AccScience Publishing / IJOCTA / Volume 4 / Issue 1 / DOI: 10.11121/ijocta.01.2014.00175
APPLIED MATHEMATICS & CONTROL

Mond-Weir type second order multiobjective mixed symmetric duality with  square root term under generalized univex function

Arun Kumar Tripathy1
Show Less
1 Department of Mathematics, Trident Academy of Technology F2/A, Chandaka Industrial Estate, In front of Infocity, Patia, Bhubaneswar-751024, India
Submitted: 10 July 2013 | Published: 3 December 2013
© 2013 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

In this paper, a new class of second order ( , )   -univex and second order  ( , )   pseudo univex function are introduced with example. A pair Mond-Weir type second order mixed  symmetric duality for multiobjective nondifferentiable programming is formulated and the duality  results are established under the mild assumption of second order  ( , )   univexity and second order  pseudo univexity. Special cases are discussed to show that this study extends some of the known  results in related domain

Keywords
Second order (
)   univex
mixed symmetric duality
efficient solution
square root term
Schwartz inequality.
Conflict of interest
The authors declare they have no competing interests.
References

[1] Agarwal, R.P., Ahmad, I., Gupta, S. K. and  Kailey, N., Generalized second order mixed  symmetric duality in non differentiable  mathematical programming, Abstract and  Applied Analysis, Hindawi Publishing Corporation, Article ID. 103587, doi: 10,  1155/2011/103587 (2011).

[2] Aghezzaf, B., Second order mixed type  duality in multiobjective programming  problems, Journal of Mathematical Analysis  and Applications, 285, 97-106 (2003).

[3] Ahmad, I. and Husain, Z., Multiobjective  mixed symmetric duality involving cones,  Computers & Mathematics with Applications, 59 (1), 319-326 (2010).

[4] Ahmad, I. and Husain, Z., Nondifferentiable  second order duality in multiobjective  programming, Applied Mathematics Letters, 18, 721-728 (2005).

[5] Ahmad, I. and Sharma, S., Second order  duality for non differentiable multiobjective  programming, Numerical Functional  Analysis and Optimization, 28 (9), 975-988 (2007).

[6] Bector, C. R. and Chandra, S., Second order  symmetric and self dual programs,  Opsearch, 23, 89-95 (1986).

[7] Bector, C. R., Chandra, S. and Abha, On  mixed symmetric duality in Mathematical  programming, Journal of Mathematical  Analysis and Applications, 259, 346-356 (2001).

[8] Bector, C. R., Chandra, S. and Goyal, A., On  mixed symmetric duality in multiobjective  programming, Opsearch, 36, 399-407 (1999).

[9] Chandra, S., Husain, I. and Abha, On mixed  symmetric duality in mathematical  programming, Opsearch, 36 (2), 165-171 (1999).

[10] Kailey, N., Gupta, S. and Danger, D., Mixed  second order multiobjective symmetric  duality with cone constraints, Nonlinear  Analysis: Real World Applications, 12,  3373-3383 (2011).

[11] Li, J. and Gao, Y.,  multiobjective mixed symmetric dual Nondifferentiable  ity  under generalized convexity,  Journal of Inequalities and Applications,  doi: 10.1186/1029-24x-2011-23 (2011).

[12] Mangasarian, O.L., ‘Second order and  higher order duality in nonlinear  programming, Journal of Mathematical  Analysis and Applications, 51, 607-620 (1975).

[13] Mishra, S.K., Second order mixed  symmetric duality in nondifferentiable  multiobjective mathematical program-ming,  Journal of Applied Analysis, 13 (1), 117-132 (2007).

[14] Mishra, S. K., Wang, S. Y. and Lai, K. K.,  Mond-Weir type mixed symmetric first and  second order duality in nondifferentiable  mathematical program-ming, Journal  of Nonlinear and Convex Analysis, 7 (3),  189-198 (2006). 

[15] Mishra, S. K., Wang, S. Y., Lai, K. K. and  Yang, F. M., Mixed symmetric duality in  nondifferentiable mathematical  programming, European Journal of  Operational Research, 181, 1-9 (2007). 

[16] Mond, B., Second order duality for  nonlinear programs, Opsearch, 11, 90-99 (1974).

[17] Suneja, S. K., Lalita, C.S. and Khurana, S.,  Second order symmetric dual in  multiobjective programming, European  Journal of Operational Research, 144, 492- 500 (2003). 

[18] Thakur, G. K. and Priya, B., Second order  duality for nondifferentiable multiobjective  programming involving (Φ,ρ)-univexity,  Kathmandu University Journal of Science,  Engineering and Technology, 7 (1), 99-104 (2011).

[19] Xu, Z., Mixed type duality in multiobjective  programming problems, Journal of  Mathematical Analysis and Applications,  198, 621-635 (1996)

[20] Yang, X. M., Teo, K. L. and Yang, X. Q.,  Mixed symmetric duality in  nondifferentiable Mathematical programming, Indian Journal of Pure and  Applied Mathematics, 34 (5), 805-815 (2003)

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing