submitted: 29 June 2017 | Accepted: 15 November 2017 | Published: 23 November 2017
© 2017 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

This article concentrates on discovering numerical behavior of the singular twopoint boundary value problems through various numerical techniques. This is  carried out in a comparative way by mainly using differential quadrature and  finite element methods. Also a discussion has been done by means of advantages  and disadvantages of the numerical methods of interest.To properly understand  the behavior of the physical processes represented by the model equation, the  calculated solutions have been discussed in detail.

Keywords
Singular boundary value problem
Differential quadrature method
Finite element method
Physical behavior
Conflict of interest
The authors declare they have no competing interests.
References

[1] Caglar, H., Caglar, N., & Ozer, M., (2009). Bspline solution of non-linear singular boundary  value problems arising in physiology. Chaos,  Solitons and Fractals, 39(3), 1232–1237. 

[2] Argub, O., Hammour, Z.A., Momani, S., &  Shawagfeh, N., (2012). Solving Singular Two-point  Boundary Value Problems Using Genetic  Algorithm. Abstract and Applied Analysis, 2012, 25  pages.

[3] Jain, R.K., & Jain, P., (1989). Finite difference  methods for a class of singular two-point boundary  value problems. International Journal of Computer  Mathematics, 27(2), 113-120.

[4] Pandey, R.K., (1996). On a class of weakly regular  singular two point boundary value problems-I.  Nonlinear Analysis, 27(1), 1-12.

[5] Pandey, R.K., (1997). On a class of regular  singular two point boundary value problems. Journal of Mathematical Analysis and  Applications, 208(2), 388-403.

[6] Duffy, D. J., (2000). Finite difference methods in  financial engineering. John Wiley-Sons, England.

[7] Burden, R.L., & Faires, J.D., (2001). Numerical  analysis. Brooks-Cole.

[8] Causon, D.M. & Mingham, C.G., (2010).  Introductory finite difference methods for PDEs.  Bookboon.

[9] Yang, W.Y., Cao, W., Chung, T., & Morsis, J.,  (2005). Applied numerical methods using Matlab.  Wiley-Interscience.

[10] Randall, J.LeVeque, (2007). Finite difference  methods for ordinary and partial differential  equations. Society for Industrial and Applied  Mathematics.

[11] Fornberg, B., (1988). Generation of finite  difference formulas on arbitrarily spaced grids,  Mathematics of Computation, 51(184), 699-706.

[12] Chapra, S.C., & Canale R.P., (2015). Numerical  Methods for Engineering. 7th Edition, Mc Graw  Hill.

[13] Bergara, A., (2011). Finite Difference Numerical  Methods of Partial Differential Equations in  Finance with MATLAB. Master and Banca.

[14] Reddy, J.N., (2005). An introduction to the finite  element method. 3rd Ed., McGraw-Hill Education (ISE Editions).

[15] Zienkiewicz, O.C., Taylor, R.L., & Zhu, J.Z.,  (2005). The Finite Element Method: Its Basis and  Fundamentals. 6th ed., Butterworth-Heinemann.

[16] Bayraktar, M., (2017). Solution of Burgers equation  using Petrov-Galerkin Finite element method.  M.Sc. Thesis, Pamukkale University.

[17] Mohanty, R.K., & Evans, D.J., (2003). A fourth  order cubic spline alternating group explicit method  for non-linear singular two point boundary value  problems, International Journal of Computer  Mathematics, 80(4), 479-492.

[18] Bellman, R., Kashef, B.G., & Casti, J., (1972).  Differential quadrature: a technique for the rapid  solution of nonlinear partial differential equations.  Journal of Computational Physics, 10(1), 40-52.

[19] Yücel, U., & Sari, M., (2009). Differentialquadrature method (DQM) for a class of singular  two-point boundary value problems. International  Journal of Computer Mathematics, 86(3), 465-475.

[20] Bert, C.W., & Malik, M., (1996). Differential  quadrature method in computational mechanics: a  review. Applied Mechanics Reiews, 49(1), 1-28.

[21] Chen, R.P., (2005). One-dimensional non-linear  consolidation of multi-layered soil by differential  quadrature method. Computers and Geotechnics,  32(5), 358-369.

[22] Shu, C., (2000). Differential Quadrature and Its  Application in Engineering, Springer-Verlag,  London.

[23] Shu, C., & Richards, B.E., (1992). Application of  generalized differential quadrature to solve twodimensional incompressible Navier-Stokes  equations. International Journal for Numerical  Methods in Fluids, 15(7), 791-798.

[24] Roul, P.& Biswal, D., (2017). A new numerical  approach for solving a class of singular two-point  boundary value problems. Numerical Algorithms,  75(3), 531–552.

[25] Roul, P., (2017). On the numerical solution of  singular two-point boundary value problems: A  domain decomposition homotopy perturbation  approach..Mathematical Methods in the Applied  Sciences, (accepted).

[26] Urroz, G.E., (2004). Numerical Solution to  Ordinary Differential Equations. Holden Day,  USA.

[27] Courant, R., (1943). Variational methods for the  solution of problems of equilibrium and vibrations.  Bulletin of the American Mathematical Society, 49(1), 1–23.

[28] Kumar, M., (2002). A three point finite difference  method for a class of singular two-point boundary  value problems. Journal of Computational and  Applied Mathematics, 145(1), 89-97.

[29] Aziz, T., & Kumar, M., (2001). A fourth-order  finite-difference method based on non-uniform  mesh for a class of singular two-point boundary  value problems , Journal of Computational and  Applied Math., 136(1-2), 337-342.

[30] Singh, R., & Kumar, J., (2013). Solving a Class of  Singular Two-point Boundary Value Problems  Using New Modified Decomposition Method.  Computational Mathematics, 2013, 11 pages.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing