AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025460474
REVIEW ARTICLE

3D bioprinting-driven strategies for tissue regeneration and controlled immune modulation

Jianfeng Zhang1† Fujia Ren2† Fangtian Bu3 Yao Yao4* Mengmeng Li1*
Show Less
1 Department of Pharmacy, Tongde Hospital of Zhejiang Province Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
2 Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
3 College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
4 Department of Pharmacy, Women’s Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
†These authors contributed equally to this work.
Received: 13 November 2025 | Accepted: 12 December 2025 | Published online: 18 December 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Tissue loss, fibrosis-prone repair, and immune-mediated graft failure remain persistent obstacles in regenerative medicine. Within this context, 3D bioprinting is shifting from structure-centric fabrication to a platform for programmed immune modulation. This review synthesizes evidence across materials, architecture, and living components to delineate how bioprinted constructs can steer host responses toward resolution and durable function. We first examine events at the blood–biomaterial interface, including protein corona formation, complement–coagulation crosstalk, and leukocyte recruitment, and map them to tunable parameters, such as chemistry, stiffness, degradability, topography, and pore geometry that direct macrophage and dendritic-cell programs. We compare natural and synthetic bioinks, emphasizing printability windows, batch control, and impurity management as prerequisites for interpretable immunological readouts. We survey stimuli-responsive inks triggered by pH, reactive oxygen species, enzymes, light, or magnetic fields to deliver cytokines, chemokines, and metabolites with temporal precision, and highlight architected lattices and gradients that guide cell trafficking, vascular and lymphatic integration, and mechano-immune conditioning. Cell- and signal-centric strategies include immune–stromal coprinting, extracellular vesicle embedding, membrane cloaking for immune stealth or targeting, and synthetic circuits that sense inflammation and secrete immunoregulatory payloads. Finally, we identify translational bottlenecks and outline opportunities in 4D bioprinting, AI-assisted design, digital twins, and in situ printing. Treating immunity as a primary design variable is essential for predictable, durable, and clinically credible bioprinted therapies.  

 

Graphical abstract
Keywords
3D bioprinting
Bioinks
Foreign body response
Immunomodulation
Macrophage polarization
Regenerative medicine
Funding
None.
Conflict of interest
The authors declare they have no competing interests.
References

1 Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008;20(2):86-100. doi: 10.1016/j.smim.2007.11.004

2 Carnicer-Lombarte A, Chen ST, Malliaras GG, Barone DG. Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics. Front Bioeng Biotechnol. 2021;9:622524. doi: 10.3389/fbioe.2021.622524

3 Gomes YVR, Tavares AA, Barbosa RC, et al. Biological responses to biomaterials: a review. Braz J Med Biol Res. 2025;58:e14599. doi: 10.1590/1414-431X2025e14599

4 Nilsson B, Ekdahl KN, Mollnes TE, Lambris JD. The role of complement in biomaterial-induced inflammation. Mol Immunol. 2007;44(1-3):82-94. doi: 10.1016/j.molimm.2006.06.020

5 Chenoweth DE. Complement activation produced by biomaterials. Artif Organs. 1988;12(6):508-510. doi: 10.1111/j.1525-1594.1988.tb02815.x

6 Thakur KK, Lekurwale R, Bansode S, Pansare R. 3D bioprinting: a systematic review for future research direction. Indian J Orthop. 2023;57(12):1949-1967. doi: 10.1007/s43465-023-01000-7

7 Agarwal T, Onesto V, Banerjee D, et al. 3D bioprinting in tissue engineering: current state-of-the-art and challenges towards system standardization and clinical translation. Biofabrication. 2025;17:4. doi: 10.1088/1758-5090/ade47a

8 Raees S, Ullah F, Javed F, et al. Classification, processing, and applications of bioink and 3D bioprinting: a detailed review. Int J Biol Macromol. 2023;232:123476. doi: 10.1016/j.ijbiomac.2023.123476

9 Lee J, Byun H, Madhurakkat Perikamana SK, Lee S, Shin H. Current advances in immunomodulatory biomaterials for bone regeneration. Adv Healthc Mater. 2019;8(4): e1801106. doi: 10.1002/adhm.201801106

10 Yang T, Fang Z, Zhang J, Zheng S. Physical cues in biomaterials modulate macrophage polarization for bone regeneration: a review. Front Bioeng Biotechnol. 2025;13:1640560. doi: 10.3389/fbioe.2025.1640560

11 Yang HC, Park HC, Quan H, Kim Y. Immunomodulation of biomaterials by controlling macrophage polarization. Adv Exp Med Biol. 2018;1064:197-206. doi: 10.1007/978-981-13-0445-3_12

12 Zarubova J, Hasani-Sadrabadi MM, Ardehali R, Li S. Immunoengineering strategies to enhance vascularization and tissue regeneration. Adv Drug Deliv Rev. 2022;184:114233. doi: 10.1016/j.addr.2022.114233

13 Est-Witte S, Jain M, Ben-Akiva E, et al. Immunomodulatory delivery materials for tissue repair. Adv Healthc Mater. 2025;14(23):e2501400. doi: 10.1002/adhm.202501400

14 Modinger Y, Teixeira GQ, Neidlinger-Wilke C, Ignatius A. Role of the complement system in the response to orthopedic biomaterials. Int J Mol Sci. 2018;19:11. doi: 10.3390/ijms19113367

15 Trindade R, Albrektsson T, Tengvall P, Wennerberg A. Foreign body reaction to biomaterials: on mechanisms for buildup and breakdown of osseointegration. Clin Implant Dent Relat Res. 2016;18(1):192-203. doi: 10.1111/cid.12274

16 Durieux N, Vandenput S, Pasleau F. OCEBM levels of evidence system. Rev Med Liege. 2013;68(12):644-649.

17 Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71

18 Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. PLoS Med. 2021;18(3):e1003583. doi: 10.1371/journal.pmed.1003583

19 Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453(7193):314-321. doi: 10.1038/nature07039

20 Landen NX, Li D, Stahle M. Transition from inflammation to proliferation: a critical step during wound healing. Cell Mol Life Sci. 2016;73(20):3861-3885. doi: 10.1007/s00018-016-2268-0

21 Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012;49(1):35-43. doi: 10.1159/000339613

22 Ekdahl KN, Huang S, Nilsson B, Teramura Y. Complement inhibition in biomaterial- and biosurface-induced thromboinflammation. Semin Immunol. 2016;28(3):268-277. doi: 10.1016/j.smim.2016.04.006

23 Netea MG, Dominguez-Andres J, Barreiro LB, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol. 2020;20(6):375-388. doi: 10.1038/s41577-020-0285-6

24 Dagenais A, Villalba-Guerrero C, Olivier M. Trained immunity: a “new” weapon in the fight against infectious diseases. Front Immunol. 2023;14:1147476. doi: 10.3389/fimmu.2023.1147476

25 Mestres G, Carter SD, Hailer NP, Diez-Escudero A. A practical guide for evaluating the osteoimmunomodulatory properties of biomaterials. Acta Biomater. 2021;130:115-137. doi: 10.1016/j.actbio.2021.05.038

26 Martin KE, Garcia AJ. Macrophage phenotypes in tissue repair and the foreign body response: implications for biomaterial-based regenerative medicine strategies. Acta Biomater. 2021;133:4-16. doi: 10.1016/j.actbio.2021.03.038

27 Piatnitskaia S, Rafikova G, Bilyalov A, et al. Modelling of macrophage responses to biomaterials in vitro: state-of-the-art and the need for the improvement. Front Immunol. 2024;15:1349461. doi: 10.3389/fimmu.2024.1349461

28 Holzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016;8(3):032002. doi: 10.1088/1758-5090/8/3/032002

29 Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915-946. doi: 10.1039/c7bm00765e

30 Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials. 2011;32(12):3233-3243. doi: 10.1016/j.biomaterials.2011.01.057

31 Lieder R, Petersen PH, Sigurjonsson OE. Endotoxins-the invisible companion in biomaterials research. Tissue Eng Part B Rev. 2013;19(5):391-402. doi: 10.1089/ten.TEB.2012.0636

32 Lin CC, Anseth KS. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res. 2009;26(3):631-643. doi: 10.1007/s11095-008-9801-2

33 Fernandez-Yague MA, Hymel LA, Olingy CE, et al. Analyzing immune response to engineered hydrogels by hierarchical clustering of inflammatory cell subsets. Sci Adv. 2022;8(8):eabd8056. doi: 10.1126/sciadv.abd8056

34 Yang D, Jones KS. Effect of alginate on innate immune activation of macrophages. J Biomed Mater Res A. 2009;90(2):411-418. doi: 10.1002/jbm.a.32096

35 Choudhury D, Tun HW, Wang T, Naing MW. Organ-derived decellularized extracellular matrix: a game changer for bioink manufacturing? Trends Biotechnol. 2018;36(8):787-805. doi: 10.1016/j.tibtech.2018.03.003

36 Abaci A, Guvendiren M. Designing decellularized extracellular matrix-based bioinks for 3D bioprinting. Adv Healthc Mater. 2020;9(24):e2000734. doi: 10.1002/adhm.202000734

37 Ma S, Feng X, Liu F, Wang B, Zhang H, Niu X. The pro-inflammatory response of macrophages regulated by acid degradation products of poly(lactide-co-glycolide) nanoparticles. Eng Life Sci. 2021;21(10):709-720. doi: 10.1002/elsc.202100040

38 Zhao Y, Feng X, Zhao Z, Song Z, Wang W, Zhao H. Interleukin-4-loaded heparin hydrogel regulates macrophage polarization to promote osteogenic differentiation. ACS Biomater Sci Eng. 2024;10(9):5774-5783. doi: 10.1021/acsbiomaterials.4c00589

39 Pacifici N, Bolandparvaz A, Lewis JS. Stimuli-responsive biomaterials for vaccines and immunotherapeutic applications. Adv Ther (Weinh). 2020;3(11):2000129. doi: 10.1002/adtp.202000129

40 Yu H, Gao R, Liu Y, Fu L, Zhou J, Li L. Stimulus-responsive hydrogels as drug delivery systems for inflammation targeted therapy. Adv Sci (Weinh). 2024;11(1):e2306152. doi: 10.1002/advs.202306152

41 Pranantyo D, Yeo CK, Wu Y, et al. Hydrogel dressings with intrinsic antibiofilm and antioxidative dual functionalities accelerate infected diabetic wound healing. Nat Commun. 2024;15(1):954. doi: 10.1038/s41467-024-44968-y

42 Huang Q, Qu Y, Tang M, et al. ROS-responsive hydrogel for bone regeneration: controlled dimethyl fumarate release to reduce inflammation and enhance osteogenesis. Acta Biomater. 2025;195:183-200. doi: 10.1016/j.actbio.2025.02.026

43 Chen H, Wang W, Yang Y, et al. A sequential stimuli-responsive hydrogel promotes structural and functional recovery of severe spinal cord injury. Biomaterials. 2025;316:122995. doi: 10.1016/j.biomaterials.2024.122995

44 Lai Y, Xiao X, Huang Z, et al. Photocrosslinkable biomaterials for 3D bioprinting: mechanisms, recent advances, and future prospects. Int J Mol Sci. 2024;25:23. doi: 10.3390/ijms252312567

45 Li L, Alsema E, Beijer NRM, Gumuscu B. Magnetically driven hydrogel surfaces for modulating macrophage behavior. ACS Biomater Sci Eng. 2024;10(11):6974-6983. doi: 10.1021/acsbiomaterials.4c01624

46 Gorronogoitia I, Urtaza U, Zubiarrain-Laserna A, Alonso- Varona A, Zaldua AM. A study of the printability of alginate-based bioinks by 3D bioprinting for articular cartilage tissue engineering. Polymers (Basel). 2022;14:2. doi: 10.3390/polym14020354

47 Cruz EM, Machado LS, Zamproni LN, et al. A gelatin methacrylate-based hydrogel as a potential bioink for 3D bioprinting and neuronal differentiation. Pharmaceutics. 2023;15:2. doi: 10.3390/pharmaceutics15020627

48 Wang D, Guo Y, Zhu J, et al. Hyaluronic acid methacrylate/ pancreatic extracellular matrix as a potential 3D printing bioink for constructing islet organoids. Acta Biomater. 2023;165:86-101. doi: 10.1016/j.actbio.2022.06.036

49 Osidak EO, Kozhukhov VI, Osidak MS, Domogatsky SP. Collagen as bioink for bioprinting: a comprehensive review. Int J Bioprint. 2020;6(3):270. doi: 10.18063/ijb.v6i3.270

50 de Melo BAG, Jodat YA, Cruz EM, Benincasa JC, Shin SR, Porcionatto MA. Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. Acta Biomater. 2020;117:60-76. doi: 10.1016/j.actbio.2020.09.024

51 Hidaka M, Kojima M, Nakahata M, Sakai S. Visible light-curable chitosan ink for extrusion-based and vat polymerization-based 3D bioprintings. Polymers (Basel). 2021;13:9. doi: 10.3390/polym13091382

52 Markstedt K, Mantas A, Tournier I, Martinez Avila H, Hagg D, Gatenholm P. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules. 2015;16(5): 1489-1496. doi: 10.1021/acs.biomac.5b00188

53 Alheib O, da Silva LP, Youn YH, Kwon IK, Reis RL, Correlo VM. 3D bioprinting of gellan gum-based hydrogels tethered with laminin-derived peptides for improved cellular behavior. J Biomed Mater Res A. 2022;110(10):1655-1668. doi: 10.1002/jbm.a.37415

54 Marques DMC, Silva JC, Serro AP, Cabral JMS, Sanjuan- Alberte P, Ferreira FC. 3D bioprinting of novel kappa-carrageenan bioinks: an algae-derived polysaccharide. Bioengineering (Basel). 2022;9:3. doi: 10.3390/bioengineering9030109

55 Gu Y, Schwarz B, Forget A, Barbero A, Martin I, Shastri VP. Advanced bioink for 3D bioprinting of complex free-standing structures with high stiffness. Bioengineering (Basel). 2020;7:4. doi: 10.3390/bioengineering7040141

56 Piluso S, Skvortsov GA, Altunbek M, et al. 3D bioprinting of molecularly engineered PEG-based hydrogels utilizing gelatin fragments. Biofabrication. 2021;13:4. doi: 10.1088/1758-5090/ac0ff0

57 Rossi A, Pescara T, Gambelli AM, et al. Biomaterials for extrusion-based bioprinting and biomedical applications. Front Bioeng Biotechnol. 2024;12:1393641. doi: 10.3389/fbioe.2024.1393641

58 Li X, Liu B, Pei B, et al. Inkjet bioprinting of biomaterials. Chem Rev. 2020;120(19):10793-10833. doi: 10.1021/acs.chemrev.0c00008

59 Jeong YG, Yoo JJ, Lee SJ, Kim MS. 3D digital light process bioprinting: cutting-edge platforms for resolution of organ fabrication. Mater Today Bio. 2024;29:101284. doi: 10.1016/j.mtbio.2024.101284

60 Jing X, Fu H, Yu B, Sun M, Wang L. Two-photon polymerization for 3D biomedical scaffolds: overview and updates. Front Bioeng Biotechnol. 2022;10:994355. doi: 10.3389/fbioe.2022.994355

61 Lee SJ, Jeong W, Atala A. 3D bioprinting for engineered tissue constructs and patient-specific models: current progress and prospects in clinical applications. Adv Mater. 2024;36(49):e2408032. doi: 10.1002/adma.202408032

62 Hady TF, Hwang B, Pusic AD, et al. Uniform 40-microm-pore diameter precision templated scaffolds promote a pro-healing host response by extracellular vesicle immune communication. J Tissue Eng Regen Med. 2021; 15(1):24-36. doi: 10.1002/term.3160

63 Yang X, Gao J, Yang S, et al. Pore size-mediated macrophage M1 to M2 transition affects osseointegration of 3D-printed PEEK scaffolds. Int J Bioprint. 2023;9(5):755. doi: 10.18063/ijb.755

64 Liao C, Li Y, Tjong SC. Polyetheretherketone and its composites for bone replacement and regeneration. Polymers (Basel). 2020;12:12. doi: 10.3390/polym12122858

65 Adamson M, Eslami B. Post-processing PEEK 3D-printed parts: experimental investigation of annealing on microscale and macroscale properties. Polymers (Basel). 2025;17:6. doi: 10.3390/polym17060744

66 Sun Y, Zhang Y, Guo Y, et al. Electrical aligned polyurethane nerve guidance conduit modulates macrophage polarization and facilitates immunoregulatory peripheral nerve regeneration. J Nanobiotechnol. 2024;22(1):244. doi: 10.1186/s12951-024-02507-3

67 McWhorter FY, Wang T, Nguyen P, Chung T, Liu WF. Modulation of macrophage phenotype by cell shape. Proc Natl Acad Sci USA. 2013;110(43):17253-17258. doi: 10.1073/pnas.1308887110

68 Wu J, Mao Z, Tan H, Han L, Ren T, Gao C. Gradient biomaterials and their influences on cell migration. Interface Focus. 2012;2(3):337-355. doi: 10.1098/rsfs.2011.0124

69 Miri AK, Mirzaee I, Hassan S, et al. Effective bioprinting resolution in tissue model fabrication. Lab Chip. 2019;19(11):2019-2037. doi: 10.1039/c8lc01037d

70 Miri AK, Nieto D, Iglesias L, et al. Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Adv Mater. 2018;30(27):e1800242. doi: 10.1002/adma.201800242

71 Kim YK, Park JA, Yoon WH, Kim J, Jung S. Drop-on-demand inkjet-based cell printing with 30-mum nozzle diameter for cell-level accuracy. Biomicrofluidics. 2016;10(6):064110. doi: 10.1063/1.4968845

72 Jia W, Gungor-Ozkerim PS, Zhang YS, et al. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials. 2016;106:58-68. doi: 10.1016/j.biomaterials.2016.07.038

73 Zhu W, Qu X, Zhu J, et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials. 2017;124:106-115. doi: 10.1016/j.biomaterials.2017.01.042

74 Dellaquila A, Le Bao C, Letourneur D, Simon-Yarza T. In vitro strategies to vascularize 3D physiologically relevant models. Adv Sci (Weinh). 2021;8(19):e2100798. doi: 10.1002/advs.202100798

75 Cao X, Ashfaq R, Cheng F, et al. A tumor-on-a-chip system with bioprinted blood and lymphatic vessel pair. Adv Funct Mater. 2019;29:31. doi: 10.1002/adfm.201807173

76 Lu R, Lee BJ, Lee E. Three-dimensional lymphatics-on-a-chip reveals distinct, size-dependent nanoparticle transport mechanisms in lymphatic drug delivery. ACS Biomater Sci Eng. 2024;10(9):5752-5763. doi: 10.1021/acsbiomaterials.4c01005

77 Sergis V, Kelly D, Pramanick A, Britchfield G, Mason K, Daly AC. In-situquality monitoring during embedded bioprinting using integrated microscopy and classical computer vision. Biofabrication. 2025;17:2. doi: 10.1088/1758-5090/adaa22

78 Quirk EL, Burroughs MC, Mai DJ. In situ photo-rheology monitors viscoelastic changes in photo-responsive polymer networks. J Vis Exp. 2025:220. doi: 10.3791/68394

79 Malekpour A, Chen X. Printability and cell viability in extrusion-based bioprinting from experimental, computational, and machine learning views. J Funct Biomater. 2022;13:2. doi: 10.3390/jfb13020040

80 Nair K, Gandhi M, Khalil S, et al. Characterization of cell viability during bioprinting processes. Biotechnol J. 2009;4(8):1168-1177. doi: 10.1002/biot.200900004

81 Jui E, Kingsley G, Phan HKT, et al. Shear stress induces a time-dependent inflammatory response in human monocyte-derived macrophages. Ann Biomed Eng. 2024;52(11):2932-2947. doi: 10.1007/s10439-024-03546-5

82 Son H, Choi HS, Baek SE, et al. Shear stress induces monocyte/macrophage-mediated inflammation by upregulating cell-surface expression of heat shock proteins. Biomed Pharmacother. 2023;161:114566. doi: 10.1016/j.biopha.2023.114566

83 Blaeser A, Duarte Campos DF, Puster U, Richtering W, Stevens MM, Fischer H. Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater. 2016;5(3):326-333. doi: 10.1002/adhm.201500677

