AccScience Publishing / IJOCTA / Volume 4 / Issue 1 / DOI: 10.11121/ijocta.01.2014.00160
APPLIED MATHEMATICS & CONTROL

Vector variational inequalities and their relations with vector optimization

Surjeet Kaur Suneja1 Bhawna Kohli2
Show Less
1 Department of Mathematics, Miranda House, University of Delhi, Delhi-110007, India
2 Department of Mathematics, University of Delhi, Delhi-110007, India
Submitted: 25 February 2013 | Published: 5 December 2013
© 2013 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

In this paper,  K - c quasiconvex,  K - c pseudoconvex and other related functions  have been introduced in terms of their Clarke subdifferentials, where  K is an arbitrary closed  convex, pointed cone with nonempty interior. The (strict, weakly) K -pseudomonotonicity, (strict) K -naturally quasimonotonicity and  K -quasimonotonicity of Clarke subdifferential maps have also  been defined. Further, we introduce Minty weak (MVVIP) and Stampacchia weak (SVVIP) vector  variational inequalities over arbitrary cones. Under regularity assumption, we have proved that a  weak minimum solution of vector optimization problem (VOP) is a solution of (SVVIP) and under  the condition of  K - c pseudoconvexity we have obtained the converse for MVVIP (SVVIP). In  the end we study the interrelations between these with the help of strict  K -naturally  quasimonotonicity of Clarke subdifferential map.

Keywords
Generalized nonsmooth cone convexity;generalized cone monotonicity;vector optimization problem;vector variational inequality problem.
Conflict of interest
The authors declare they have no competing interests.
References

[1] Hartman, P., Stampacchia, G., On Some  Nonlinear Elliptic Differential Functional  Equations, Acta Mathematica, 115, pp.153- 188, (1966).

[2] Giannessi, F., Theorems of the Alternative,  Quadratic Programs and Complementarity  Problem, In: R. W. Cottle, F. Giannessi and  J. L. Lions (Eds.), Variational Inequalities  and Complementarity Problems, John Wiley  and Sons, New York, pp. 151-186 (1980).

[3] Chen, G. Y., Yang, X. Q., Vector  Complementary Problem and its  Equivalence With Weak Minimal Element  in Ordered Spaces, Journal of Mathematical  Analysis and Applications, 153, pp. 136- 158, (1990).

[4] Chen, G. Y., Existence of Solutions for A  Vector Variational Inequality, An extension  of Hartman-Stampacchia theorem, Journal  of Optimization Theory and Applications,74,  pp. 445-456, (1992).

[5] Yao, J. C., Multivalued Variational  Inequalities With  K -pseudomonotone  Operators, Journal of Optimization Theory  and Applications, 83, pp. 391-403, (1994). 

[6] Giannessi, F., On Minty Variational  Principle, New Trends in Mathematical  Programming, Kluwer Academic  Publishers, Dordrecht, Netherlands, (1997). 

[7] Giannessi, F., On Minty Variational  Principle. In: F. Giannessi, S. Komlosi and  T. Rapesak (Eds.), New Trends in  Mathematical Programming Netherlands: Kluwer Academic Publishers,  , Dordrecht,  pp. 93-99 (1998).

[8] Giannessi, F., Vector Variational  Inequalities and Vector Equilibria,  Dordrecht, Netherlands: Kluwer Academic  Publishers, (2000).

[9] Komlosi, S., On the Stampacchia and Minty  Variational Inequalities. In: G. Giorgi and F.  Rossi (Eds), Generalized Convexity and  Optimization for Economic and Financial  Decisions, Bologna: Pitagora Editrice, pp. 231-260, (1999).

[10] Yang, X. M., Yang, X. Q., Teo, K. L.,  Some Remarks On the Minty Vector Variational Inequality, Journal of  Optimization Theory and Applications, 121,  pp. 193- 201, (2004). 

[11] Lee, G. M., Lee, K. B., Vector Variational  Inequalities for Nondifferentiable Convex  Vector Optimization Problems, Journal of  Global Optimization, 32, pp. 597-612 (2005).

[12] Mishra, S. K., Wang, S. Y., Vector  Variational–like Inequalities and Nonsmooth  Vector Optimization Problems, Nonlinear  Analysis, 64, pp. 1939-1945, (2005). 

[13] Chinaie, M., Jabarootian, T., Rezaie, M.,  Zafarani, J., Minty’s Lemma and Vector Variational –like Inequalities, Journal of  Global Optimization, 40, pp. 463- 473,  (2008).

[14] Rezaie, M., Zafarani, J., Vector  Optimization and Variational like  Inequalities, Journal of Global  Optimization, 43, pp. 47-66, (2009).

[15] Karamardian, S., Schaible, S., Seven Kinds  of Monotone Maps, Journal of Optimization  Theory and Applications, 66, pp. 37-46,(1990).

[16] Hadjisavvas, N., Schaible, S., On Strong  Pseudomonotonicity and (Semi) Strict  Quasimonotonicity, Journal of Optimization  Theory and Applications, 79, 1, pp. 139-155,  (1993).

[17] Schaible, S., Generalized Monotonicity, A  Survey, Generalized Convexity, Edited by S.  K. Komlosi, T. Rapesak and S. Schaible,  Springer Verlag, Berlin, Germany, pp. 229- 249, (1994).

[18] Cambini, R., Some New Classes of  Generalized Concave Vector Valued  Functions, Optimization, 36, pp.11-24, (1996).

[19] Cambini, A., Martein, L., Generalized  Convexity and Optimality Conditions in  Scalar and Vector Optimization, Handbook  of Generalized Convexity and Generalized  Monotonicity. Edited by N. Hadjisavvas,  Komlosi and S. Schaible, Springer  Netherlands, 76, pp. 151-193(2005).

[20] Vani,  Vector Optimization The Study of Optimality and Duality in  Problems, Thesis (PhD), University of Delhi, (2007).

[21] Clarke, F. H., Optimization and Nonsmooth Analysis, Wiley Interscience, (1983).

[22] Bector, C. R., Chandra, S., Dutta, J.,  Principles of Optimization Theory, India: Narosa Publishing House, (2005).

[23] Swaragi, Y. H., Nakayama, H., Tanino, T.,  Theory of Multiobjective Optimization,  Academic Press, New York, (1985).

[24] Jahn, J., Vector Optimization: theory,  applications, and extensions. Springer– Verlag Berlin Heidelberg, (2004). 

[25] Aggarwal, S., Optimality and Duality in  Mathematical Programming Involving  Generalized Convex Functions, Thesis (PhD), University of Delhi, (1998).

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing