Influence of rotation on peristaltic flow for pseudoplastic fluid: a wavy channel
The phenomenon of rotation serves multiple purposes in cosmic and geophysical phenomena. It offers insights into the formation of galaxies and the circulation patterns of oceans. Moreover, rotational diffusion elucidates the orientation of nanoparticles within fluid mediums. Investigating the dynamics of fluid peristalsis under the influence of rotational forces holds significant relevance in addressing challenges associated with the transportation of conductive physiological fluids such as blood, polymeric materials, and saline water. This study focused on studying the impact of rotation on the peristaltic transport of non-Newtonian pseudoplastic fluids through a wavy channel. The complexity of flow equations, including the continuity and motion equations, is mathematically formulated and transformed into dimensionless nonlinear ordinary differential equations depending on the assumption of low Reynolds number and long wavelength approximation. Perturbation technique is employed to solve the problem for the stream function and the resulted system is implemented and plotted using MATHEMATICA software along with the boundary conditions. Graphical discussion is involved to utilize the impact of the emerging parameters in the flow characteristic, encompassing the velocity profile, pressure gradient, pressure rise, and trapping phenomenon. The research revealed that rotation significantly influences the fluid flow within the channel, diminishing the regressive and inhibitory impact of the fluid parameter, consequently enhancing the fluid flow within the channel.
[1] Ali, H. A. (2021). Radiative peristaltic transport of Ree-Eyring fluid through porous medium in asymmetric channel subjected to combined effect of inclined MHD and convective conditions. In Journal of Physics: Conference Series (Vol. 1879, No. 2, p. 022101). IOP Publishing. https://do i.org/10.1088/1742-6596/1879/2/022101
[2] Ali, H. A. (2022). Impact of Varying Viscosity with Hall Current on Peristaltic Flow of Vis- coelastic Fluid Through Porous Medium in Irreg- ular Microchannel. Iraqi Journal of Science, 1265-1276. https://doi.org/10.24996/ijs.2022.63.3.31
[3] Waseem, F., Sohail, M., Lone, S. A., & Cham- bashi, G. (2023). Numerical simulations of heat generation, thermal radiation and thermal trans- port in water-based nanoparticles: OHAM study. Scientific Reports, 13(1), 15650. https://doi.or g/10.1038/s41598-023-42582-4
[4] Li, S., Akbar, S., Sohail, M., Nazir, U., Singh, A., Alanazi, M., & Hassan, A. M. (2023). Influence of buoyancy and viscous dissipation effects on 3D magneto hydrodynamic viscous hybrid nano fluid (MgO-TiO2) under slip conditions. Case Stud- ies in Thermal Engineering, 49, 103281. https: //doi.org/10.1016/j.csite.2023.103281
[5] Latham, T. W. (1966). Fluid motions in a peristaltic pump (Doctoral dissertation, Mas- sachusetts Institute of Technology).
[6] Shapiro, A. H., Jaffrin, M. Y., & Weinberg, S. L. (1969). Peristaltic pumping with long wave- lengths at low Reynolds number. Journal of fluid mechanics, 37(4), 799-825. https://doi.org/10 .1017/S0022112069000899
[7] Al-Khafajy, D. G. S., & Noor, A. L. (2022). The peristaltic flow of jeffrey fluid through a flexible channel. Iraqi Journal of Science, 5476-5486. ht tps://doi.org/10.24996/ijs.2022.63.12.33
[8] Salman, M. R., & Ali, H. A. (2020). Approxi- mate treatment for the MHD peristaltic transport of jeffrey fluid in inclined tapered asymmetric channel with effects of heat transfer and porous medium. Iraqi Journal of Science, 3342-3354. ht tps://doi.org/10.24996/ijs.2020.61.12.22
[9] Hayat, T., Iqbal, R., Tanveer, A., & Alsaedi, A.(2018). Variable viscosity effect on MHD peri- staltic flow of pseudoplastic fluid in a tapered asymmetric channel. Journal of Mechanics, 34(3), 363-374. https://doi.org/10.1017/jmech.20 16.111
[10] Nazir, U., Sohail, M., Mukdasai, K., Singh, A., Alahmadi, R. A., Galal, A. M., & Eldin, S. M.(2022). Applications of variable thermal proper- ties in Carreau material with ion slip and Hall forces towards cone using a non-Fourier approach via FE-method and mesh-free study. Frontiers in Materials, 9, 1054138. https://doi.org/10.338 9/fmats.2022.1054138
[11] Hayat, T., Iqbal, R., Tanveer, A., & Alsaedi, A.(2016). Soret and Dufour effects in MHD peristal- sis of pseudoplastic nanofluid with chemical reac- tion. Journal of Molecular Liquids, 220, 693-706. https://doi.org/10.1016/j.molliq.2016.04 .123
[12] Imran, N., Javed, M., Sohail, M., Qayyum, M., & Mehmood Khan, R. (2023). Multi-objective study using entropy generation for Ellis fluid with slip conditions in a flexible channel. International Journal of Modern Physics B, 37(27), 2350316. https://doi.org/10.1142/S021797922350316 2
[13] Liu, J., Nazir, U., Sohail, M., Mukdasai, K., Singh, A., Alanazi, M., & Chambashi, G. (2023). Numerical investigation of thermal enhancement using MoS2-Ag/C2H6O2 in Prandtl fluid with Soret and Dufour effects across a vertical sheet. AIP Advances, 13(7). https://doi.org/10.106 3/5.0152262
[14] Khan, R. M., Ashraf, W., Sohail, M., Yao, S. W., & Al-Kouz, W. (2020). On behavioral re- sponse of microstructural slip on the development of magnetohydrodynamic micropolar boundary layer flow. Complexity, 2020, 1-12. https://do i.org/10.1155/2020/8885749
[15] Sohail, M., Alyas, N., & Saqib, M. (2023). Con- tribution of double diffusion theories and ther- mal radiation on three dimensional nanofluid flow via optimal homotopy analysis procedure. Int J Emerg Multidis Math, 2(1), 2790-3257. https: //doi.org/10.59790/2790-3257.1038
[16] Sohail, M., Nazir, U., Naz, S., Singh, A., Muk- dasai, K., Ali, M. R., Khan, M. J. & Galal, A. M. (2022). Utilization of Galerkin finite element strategy to investigate comparison performance among two hybrid nanofluid models. Scientific Reports, 12(1), 18970. https://doi.org/10.1 038/s41598-022-22571-9
[17] Hou, E., Jabbar, N., Nazir, U., Sohail, M., Javed, M. B., Shah, N. A., & Chung, J. D. (2022). Signif- icant mechanism of Lorentz force in energy trans- fer phenomena involving viscous dissipation via numerical strategy.
[18] Sohail, M., & Nazir, U. (2023). Numerical com- putation of thermal and mass transportation in Williamson material utilizing modified fluxes via optimal homotopy analysis procedure. Waves in Random and Complex Media, 1-22. https://do i.org/10.1080/17455030.2023.2226230
[19] Tahir, M., & Ahmad, A. (2020). Impact of pseudoplaticity and dilatancy of fluid on peri- staltic flow and heat transfer: Reiner-Philippoff fluid model. Advances in Mechanical Engineering, 12(12), 1687814020981184. https://doi.org/10 .1177/1687814020981184
[20] Hina, S., Hayat, T., Mustafa, M., & Alsaedi, A. (2014). Peristaltic transport of pseudoplastic fluid in a curved channel with wall properties and slip conditions. International Journal of Biomath- ematics, 7(02), 1450015. https://doi.org/10.1 142/S1793524514500156
[21] Salman, M. R. (2023, February). Effect of con- vective conditions in a radiative peristaltic flow of pseudoplastic nanofluid through a porous medium in a tapered an inclined asymmetric channel. In AIP Conference Proceedings (Vol. 2414, No. 1). AIP Publishing. https://doi.org/10.1063/5. 0117556
[22] Alshareef, T. S. (2020). Impress of rotation and an inclined MHD on waveform motion of the non- Newtonian fluid through porous canal. In Journal of Physics: Conference Series, 1591(1), 012061.IOP Publishing. https://doi.org/10.1088/1742-6596/1591/1/012061
[23] Abd-Alla, A. M., & Abo-Dahab, S. M. (2016). Rotation effect on peristaltic transport of a Jef- frey fluid in an asymmetric channel with grav- ity field. Alexandria Engineering Journal, 55(2), 1725-1735. https://doi.org/10.1016/j.aej. 2016.03.018
[24] Nassief, A. M., & Abdulhadi, A. M. (2023). Ro- tation and magnetic force effects on peristaltic transport of non-newtonian fluid in a symmet- ric channel. Ibn AL-Haitham Journal For Pure and Applied Sciences, 36(2), 436-453. https: //doi.org/10.30526/36.2.3066
[25] Mohaisen, H. N., & Abdalhadi, A. M. (2022). In- fluence of the induced magnetic and rotation on mixed convection heat transfer for the peristaltic transport of bingham plastic fluid in an asymmet- ric channel. Iraqi Journal of Science, 1770-1785. https://doi.org/10.24996/ijs.2022.63.4.3 5
[26] Abd-Alla, A. M., & Abdallah, M. (2022). Effect of heat transfer and rotation on the peristaltic flow of a micropolar fluid in a vertical symmetric channel. Sohag Journal of Sciences, 7(3), 117-122.
