AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025470480
RESEARCH ARTICLE

Multimaterial vat photopolymerization: Computational optimization of slicing workflow for complex tissue geometries

Alejandro González-Santos1 Adrian García2 Nadina Usseglio2 Julián Flores1 Daniel Nieto2,3*
Show Less
1 Department of Electronics and Computing, University of Santiago de Compostela. Santiago de Compostela, Galicia, Spain.
2 Advanced Biofabrication Laboratory (DNIETO Lab), Interdisciplinary Center for Chemical and Biology, Universidade da Coruña, A Coruña, Galicia, Spain
3 Oportunius Program, Axencia Galega de Innovación, Santiago de Compostela, Galicia, Spain
Received: 18 November 2025 | Accepted: 16 December 2025 | Published online: 19 December 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Multimaterial printing using digital light processing (DLP) has progressed from a niche laboratory method to a scalable technology capable of fabricating complex and functional tissue constructs. However, current multimaterial DLP workflows face significant limitations. Material changes typically require repeated washing and reloading steps, which increase print time, raise the risk of cross-contamination or layer misalignment, and ultimately constrain scaffold design complexity and biological relevance. To address these challenges, we present a computational pipeline that significantly improves the efficiency, precision, and usability of DLP for multimaterial bioprinting. Our system includes three key innovations: (i) a high-resolution segmentation and material-labeling method using computer graphics techniques for accurate material assignment in Standard Tessellation Language (STL) models; (ii) a computer vision-based algorithm for real-time detection and correction of material interference or contamination; and (iii) a GPU-accelerated layer sequencing method that supports rapid, precise material switching within single-layer projections. Experimental validation demonstrates improved print fidelity, reduced processing time, and higher material resolution. We further showcase the practical utility of our system by bioprinting a multimaterial tissue construct composed of a poly(ethylene glycol) diacrylate-based scaffold integrated with a gelatin methacryloyl-based cell-laden microenvironment. This work represents a significant step toward enabling scalable, high-resolution, and biologically functional scaffold fabrication for advanced tissue engineering applications.

Graphical abstract
Keywords
3D printing protocol
Multimaterial digital light processing printer
Process planning algorithm
Slicing
Funding
Alejandro González-Santos was supported by a predoctoral research grant from the Xunta de Galicia (Consellería de Cultura, Educación, Formación Profesional e Universidades). This grant was co-funded by the European Union (FSE+ Galicia 2021-2027). Daniel Nieto was funded by the European Research Council Consolidator Grant (101125172 HOT-BIOPRINTING- HE-ERC-2023COG) and was supported by the Oportunius Programme (Xunta de Galicia) since 2024.
Conflict of interest
The authors declare that they have no conflict of interest.
References
  1. Deo KA, Singh KA, Peak CW, Alge DL, Gaharwar AK. Bioprinting 101: design, fabrication, and evaluation of cell-laden 3D bioprinted scaffolds. Tissue Eng Part A. 2020;26(5-6):318-338. doi: 10.1089/ten.tea.2019.0298
  2. Tripathi S, Mandal SS, Bauri S, Maiti P. 3D bioprinting and its innovative approach for biomedical applications. MedComm (2020). 2023;4(1):e194. doi: 10.1002/mco2.194
  3. Mirshafiei M, Rashedi H, Yazdian F, Rahdar A, Baino F. Advancements in tissue and organ 3D bioprinting: current techniques, applications, and future perspectives. Mater Des. 2024;240:112853. doi: 10.1016/j.matdes.2024.112853
  4. Leberfinger AN, Dinda S, Wu Y, et al. Bioprinting functional tissues. Acta Biomater. 2019;95:32-49. doi: 10.1016/j.actbio.2019.01.009
  5. Li W, Wang M, Ma H, Chapa-Villarreal FA, Lobo AO, Zhang YS. Stereolithography apparatus and digital light processing-based 3D bioprinting for tissue fabrication. iScience. 2023;26(2):106039. doi: 10.1016/j.isci.2023.106039
  6. Alparslan C, Bayraktar Ş. Advances in digital light processing (DLP) bioprinting: a review of biomaterials and its applications, innovations, challenges, and future perspectives. Polymers (Basel). 2025;17(9):1287. doi: 10.3390/polym17091287
  7. Nazir A, Gokcekaya O, Md Masum Billah K, et al. Multi-material additive manufacturing: a systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials. Mater Des. 2023;226:111661. doi: 10.1016/j.matdes.2023.111661
  8. Kwok TH. Comparing slicing technologies for digital light processing printing. J Comput Inf Sci Eng. 2019;19(4):044502. doi: 10.1115/1.4043672
  9. Yang S, Wang L, Chen Q, Xu M. In situ process monitoring and automated multi-parameter evaluation using optical coherence tomography during extrusion-based bioprinting. Addit Manuf. 2021;47:102251. doi: 10.1016/j.addma.2021.102251
  10. Kim H, Choi J, Wicker R. Scheduling and process planning for multiple material stereolithography. Rapid Prototyp J. 2010;16(4):232-240. doi: 10.1108/13552541011049243
  11. Shaukat U, Rossegger E, Schlögl S. A review of multi-material 3D printing of functional materials via vat photopolymerization. Polymers (Basel). 2022;14(12):2449. doi: 10.3390/polym14122449
  12. Shaukat U, Thalhamer A, Rossegger E, Schlögl S. Dual-vat photopolymerization 3D printing of vitrimers. Addit Manuf. 2024;79:103930. doi: 10.1016/j.addma.2023.103930
  13. Chin KCH, Ovsepyan G, Boydston AJ. Multi-color dual wavelength vat photopolymerization 3D printing via spatially controlled acidity. Nat Commun. 2024;15(1):3867. doi: 10.1038/s41467-024-48159-7
  14. Ghaderi I, Behravesh AH, Hedayati SK, et al. Multimaterial additive manufacturing of poly-L-lactic acid–hydroxylapatite/graphene oxide scaffold fabricated via vat photopolymerization: experimental investigation, analysis and cell study. Rapid Prototyp J. 2024;30(9): 1789-1802. doi: 10.1108/RPJ-02-2024-0085
  15. Preparata FP, Shamos MI. Computational Geometry. New York: Springer; 1985. doi: 10.1007/978-1-4612-1098-6
  16. Keeter M. DLP Slicer. https://www.mattkeeter.com/ projects/dlp
  17. Shreiner D, Sellers G, Kessenich JM, Licea-Kane BM. OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 4.3. Massachusetts, United States: Addison Wesley; 2013:984.
  18. Gonzalez RC, Woods RE. Digital Image Processing. Harlow Essex, England: Pearson Education; 2018.
  19. Choi YJ, Park H, Ha DH, Yun HS, Yi HG, Lee H. 3D bioprinting of in vitro models using hydrogel-based bioinks. Polymers (Basel). 2021;13(3):366. doi: 10.3390/polym13030366
  20. Gao J, Li M, Cheng J, et al. 3D-printed GelMA/PEGDA/ F127DA scaffolds for bone regeneration. J Funct Biomater. 2023;14(2):96. doi: 10.3390/jfb14020096
  21. Mancha Sánchez E, Gómez-Blanco JC, López Nieto E, et al. Hydrogels for bioprinting: a systematic review of hydrogels synthesis, bioprinting parameters, and bioprinted structures behavior. Front Bioeng Biotechnol. 2020;8:776. doi: 10.3389/fbioe.2020.00776
  22. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671-675. doi: 10.1038/nmeth.2089
  23. Yang Y, Zhou Y, Lin X, Yang Q, Yang G. Printability of external and internal structures based on digital light processing 3D printing technique. Pharmaceutics. 2020;12(3):207. doi: 10.3390/pharmaceutics12030207
  24. Flores-Jiménez MS, Garcia-Gonzalez A, Fuentes-Aguilar RQ. Review on porous scaffolds generation process: a tissue engineering approach. ACS Appl Bio Mater. 2023; 6(1):1-23. doi: 10.1021/acsabm.2c00740
  25. Şener Raman T, Kuehnert M, Daikos O, et al. A study on the material properties of novel PEGDA/gelatin hybrid hydrogels polymerized by electron beam irradiation. Front Chem. 2023;10:1094981. doi: 10.3389/fchem.2022.1094981
  26. Metz J, Gonnerman K, Chu A, Chu TMG. Effect of crosslinking density on swelling and mechanical properties of PEGDA400/PCLTMA900 hydrogels. Biomed Sci Instrum. 2006;42:389-394.
  27. Bupphathong S, Quiroz C, Huang W, Chung PF, Tao HY, Lin CH. Gelatin methacrylate hydrogel for tissue engineering applications—a review on material modifications. Pharmaceuticals. 2022;15(2):171. doi: 10.3390/ph15020171
  28. Fowler M, Moreno Lozano A, Krause J, et al. Guiding vascular infiltration through architected GelMA/PEGDA hydrogels: an in vivo study of channel diameter, length, and complexity. Biomater Sci. 2025;13(11):2951-2960. doi: 10.1039/D5BM00193E

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing