AccScience Publishing / IJOCTA / Volume 11 / Issue 2 / DOI: 10.11121/ijocta.01.2021.00973
RESEARCH ARTICLE

Kink and anti-kink wave solutions for the generalized KdV equation with  Fisher-type nonlinearity

Hüseyin Koçak1*
Show Less
1 Quantitative Methods Division, Pamukkale University, 20160, Denizli, Turkey
IJOCTA 2021, 11(2), 123–127; https://doi.org/10.11121/ijocta.01.2021.00973
Submitted: 20 April 2020 | Accepted: 10 November 2020 | Published: 2 April 2020
© 2020 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

This paper proposes a new dispersion-convection-reaction model, which is called the gKdV-Fisher equation, to obtain the travelling wave solutions by using the Riccati equation method. The proposed equation is a third-order dispersive partial  differential equation combining the purely nonlinear convective term with the  purely nonlinear reactive term. The obtained global and blow-up solutions, which  might be used in the further numerical and analytical analyses of such models, are  illustrated with suitable parameters.

Keywords
The gKdV-Fisher equation
Dispersion-convection-reaction model
Travelling wave solutions
Conflict of interest
The authors declare they have no competing interests.
References

[1] Korteweg, D. J., & de Vries, G. (1895). On the  change of form of long waves advancing in a  rectangular canal, and on a new type of long  stationary waves. The London, Edinburgh, and  Dublin Philosophical Magazine and Journal of  Science, 39(240), 422-443.

[2] Tsutsumi, M., Mukasa, T., & Iino, R. (1970). On the  generalized Korteweg-de Vries Equation.  Proceedings of the Japan Academy, 46(9), 921-925.

[3] Gardner, C. S., Greene, J. M., Kruskal, M. D., &  Miura, R. M. (1974). Korteweg‐devries equation and  generalizations. VI. methods for exact solution.  Communications on Pure and Applied Mathematics,  27(1), 97-133.

[4] Tagare, S. G., & Chakrabarti, A. (1974). Solution of  a generalized Korteweg-de Vries equation. Physics  of Fluids, 17, 1331-1332.

[5] Rosenau, P., & Hyman, M. (1993). Compactons:  Solitons with Finite Wavelength. Physical Review  Letters, 70, 564-567.

[6] Colliander, J. E., & Kenig, C. E. (2002). The  generalized Korteweg-de Vries equation on the half  line. Communications in Partial Differential  Equations, 27, 2187-2266.

[7] Wazwaz, A. M. (2006). Kinks and solitons for the  generalized KdV equation with two power  nonlinearities. Applied Mathematics and  Computation, 183, 1181-1189.

[8] Tao, T. (2007). Two remarks on the generalised  Korteweg de-Vries equation. Discrete & Continuous  Dynamical Systems - A, 18, 1-14.

[9] Tao, T. (2008). Global behaviour of nonlinear  dispersive and wave equations. Current  Developments in Mathematics, 2006, 255-340.

[10] Pinar, Z., & Koçak, H. (2018). Exact solutions for  the third-order dispersive-Fisher equations.  Nonlinear Dynamics, 91(1), 421-426

[11] Rosenau, P. (1998). On a class of nonlinear  dispersive-dissipative interactions. Physica D:  Nonlinear Phenomena, 123(1-4), 525-546.

[12] Wazwaz, A. M. (2006). The tanh method for  compact and noncompact solutions for variants of  the KdV-Burger and the K(n,n)-Burger equations.  Physica D: Nonlinear Phenomena, 213, 147-151.

[13] Galaktionov, V. A., Miditieri, E. L., & Pohozaev, S.  I. (2014). Blow-up for higher-order parabolic,  hyperbolic, dispersion and Schrödinger equations.  Monographs and Research Notes in Mathematics,  Chapman and Hall/CRC, Boca Raton.

[14] Koçak, H. (2017). Similarity solutions of nonlinear  third-order dispersive PDEs: The first critical  exponent. Applied Mathematics Letters, 74, 108- 113.

[15] Koçak, H., & Pinar Z. (2018). On solutions of the  fifth-order dispersive equations with porous medium  type non-linearity. Waves in Random and Complex  Media, 28(3), 516-522.

