AccScience Publishing / IJOCTA / Volume 11 / Issue 2 / DOI: 10.11121/ijocta.01.2021.001023
RESEARCH ARTICLE

UAV routing with genetic algorithm based matheuristic for border security  missions

Muhammed Kaya1 Omer Ozkan1*
Show Less
1 Department of Industrial Engineering, National Defence University, Turkish Air Force Academy
IJOCTA 2021, 11(2), 128–138; https://doi.org/10.11121/ijocta.01.2021.001023
Submitted: 30 September 2020 | Accepted: 26 March 2021 | Published: 19 April 2021
© 2021 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution -Noncommercial 4.0 International License (CC-by the license) ( https://creativecommons.org/licenses/by-nc/4.0/ )
Abstract

In recent years, Unmanned Aerial Vehicles (UAVs) are a good alternative for the  problem of ensuring the security of the borders of the countries. UAVs are  preferred because of their speed, ease of use, being able to observe many points at  the same time, and being more cost-effective in total compared to other security  tools. This study is dealt with the problem of the use of UAVs for the security of  the Turkey-Syria borderline which becomes sensitive in recent years and the  problem is modeled as a UAV routing problem. To solve the problem, a Genetic  Algorithm Based Matheuristic (GABM) approach has been developed and 12  scenarios have been created covering the departure bases, daily patrol numbers, and ranges of UAVs. GABM finds the minimum number of UAVs to use in  scenarios with the help of a GA run first and tries to find the optimal routes for  these UAVs. If GABM can find an optimal route for the determined UAV number,  it decreases the UAV number and tries to solve the problem again. GABM  proposes a hybrid approach in which a metaheuristic with a mathematical model  works together and the metaheuristic sets an upper limit for the number of UAVs  in the model. In computational studies, when compared GA with GABM it is seen  that GABM has obtained good results and decreased the utilized number of UAVs (up to 400%) and their flight distances (up to 85.99%) for the problem in very  short CPU times (max. 122.17 s. for GA and max. 46.39 s. for GABM in addition  to GA)

Keywords
UAV routing
Genetic algorithm
Matheuristic
Border security
Homeland security
Conflict of interest
The authors declare they have no competing interests.
References

[1] Kaza, S., Wang, Y., & Chen, H. (2007). Enhancing  border security: Mutual information analysis to  identify suspect vehicles, Decision Support Systems, 43, 199-210.

[2] Sun, Z., Wang, P., Vuran, M.C., Al-Rodhaan, M. A.,  Al-Dhelaan, A.M., & Akyildiz, I.F. (2011).  BorderSense: Border patrol through advanced  wireless sensor networks, Ad Hoc Networks, 9, 468-

[3] Owen, A., Duckworth, G., & Worsley, J. (2012).  OptaSense: Fibre optic distributed acoustic sensing  for border monitoring, in Proc. of the 2012  European Intelligence and Security Informatics  Conference, 22-24 Aug., Odense, Denmark [Online].  Available: IEEE Xplore,  http://www.ieee.org. [Accessed: 16 September 2020].

[4] Hare, J., Gupta, S., & Wilson, J. (2015).  Decentralized smart sensor scheduling for multiple  target tracking for border surveillance, in Proc. of  the 2015 IEEE Int. Conf. on Robotics and  Automation, ICRA 2015, 26-30 May, Seattle,  Washington, [Online]. Available: IEEE Xplore,  http://www.ieee.org. [Accessed: 16 September 2020].

[5] Karabulut, E., Aras, N., & Altınel, İ.K. (2017).  Optimal sensor deployment to increase the security  of the maximal breach path in border surveillance,  European Journal of Operational Research, 259,  19-36.

[6] Alkhathami, M., Alazzawi, L., & Elkateeb, A.  (2017). Large scale border security systems  modeling and simulation with OPNET, in Proc. of  the 2017 IEEE 7th Annual Computing and  Communication Workshop and Conference, CCWC  2017, 09-11 Jan., Las Vegas, USA. 

[7] Arjun, D., Indukala, P.K., & Unnikrishna Menon,  K.A. (2017). Border surveillance and intruder  detection using wireless sensor networks: A brief  survey, in Proc. of the 2017 Int. Conf. on  Communication and Signal Processing, ICCSP  2017, 06-08 April, Chennai, India. 

[8] Lessin, A.M., Lunday, B.J., & Hill, R.R. (2018). A  bilevel exposure-oriented sensor location problem  for border security, Computers and Operations  Research, 98, 56-68

[9] Matveev, A.S., Teimoori, H., & Savkin, A.V.  (2011). A method for guidance and control of an  autonomous vehicle in problems of border patrolling  and obstacle avoidance, Automatica, 47, 515-524.

[10] Tanas, M., Holubowicz, W., Adamczyk, A., &  Taberski, G. (2011). The TALOS Project. EU wide  robotic border guard system, in Proc. of the 2011  16th Int. Conf. on Methods & Models in Automation  & Robotics, 22-25 Aug., Miedzyzdroje, Poland.

[11] Tanas, M., Taberski, G., Hołubowicz, W., Samp, K.,  Sprońska, A., Główka, J., & Maciaś, M. (2012). The  TALOS project – autonomous robotic patrol  vehicles, in Proc. of the 2012 European Intelligence  and Security Informatics Conference, 22-24 Aug.,  Odense, Denmark. 

[12] Girard, A.R., Howell, A.S., & Hedrick, J.K. (2004).  Border patrol and surveillance missions using  multiple unmanned air vehicles, in Proc. of the 43rd  IEEE Conference on Decision and Control, 2004,  14-17 Dec., Atlantis, Bahamas.

[13] Blazakis, J. (2006). Border security and unmanned  aerial vehicles, Connections, 5(2), 154-159. 

[14] Matveev, A.S. Teimoori, H., & Savkin, A.V. (2010).  A method for navigation of an autonomous vehicle  for border patrol, in Proc. of the 2010 American  Control Conference, 30 June-02 July, Marriott  Waterfront, Baltimore, USA.

[15] Haddal, C.C., & Gertler, J. (2010). Homeland  security: Unmanned aerial vehicles and border  surveillance, Congressional Research Service  Report for Congress, RS21698, USA, [Online].  Available:  https://nsarchive2.gwu.edu/NSAEBB/NSAEBB5 27-Using-overhead-imagery-to-track-domesticUS-targets/documents/EBB-Doc24.pdf,  [Accessed: 16 September 2020].

[16] Ortiz-Rivera, E.I., Estela, A., Romero, C., &  Valentin, J.A. (2012). The use of UAVS in USA’s  security by an engineering education approach,  in Proc. of the 2012 IEEE Conference on  Technologies for Homeland Security (HST), 13-15  Nov., Waltham, USA.

[17] Moss, V., Jones, D., & Nwaneri, S. (2012). Analysis  of homeland security and economic survey using  special missions unmanned aerial vehicle utilities,  in Proc. of the 2012 IEEE International Geoscience  and Remote Sensing Symposium, 22-27 July,  Munich, Germany.

[18] Office of Inspector General (2014). U.S. customs  and border protection’s unmanned aircraft system  program does not achieve intended results or  recognize all costs of operations”, Department of  Homeland Security Report, OIG-15-17, USA,  [Online]. Available:  https://www.oig.dhs.gov/assets/Mgmt/2015/OIG _15-17_Dec14.pdf, [Accessed: 16 September 2020].

[19] Bein, D., Bein, W., Karki, A., & Madan, B.B.  (2015). Optimizing border patrol operations using  unmanned aerial vehicles, in Proc. of the 2015 12th  International Conference on Information  Technology - New Generations, 13-15 April, Las  Vegas, USA. 

[20] Półka, M., Ptak, S., & Kuziora, L. (2017). The use of  UAV's for search and rescue operations, Procedia  Engineering, 192, 748-752.

[21] Cică, C., & Filipoaia, L. (2016). Border surveillance  optimization using a multi-objective mathematical  model, in Proc. of the 2016 IEEE Int. Conf. on  Electronics, Computers and Artificial Intelligence,  ECAI 2016, 30 June-02 July, Ploiesti, Romania.

[22] Çelik, G., & Sabuncuoğlu, İ. (2007). Simulation  modelling and analysis of a border security system,  European Journal of Operational Research, 180,  1394-1410.

[23] Jenkins, J.L., Marquardson, J., Proudfoot, J.G.,  Valacich, J.S., Golob, E., & Nunamaker, Jr., J.F. (2013). The Checkpoint Simulation: A tool forinforming border patrol checkpoint design and  resource allocation, in Proc. of the 2013 European  Intelligence and Security Informatics Conference,  12-14 Aug., Uppsala, Sweden.

[24] Muaafa, M., & Ramirez-Marquez, J.E. (2017). Biobjective evolutionary approach to the design of  patrolling schemes for improved border security”,  Computers & Industrial Engineering, 107, 74-84.

[25] Ackleson, J. (2003). Directions in border security  research, The Social Science Journal, 40, 573-581.

[26] Gravelle, T.B. (2018). Politics, time, space, and  attitudes toward US–Mexico border security,  Political Geography, 65, 107-116.

[27] Fisher, D.X.O. (2018). Situating border control:  Unpacking Spain's SIVE border surveillance  assemblage, Political Geography, 65, 67-76.

[28] Dalamagkidis, K. Valavanis, K.P., & Piegl, L.A.  (2008). On unmanned aircraft systems issues,  challenges and operational restrictions preventing  integration into the National Airspace System,  Progress in Aerospace Sciences, 44, 503-519.

[29] Gupte, S., Mohandas, P.I.T., & Conrad, J.M. (2012).  A survey of quadrotor unmanned aerial vehicles,  in Proc. of the 2012 IEEE Southeastcon, 15-18  March, Orlando, USA.

[30] Yu, X., & Zhang, Y. (2015). Sense and avoid  technologies with applications to unmanned aircraft  systems: Review and prospects, Progress in  Aerospace Sciences, 74, 152-166.

[31] Mcfadyen, A., & Mejias, L. (2016). A survey of  autonomous vision-based see and avoid for  unmanned aircraft systems, Progress in Aerospace  Sciences, 80, 01-17.

[32] Eksioglu, B., Vural, A.V., & Reisman, A. (2009).  The vehicle routing problem: A taxonomic review,  Computers & Industrial Engineering, 57, 1472- 1483.

[33] Braekers, K., Ramaekers, K., & Nieuwenhuyse, I.V.  (2016). The vehicle routing problem: State of the art  classification and review, Computers & Industrial  Engineering, 99, 300-313.

[34] Gansterer, M., & Hartl, R.F. (2018). Collaborative  vehicle routing: A survey, European Journal of  Operational Research, 268, 1-12.

[35] Tlili, T., Faiz, S., & Krichen, S. (2014). A hybrid  metaheuristic for the distance-constrained  capacitated vehicle routing problem, Procedia - Social and Behavioral Sciences, 109, 779-783.

[36] Letchford, A.N., & Salazar-González, J.-J. (2019).  The capacitated vehicle routing problem: Stronger  bounds in pseudo-polynomial time, European  Journal of Operational Research, 272, 24-31.

[37] Montoya-Torres, J.R., Franco, J.L., Isaza, S.N.,  Jiménez, H.F., & Herazo-Padilla, N. (2015). A  literature review on the vehicle routing problem with  multiple depots, Computers & IndustrialEngineering, 79, 115-129.

[38] Bektas, T. (2006). The multiple traveling salesman  problem: an overview of formulations and solution  procedures”, Omega, 34, 209-219.

[39] Kaempfer, Y., & Wolf, L. (2018). Learning the  multiple traveling salesmen problem with  permutation invariant pooling networks, CORR, abs/1803.09621, 1-17.

[40] Coutinho, W.P., Battarra, M., & Fliege, J. (2018).  The unmanned aerial vehicle routing and trajectory  optimisation problem, a taxonomic review,  Computers & Industrial Engineering, 120, 116-128.

[41] Pandey, P., Shukla, A., & Tiwari, R. (2017). Aerial  path planning using meta-heuristics: A survey,  in Proc. of the 2017 Second International  Conference on Electrical, Computer and  Communication Technologies (ICECCT), 22-24  Feb., Coimbatore, India.

[42] Zhao, Y., Zheng, Z., & Liu, Y. (2018). Survey on  computational-intelligence-based UAV path  planning, Knowledge-Based Systems, 158, 54-64.

[43] Seyis, A., Karacin, Y., & Ozkan, O. (2016). Optimal  path planning with minimum number of UAVs by  using genetic algorithm”, in Proc. of the 28th  European Conference on Operational Research  (EURO 2016), 03-06 July, Poznan, Poland.

[44] Kaya, M., & Ozkan, O. (2018). Sınır koruma görevi  için insansız hava araçlarının rotalanması  probleminin genetik algoritma ile eniyilenmesi,  in Proc. of the 38. Ulusal Yöneylem Araştırması ve  Endüstri Mühendisliği Kongresi (YAEM 2018), 26- 29 June, Eskişehir, Turkey.

[45] Ozkan, O. (2018). İnsansız hava araçları ile  Türkiye’deki orman yangınlarının tespiti  probleminin tavlama benzetimi ile eniyilenmesi,  in Proc. of the 38. Ulusal Yöneylem Araştırması ve  Endüstri Mühendisliği Kongresi (YAEM 2018), 26- 29 June, Eskişehir, Turkey

[46] Yang, L., Qi, J., Xiao, J., & Yong, X. (2014). A  literature review of UAV 3D path planning, in Proc.  of the 2014 11th World Congress on Intelligent  Control and Automation, 29 June-04 July,  Shenyang, China.

[47] Khan, M.A., Safi, A., Qureshi, I.M., & Khan, I.U.  (2017). Flying Ad-Hoc Networks (FANETs): A  review of communication architectures, and routing  protocols, in Proc. of the 2017 First International  Conference on Latest trends in Electrical  Engineering and Computing Technologies  (INTELLECT), 15-16 Nov., Karachi, Pakistan.

[48] T.C. Cumhurbaşkanlığı, Türk Savunma Sanayii  Başkanlığı (2021). SSB – Türk Savunma Sanayii  Ürün Kataloğu [online]. Available from: SSB - TÜRK SAVUNMA SANAYİİ ÜRÜN  KATALOĞU, [Accessed: 16 September 2020].

[49] Baykar Savunma (2021). Bayraktar TB-2 [online]. Available from: BAYKAR İnsansız Hava Aracı  Sistemleri (baykarsavunma.com), [Accessed: 16  September 2020].

Share
Back to top
An International Journal of Optimization and Control: Theories & Applications, Electronic ISSN: 2146-5703 Print ISSN: 2146-0957, Published by AccScience Publishing