[27] Salim, S. H., Al-Anbari, R. H., & Haider, A. J. (2021). Polymeric membrane with nanomate- rial’s for water purification: a review. In IOP Conference Series: Earth and Environmental Sci- ence, 779(1), 012103. IOP Publishing. https: //doi.org/10.1088/1755-1315/779/1/012103
[28] Radhi, A. B., Khashan, K. S., & Sulaiman, G. M. (2023). Antibacterial Activity of Gold Nanoparti- cles Produced by One-Step Pulsed Laser Ablation in Liquid. Plasmonics, 1-13. https://doi.org/ 10.1007/s11468-023-02081-8
[29] Salman, M. R., & Abdulhadi, A. M. (2018, May). Influence of heat and mass transfer on inclined (MHD) peristaltic of pseudoplastic nanofluid through the porous medium with couple stress in an inclined asymmetric channel. In Journal of Physics: Conference Series (Vol. 1032, No. 1, p. 012043). IOP Publishing. https://doi.org/10 .1088/1742-6596/1032/1/012043
[30] Khan, R. M., Imran, N., Mehmood, Z., & So- hail, M. (2022). A Petrov-Galerkin finite element approach for the unsteady boundary layer upper- convected rotating Maxwell fluid flow and heat transfer analysis. Waves in Random and Complex Media, 1-18. https://doi.org/10.1080/174550 30.2022.2055201
[31] Ali, U., Alqahtani, A. S., Rehman, K. U., & Ma- lik, M. Y. (2019). On Cattaneo-Christov heat flux analysis with magneto-hydrodynamic and heat generation effects in a Carreau nano-fluid over a stretching sheet. Revista mexicana de f´ısica, 65(5), 479-488. https://doi.org/10.31349/R evMexFis.65.479
[32] Bibi, M., Zeeshan, A., Malik, M. Y., & Rehman, K. U. (2019). Numerical investigation of the un- steady solid-particle flow of a tangent hyperbolic fluid with variable thermal conductivity and con- vective boundary. The European Physical Journal Plus, 134, 1-10. https://doi.org/10.1140/ep jp/i2019-12651-9
[33] Rehman, K. U., Malik, M. Y., Makinde, O. D., & Malik, A. A. (2017). A comparative study of nanofluids flow yields by an inclined cylindrical surface in a double stratified medium. The Euro-pean Physical Journal Plus, 132(10), 427. https: //doi.org/10.1140/epjp/i2017-11679-1
[34] Rehman, K. U., Al-Mdallal, Q. M., Tlili, I., & Malik, M. Y. (2020). Impact of heated trian- gular ribs on hydrodynamic forces in a rectan- gular domain with heated elliptic cylinder: fi- nite element analysis. International Communica- tions in Heat and Mass Transfer, 112, 104501. https://doi.org/10.1016/j.icheatmasstran sfer.2020.104501
[35] Rehman, K. U., Shatanawi, W., & Al-Mdallal, Q. M. (2022). A comparative remark on heat transfer in thermally stratified MHD Jeffrey fluid flow with thermal radiations subject to cylindri- cal/plane surfaces. Case Studies in Thermal En- gineering, 32, 101913. https://doi.org/10.101 6/j.csite.2022.101913
[36] Abass, G., & Shihab, S. (2023). Operational Ma- trix of New Shifted Wavelet Functions for Solving Optimal Control Problem. Mathematics, 11(14), 3040. https://doi.org/10.3390/math11143040
[37] Aydin, C., & Tezer-Sezgin, M. (2019). The DRBEM solution of Cauchy MHD duct flow with a slipping and variably conducting wall using the well-posed iterations. An International Journal of Optimization and Control: Theories & Applica- tions (IJOCTA), 9(3), 76-85. https://doi.org/10.11121/ijocta.01.2019.00677