[16] Fisher, R. A. (1937). The wave of advance of  advantageous genes. Annals of Eugenics, 7(4), 355- 369.

[17] Kolmogorov, A. N., Petrovskii, I. G., & Piskunov,N. S. (1937). Study of the diffusion equation with  growth of the quantity of matter and its application  to a biological problem. Byull. Moskov. Gos. Univ.,  Sect. A, 1, 1–26. (English. transl. In: Dynamics of  Curved Fronts, P. Pelce, Ed., Acad. Press, Inc., New  York, 1988, 105–130.)

[18] Ablowitz, M. J., & Zeppetella, A. (1979). Explicit  solutions of Fisher's equation for a special wave  speed. Bulletin of Mathematical Biology, 41, 835– 840.

[19] Wazwaz, A. M. (2008). Analytic study on Burgers,  Fisher, Huxley equations and combined forms of  these equations. Applied Mathematics and  Computation, 195(2), 754-761.

[20] Gilding, B. H., & Kersner, R. (2012). Travelling  waves in nonlinear diffusion-convection-reaction.  Vol 60, Birkhäuser Basel.

[21] Galaktionov, V. A. (2012). Towards the KPPProblem and log t-Front Shift for Higher-Order  Nonlinear PDES II. Quasilinear Bi-and TriHarmonic Equations. arXiv:1210.5063.

[22] Galaktionov, V. A. (2012). Towards the KPP-- Problem and log t-Front Shift for Higher-Order  Nonlinear PDEs III. Dispersion and Hyperbolic  Equations. arXiv:1210.5084.

[23] Galaktionov, V. A. (2013). The KPP-Problem and  log t-Front Shift for Higher-Order Semilinear  Parabolic Equations. Proceedings of the Steklov  Institute of Mathematics, 283, 44–74.

[24] Koçak, H. (2020). Travelling Waves in Nonlinear  Media with Dispersion, Dissipation and Reaction.  Chaos: An Interdisciplinary Journal of Nonlinear  Science, 30(9), 093143.

[25] Chen, H., & Zhang, H. (2004). New multiple soliton  solutions to the general Burgers-Fisher equation and  the Kuramato-Sivashinsky equation. Chaos, Soltions  and Fractals, 19, 71-76.

[26] Wazwaz, A. M. (2005). The tanh method for  generalized forms of nonlinear heat conduction and  Burgers-Fisher equations. Applied Mathematics and  Computation, 169, 321-338.

[27] Huibin, L., & Kelin, W. (1990). Exact solutions fornonlinear equations. I. Journal of Physics A:  Mathematical and General, 23(17), 3923-3928.

[28] Malfliet, W. (1992). Solitary wave solutions of  nonlinear wave equations. American Journal of  Physics, 60(7), 650-654.

[29] Malfliet, W., & Hereman, W. (1996). The Tanh  Method: I. Exact Solutions of Nonlinear Evolution  and Wave Equations. Physica Scripta, 54, 563-568.

[30] Fan, E. G. (2002). Traveling Wave Solutions for  Nonlinear Equations Using Symbolic Computation. Computers and Mathematics with Applications, 43,  671-680.

[31] Kudryashov, N. A. (2005). Simplest equation  method to look for exact solutions of nonlinear  differential equations. Chaos, Solitons & Fractals,  24 (5), 1217-1231.

[32] Kudryashov, N. A. (2009). Seven common errors in  finding exact solutions of nonlinear differential  equations. Communications in Nonlinear Science  and Numerical Simulation, 14, 3507-3529.

[33] Wazwaz, A. M. (2009). Partial Differential  Equations and Solitary Wave Theory. Higher  Education Press, Beijing and Springer-Verlag Berlin  Heidelberg.

[34] Griffiths, G. W., & Schiesser, W. E. (2011).  Traveling Wave analysis of Partial Differential  Equations: Numerical and Analytical Methods with  MATLAB and MAPLE. Academic Press, New York.

[35] Polyanin, A. D., & Zaitsev, V. F. (2012). Handbook  of Nonlinear Partial Differential Equations.  Chapman and Hall/CRC, Boca Raton.

[36] Manafian, J., & Lakestani, M. (2017). A new  analytical approach to solve some of the fractionalorder partial differential equations. Indian Journal of  Physics, 91, 243-258.

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing