A comparative view to H_infinity-norm of transfer functions of linear DAEs
In this paper, bisection and extended-balanced singular perturbation methods are used to calculate the H_infinity-norm of the transfer function of a linear DAEs system for the particular case D=0. In the beginning, the approaches' algorithms and error analysis are provided separately. Next, the methods are employed to calculate the H_infinity-norms of a numerical example pertaining to an automotive gas turbine model, and the error limits are used to check the norms in the suitable range, respectively. Ultimately, every solution is compared individually with the problem's H_infinity-norm values, which are retrieved from MATLAB.
[1] Gunduz, H. (2023). 孔∞ control of linear differ-ential algebraic equation (DAEs) systems. PhD Thesis. Ataturk University.
[2] Bennett, S. (1996). A brief history of automatic control. IEEE Control Systems Magazine, 16(3), 17-25. https://doi.org/10.1109/37.506394
[3] Zames, G. (1981). Feedback and optimal sensitiv- ity: Model reference transformations, multiplica- tive seminorms and approximate inverses. IEEE Transactions on Automatic Control, 26(2), 301- 320. https://doi.org/10.1109/TAC.1981.110 2603
[4] Zhou, K. & Doyle, J. C. (1998). Essential of Ro- bust Control. Prentice Hall, Upper Saddle River, NJ, USA.
[5] Petersen, I. (1987). Disturbance attenuation and 孔∞ optimization: a design method based on the algebraic Riccati equation. IEEE Transactions on Automatic Control, 32,(5), 427-429. https://doi.org/10.1109/TAC.1987.1104609
[6] Khargonekar, P. P., Petersen, I. R. & Rotea, M. A. (1988). 孔∞ optimal control with state feed- back. IEEE Transactions on Automatic Control, 33(8), 786-788 https://doi.org/10.1109/9.13 01
[7] Doyle, J., Glover, K. & Khargonekar, P. P. (1988). State space solutions to standard H 2 and 孔∞ control problems, proceedings, IEEE American Control Conference, 1691-1696.
[8] Khargonekar, P. P., Petersen, I. R. & Zhou K.(1990). Robust stabilization of uncertain linear systems:Quadratic stabilization and 孔∞ control theory. IEEE Transactions on Automatic Control,33(3), 356-361. https://doi.org/10.1109/9.50357
[9] Jiang, B., Wu, Z. & Karimi, H. R. (2022). A di- stiributed dynamic event-triggered mechanism to HMM-based observer design for 孔∞ sliding mode control of markov jump systems. Automatica, 142,110357. https://doi.org/10.1016/j.automati ca.2022.110357
[10] Tacx, P. & Oomen, T. (2021). Accurate 孔∞ - norm estimation via finite frequency norms of lo- cal parametric models. American Control Confer- ence (ACC), 321-326.
[11] Boyd, S., Balakrishnan, V. & Kamamba, P.(1988). On computing the 孔∞-norm of a trans- fer matrix. Proceedings of 1988 American Control Conference, 369-397.
[12] Boyd, S., Balakrishnan, V. & Kamamba, P.(1989). A bisection method for computing 孔∞ - norm of a transfer function matrix and related problems. Springer-Verlag, New York.
[13] Kuster, G. E. (2012). H infinity norm calculation via a state-space formulation. PhD Thesis. Fac- ulty of Polytechique Institute, Blacksburg, Vir- ginia.
[14] Gunduz, H. & Celik, E. (2022). 孔∞-norm eval- uation for a transfer matrix via bisection algo- rithm. Thermal Science, 26(2), 745-751. https: //doi.org/10.2298/TSCI22S2745G
[15] Moore, B. (1981). Principal component analy- sis in linea systems:Controllability, observability and model reduction. IEEE Transactions on au- tomatic Control, 26(1), 17-32. https://doi.or g/10.1109/TAC.1981.1102568
[16] Pernebo, L. & Silverman, L. (1989). Model reduction via balanced state- space representations. IEEE Transactions on Automatic Control, 27(2), 382-387.https://doi.org/10.1109/TAC.1982.1102945
[17] Imran, M., Ghafoor, A. & Sreeram, V. (2014). A frequency weighted model order reduction tech- nique and error bound. Automatica, 50(12), 3304-3309. https://doi.org/10.1016/j.automati ca.2014.10.062
[18] Kokotovich, P. V., O’Malley Jr, R. E. & Sannuti, P. (1976). Singular perturbation and order reduc- tion in control theory: an overview. Automatica, 12(2), 123-132. https://doi.org/10.1016/00 05-1098(76)90076-5
[19] N’Diaye, M., Hussain, S., Suliman, I. M. A. & Toure, L. (2023). Robust uncertainity alleviation by H infinity analysis and control for singularity perturbed systems with disturbances. Journal of Xi’an Shioyu University, Natural Science Edition, Volume 19, Issue 01, 728-737.
[20] Enns, D. F. (1984). Model reduction with bal- anced realization: an error bound and a frequency weighted generalization. The 23rd IEEE Confer- ence on Decision and Control, 127-132. https: //doi.org/10.1109/CDC.1984.272286
[21] Glover, K. (1984). All optimal Hankel-norm ap- proximations of linear multivarible systems and their L∞-error bounds. Internationl Journal of Control, 39(6), 1115-1193. https://doi.org/ 10.1080/00207178408933239
[22] Datta, B. N. (2004). Numerical Methods for Lin- ear Control Systems (Vol. 1). Academic Press, London, New York.
[23] Antoulas, A. C. & Benner P., Feng, L. (2018). Model reduction by iterative error system approx- imation. Mathematical and Computer Modelling of Dynamical Systems, 24(2), 103-118. https: //doi.org/10.1080/13873954.2018.1427116
[24] Hung, Y. S. & MacFarlane, A. G. S. (1982). Mul- tivariable feedback: a quasi-classical approach lecture notes in control and information in sci- ences. Springer-Verlag, Berlin-Heidelberg, New York.
[25] Leibfritz, P. & Lipinski, W. (2003). Description of benchmark examples in COMPl eib 1.0, Tech Report.