84 Hoque R, Farooq A, Ghani A, Gorelick F, Mehal WZ. Lactate reduces liver and pancreatic injury in toll-like receptor-and inflammasome-mediated inflammation via GPR81- mediated suppression of innate immunity. Gastroenterology. 2014;146(7):1763-1774. doi: 10.1053/j.gastro.2014.03.014

85 Ekdahl KN, Lambris JD, Elwing H, et al. Innate immunity activation on biomaterial surfaces: a mechanistic model and coping strategies. Adv Drug Deliv Rev. 2011;63(12):1042-1050. doi: 10.1016/j.addr.2011.06.012

86 Beskid NM, Kolawole EM, Coronel MM, et al. IL-10- functionalized hydrogels support immunosuppressive dendritic cell phenotype and function. ACS Biomater Sci Eng. 2022;8(10):4341-4353. doi: 10.1021/acsbiomaterials.2c00465

87 Liu JMH, Zhang J, Zhang X, et al. Transforming growth factor-beta 1 delivery from microporous scaffolds decreases inflammation post-implant and enhances function of transplanted islets. Biomaterials. 2016;80:11-19. doi: 10.1016/j.biomaterials.2015.11.065

88 McHugh MD, Park J, Uhrich R, Gao W, Horwitz DA, Fahmy TM. Paracrine co-delivery of TGF-beta and IL-2 using CD4- targeted nanoparticles for induction and maintenance of regulatory T cells. Biomaterials. 2015;59:172-181. doi: 10.1016/j.biomaterials.2015.04.003

89 Spiller KL, Nassiri S, Witherel CE, et al. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials. 2015;37:194-207. doi: 10.1016/j.biomaterials.2014.10.017

90 Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574(7779):575-580. doi: 10.1038/s41586-019-1678-1

91 Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1beta through HIF- 1alpha. Nature. 2013;496(7444):238-242. doi: 10.1038/nature11986

92 Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446-450. doi: 10.1038/nature12721

93 Vauthier C, Persson B, Lindner P, Cabane B. Protein adsorption and complement activation for di-block copolymer nanoparticles. Biomaterials. 2011;32(6):1646-1656. doi: 10.1016/j.biomaterials.2010.10.026

94 Debnath S, Latiyan S, Jain N, et al. 3D Bioprinted Immunomodulation horizontal line the advancing landscape of next-generation immuno-oncology. Biomacromolecules. 2025;26(6):3255-3280. doi: 10.1021/acs.biomac.4c01816

95 Li C, Li C, Ma Z, et al. Regulated macrophage immune microenvironment in 3D printed scaffolds for bone tumor postoperative treatment. Bioact Mater. 2023;19:474-485. doi: 10.1016/j.bioactmat.2022.04.028

96 Xuan Y, Guo Y, Li L, et al. 3D-printed bredigite scaffolds with ordered arrangement structures promote bone regeneration by inducing macrophage polarization in onlay grafts. J Nanobiotechnology. 2024;22(1):102. doi: 10.1186/s12951-024-02362-2

97 Muller L, Tunger A, Wobus M, et al. Immunomodulatory properties of mesenchymal stromal cells: an update. Front Cell Dev Biol. 2021;9:637725. doi: 10.3389/fcell.2021.637725

98 Kou M, Huang L, Yang J, et al. Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: a next generation therapeutic tool? Cell Death Dis. 2022;13(7):580. doi: 10.1038/s41419-022-05034-x

99 Fang RH, Gao W, Zhang L. Targeting drugs to tumours using cell membrane-coated nanoparticles. Nat Rev Clin Oncol. 2023;20(1):33-48. doi: 10.1038/s41571-022-00699-x

100 Han H, Bartolo R, Li J, Shahbazi MA, Santos HA. Biomimetic platelet membrane-coated nanoparticles for targeted therapy. Eur J Pharm Biopharm. 2022;172:1-15. doi: 10.1016/j.ejpb.2022.01.004

101 Liu H, Su YY, Jiang XC, Gao JQ. Cell membrane-coated nanoparticles: a novel multifunctional biomimetic drug delivery system. Drug Deliv Transl Res. 2023;13(3):716-737. doi: 10.1007/s13346-022-01252-0

102 Cai Y, Wang Y, Hu S. Synthetic Gene circuits enable sensing in engineered living materials. Biosensors (Basel). 2025;15:9. doi: 10.3390/bios15090556

103 Teng F, Cui T, Zhou L, Gao Q, Zhou Q, Li W. Programmable synthetic receptors: the next-generation of cell and gene therapies. Signal Transduct Target Ther. 2024;9(1):7. doi: 10.1038/s41392-023-01680-5

104 Guo C, Ma X, Gao F, Guo Y. Off-target effects in CRISPR/ Cas9 gene editing. Front Bioeng Biotechnol. 2023;11:1143157. doi: 10.3389/fbioe.2023.1143157

105 Luo J, Chen J, Huang Y, You L, Dai Z. Engineering living materials by synthetic biology. Biophys Rev (Melville). 2023;4(1):011305. doi: 10.1063/5.0115645

106 Ou Y, Guo S. Safety risks and ethical governance of biomedical applications of synthetic biology. Front Bioeng Biotechnol. 2023;11:1292029. doi: 10.3389/fbioe.2023.1292029

107 Baltazar T, Merola J, Catarino C, et al. Three dimensional bioprinting of a vascularized and perfusable skin graft using human keratinocytes, fibroblasts, pericytes, and endothelial cells. Tissue Eng Part A. 2020;26(5-6):227-238. doi: 10.1089/ten.TEA.2019.0201

108 Pasierb A, Jezierska M, Karpuk A, Czuwara J, Rudnicka L. 3D skin bioprinting: future potential for skin regeneration. Postepy Dermatol Alergol. 2022;39(5):845-851. doi: 10.5114/ada.2021.109692

109 Aureal M, Machuca-Gayet I, Coury F. Rheumatoid arthritis in the view of osteoimmunology. Biomolecules. 2020;11:1. doi: 10.3390/biom11010048

110 Dutta SD, Ganguly K, Patil TV, Randhawa A, Lim KT. Unraveling the potential of 3D bioprinted immunomodulatory materials for regulating macrophage polarization: state-of-the-art in bone and associated tissue regeneration. Bioact Mater. 2023;28:284-310. doi: 10.1016/j.bioactmat.2023.05.014

111 Yao Y, Cai X, Chen Y, Zhang M, Zheng C. Estrogen deficiency-mediated osteoimmunity in postmenopausal osteoporosis. Med Res Rev. 2025;45(2):561-575. doi: 10.1002/med.22081

112 Guo Y, Shi Z, Han L, et al. Infection-sensitive SPION/PLGA scaffolds promote periodontal regeneration via antibacterial activity and macrophage-phenotype modulation. ACS Appl Mater Interfaces. 2024;16(32):41855-41868. doi: 10.1021/acsami.4c06430

113 Qiao Z, Zhang W, Jiang H, Li X, An W, Yang H. 3D-printed composite scaffold with anti-infection and osteogenesis potential against infected bone defects. RSC Adv. 2022;12(18):11008-11020. doi: 10.1039/d2ra00214k

114 Zou F, Jiang J, Lv F, Xia X, Ma X. Preparation of antibacterial and osteoconductive 3D-printed PLGA/Cu(I)@ZIF- 8 nanocomposite scaffolds for infected bone repair. J Nanobiotechnology. 2020;18(1):39. doi: 10.1186/s12951-020-00594-6

115 Dubey A, Vahabi H, Kumaravel V. Antimicrobial and biodegradable 3D printed scaffolds for orthopedic infections. ACS Biomater Sci Eng. 2023;9(7):4020-4044. doi: 10.1021/acsbiomaterials.3c00115

116 Wang Z, Wang L, Li T, et al. 3D bioprinting in cardiac tissue engineering. Theranostics. 2021;11(16):7948-7969. doi: 10.7150/thno.61621

117 Elalouf A. Immune response against the biomaterials used in 3D bioprinting of organs. Transpl Immunol. 2021;69:101446. doi: 10.1016/j.trim.2021.101446

118 Ma Y, He R, Deng B, et al. Advanced 3D bioprinted liver models with human-induced hepatocytes for personalized toxicity screening. J Tissue Eng. 2025;16:20417314241313341. doi: 10.1177/20417314241313341

119 Ali ASM, Berg J, Roehrs V, et al. Xeno-free 3D bioprinted liver model for hepatotoxicity assessment. Int J Mol Sci. 2024;25:3. doi: 10.3390/ijms25031811

120 King SM, Higgins JW, Nino CR, et al. 3D proximal tubule tissues recapitulate key aspects of renal physiology to enable nephrotoxicity testing. Front Physiol. 2017;8:123. doi: 10.3389/fphys.2017.00123

121 Andreev AL, Andreeva TB, Kompanets IN, Zalyapin NV. Space-inhomogeneous phase modulation of laser radiation in an electro-optical ferroelectric liquid crystal cell for suppressing speckle noise. Appl Opt. 2018;57(6):1331-1337. doi: 10.1364/AO.57.001331

122 Feile A, Wegner VD, Raasch M, Mosig AS. Immunocompetent intestine-on-chip model for analyzing gut mucosal immune responses. J Vis Exp. 2024:207. doi: 10.3791/66603

123 Ji W, Hou B, Lin W, et al. 3D bioprinting a human iPSC-derived MSC-loaded scaffold for repair of the uterine endometrium. Acta Biomater. 2020;116:268-284. doi: 10.1016/j.actbio.2020.09.012

124 Tinggaard Pedersen N, Cohn J. Intact megakaryocytes in the venous blood as a marker for thrombopoiesis. Scand J Haematol. 1981;27(1):57-63. doi: 10.1111/j.1600-0609.1981.tb00452.x

125 Richards C, Chen H, O’Rourke M, et al. Matrix directs trophoblast differentiation in a bioprinted organoid model of early placental development. Nat Commun. 2025;16(1):8267. doi: 10.1038/s41467-025-62996-0

126 Luo X, Liu Z, Fang S, et al. Implantable hydrogel-based scaffold integrating cascaded chemotherapy and self-amplified immunotherapy to suppress postsurgical tumor recurrence. J Colloid Interface Sci. 2025;700(Pt 2):138475. doi: 10.1016/j.jcis.2025.138475

127 Fang L, Liu Y, Qiu J, Wan W. Bioprinting and its use in tumor-on-a-chip technology for cancer drug screening: a review. Int J Bioprint. 2022;8(4):603. doi: 10.18063/ijb.v8i4.603

128 Neal JT, Li X, Zhu J, et al. Organoid modeling of the tumor immune microenvironment. Cell. 2018;175(7):1972-1988 e1916. doi: 10.1016/j.cell.2018.11.021

129 Zhao Z, Zhang S, Jiang N, et al. Patient-derived Immunocompetent tumor organoids: a platform for chemotherapy evaluation in the context of t-cell recognition. Angew Chem Int Ed Engl. 2024;63(9):e202317613. doi: 10.1002/anie.202317613

130 Logun M, Wang X, Sun Y, et al. Patient-derived glioblastoma organoids as real-time avatars for assessing responses to clinical CAR-T cell therapy. Cell Stem Cell. 2025;32(2):181- 190 e184. doi: 10.1016/j.stem.2024.11.010

131 Dekkers JF, Alieva M, Cleven A, et al. Uncovering the mode of action of engineered T cells in patient cancer organoids. Nat Biotechnol. 2023;41(1):60-69. doi: 10.1038/s41587-022-01397-w

132 Alieva M, Barrera Roman M, de Blank S, et al. BEHAV3D: a 3D live imaging platform for comprehensive analysis of engineered T cell behavior and tumor response. Nat Protoc. 2024;19(7):2052-2084. doi: 10.1038/s41596-024-00972-6

133 Abdulrahman Z, Slieker RC, McGuire D, Welters MJP, van Poelgeest MIE, van der Burg SH. Single-cell spatial transcriptomics unravels cell states and ecosystems associated with clinical response to immunotherapy. J Immunother Cancer. 2025;13:3. doi: 10.1136/jitc-2024-011308

134 Renauer P, Park JJ, Bai M, et al. Immunogenetic metabolomics reveals key enzymes that modulate CAR T-cell metabolism and function. Cancer Immunol Res. 2023;11(8):1068-1084. doi: 10.1158/2326-6066.CIR-22-0565

135 Shi H, Chen S, Chi H. Immunometabolism of CD8(+) T cell differentiation in cancer. Trends Cancer. 2024;10(7): 610-626. doi: 10.1016/j.trecan.2024.03.010

136 Ingber DE. Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat Rev Genet. 2022;23(8):467-491. doi: 10.1038/s41576-022-00466-9

137 Wang H, Ning X, Zhao F, Zhao H, Li D. Human organoids-on-chips for biomedical research and applications. Theranostics. 2024;14(2):788-818. doi: 10.7150/thno.90492

138 Man Y, Liu Y, Chen Q, et al. Organoids-on-a-chip for personalized precision medicine. Adv Healthc Mater. 2024;13(30):e2401843. doi: 10.1002/adhm.202401843

139 Yang Y, Chen Y, Wang L, et al. PBPK modeling on organs-on-chips: an overview of recent advancements. Front Bioeng Biotechnol. 2022;10:900481. doi: 10.3389/fbioe.2022.900481

140 Li T, Yang Y, Yang F, et al. Organoids and organoids-on-chip in traditional chinese medicine research: applications, advantages, and future prospects. Cell Biol Int. 2025;49(10):1233-1244. doi: 10.1002/cbin.70067

141 Liu J, Li T, Li R, et al. Hepatic organoid-based high-content imaging boosts evaluation of stereoisomerism-dependent hepatotoxicity of stilbenes in herbal medicines. Front Pharmacol. 2022;13:862830. doi: 10.3389/fphar.2022.862830

142 Huang C, Jiang Y, Bao Q, et al. Study on the differential hepatotoxicity of raw polygonum multiflorum and polygonum multiflorum praeparata and its mechanism. BMC Complement Med Ther. 2024;24(1):161. doi: 10.1186/s12906-024-04463-9

143 Li CG, Yan L, Mai FY, et al. Baicalin inhibits NOD-like receptor family, pyrin containing domain 3 inflammasome activation in murine macrophages by augmenting protein kinase A signaling. Front Immunol. 2017;8:1409. doi: 10.3389/fimmu.2017.01409

144 Ning B, Shen J, Liu F, Zhang H, Jiang X. Baicalein suppresses NLRP3 and AIM2 inflammasome-mediated pyroptosis in macrophages infected by mycobacterium tuberculosis via induced autophagy. Microbiol Spectr. 2023;11(3): e0471122. doi: 10.1128/spectrum.04711-22

145 Xu F, Cui WQ, Wei Y, et al. Astragaloside IV inhibits lung cancer progression and metastasis by modulating macrophage polarization through AMPK signaling. J Exp Clin Cancer Res. 2018;37(1):207. doi: 10.1186/s13046-018-0878-0

146 Kim A, Downer MA, Berry CE, Valencia C, Fazilat AZ, Griffin M. Investigating immunomodulatory biomaterials for preventing the foreign body response. Bioengineering (Basel). 2023;10:12. doi: 10.3390/bioengineering10121411

147 Dzobo K, Motaung K, Adesida A. Recent trends in decellularized extracellular matrix bioinks for 3d printing: an updated review. Int J Mol Sci. 2019;20:18. doi: 10.3390/ijms20184628

148 Rizwan M, Chan SW, Comeau PA, Willett TL, Yim EKF. Effect of sterilization treatment on mechanical properties, biodegradation, bioactivity and printability of GelMA hydrogels. Biomed Mater. 2020;15(6):065017. doi: 10.1088/1748-605X/aba40c

149 Pohan G, Mattiassi S, Yao Y, et al. Effect of ethylene oxide sterilization on polyvinyl alcohol hydrogel compared with gamma radiation. Tissue Eng Part A. 2020;26(19-20):1077-1090. doi: 10.1089/ten.TEA.2020.0002

150 Zhang F, Scull G, Gluck JM, Brown AC, King MW. Effects of sterilization methods on gelatin methacryloyl hydrogel properties and macrophage gene expressionin vitro. Biomed Mater. 2022;18:1. doi: 10.1088/1748-605X/aca4b2

151 Xu H, Casillas J, Krishnamoorthy S, Xu C. Effects of Irgacure 2959 and lithium phenyl-2,4,6-trimethylbenzoylphosphinate on cell viability, physical properties, and microstructure in 3D bioprinting of vascular-like constructs. Biomed Mater. 2020;15(5):055021. doi: 10.1088/1748-605X/ab954e

152 Godar DE, Gurunathan C, Ilev I. 3D Bioprinting with UVA1 radiation and photoinitiator Irgacure 2959: can the ASTM Standard L929 cells predict human stem cell cytotoxicity? Photochem Photobiol. 2019;95(2):581-586. doi: 10.1111/php.13028

153 Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev. 2020;120(19):11028-11055. doi: 10.1021/acs.chemrev.0c00084

154 Chaudhuri O, Cooper-White J, Janmey PA, Mooney DJ, Shenoy VB. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature. 2020;584(7822):535-546. doi: 10.1038/s41586-020-2612-2

155 Wang H, Yu H, Zhou X, et al. An overview of extracellular matrix-based bioinks for 3D bioprinting. Front Bioeng Biotechnol. 2022;10:905438. doi: 10.3389/fbioe.2022.905438

156 Zhe M, Wu X, Yu P, et al. Recent advances in decellularized extracellular matrix-based bioinks for 3D bioprinting in tissue engineering. Materials (Basel). 2023;16:8. doi: 10.3390/ma16083197

157 Zhang H, Wang Y, Zheng Z, et al. Strategies for improving the 3D printability of decellularized extracellular matrix bioink. Theranostics. 2023;13(8):2562-2587. doi: 10.7150/thno.81785

158 Xin S, Deo KA, Dai J, et al. Generalizing hydrogel microparticles into a new class of bioinks for extrusion bioprinting. Sci Adv. 2021;7(42):eabk3087. doi: 10.1126/sciadv.abk3087

159 Schirmer L, Atallah P, Werner C, Freudenberg U. StarPEG-Heparin hydrogels to protect and sustainably deliver IL-4. Adv Healthc Mater. 2016;5(24):3157-3164. doi: 10.1002/adhm.201600797

160 Jui E, Kingsley G, Jimenez S, Birla RK, Keswani SG, Grande- Allen KJ. Shear-induced macrophage secretome promotes endothelial permeability. bioRxiv. 2025;660831. doi: 10.1101/2025.06.20.660831

161 Ding T, Sun J. Formation of protein corona on nanoparticle affects different complement activation pathways mediated by C1q. Pharm Res. 2019;37(1):10. doi: 10.1007/s11095-019-2747-8

162 Wiegner R, Chakraborty S, Huber-Lang M. Complement-coagulation crosstalk on cellular and artificial surfaces. Immunobiology. 2016;221(10):1073-1079. doi: 10.1016/j.imbio.2016.06.005

163 Brandwijk R, Michels M, van Rossum M, et al. Pitfalls in complement analysis: a systematic literature review of assessing complement activation. Front Immunol. 2022;13:1007102. doi: 10.3389/fimmu.2022.1007102

164 Seok J, Warren HS, Cuenca AG, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA. 2013;110(9):3507-3512. doi: 10.1073/pnas.1222878110

165 Takao K, Miyakawa T. Genomic responses in mouse models greatly mimic human inflammatory diseases. Proc Natl Acad Sci USA. 2015;112(4):1167-1172. doi: 10.1073/pnas.1401965111

166 Mladenovska T, Choong PF, Wallace GG, O’Connell CD. The regulatory challenge of 3D bioprinting. Regen Med. 2023;18(8):659-674. doi: 10.2217/rme-2022-0194

167 Taylor S, Mueller E, Jones LR, Makela AV, Ashammakhi N. Translational aspects of 3D and 4D printing and bioprinting. Adv Healthc Mater. 2024;13(27): e2400463. doi: 10.1002/adhm.202400463

168 Yu LX, Amidon G, Khan MA, et al. Understanding pharmaceutical quality by design. AAPS J. 2014;16(4):771-783. doi: 10.1208/s12248-014-9598-3

169 Kim EJ, Kim JH, Kim MS, Jeong SH, Choi DH. Process analytical technology tools for monitoring pharmaceutical unit operations: a control strategy for continuous process verification. Pharmaceutics. 2021;13:6. doi: 10.3390/pharmaceutics13060919

170 McCorry MC, Reardon KF, Black M, et al. Sensor technologies for quality control in engineered tissue manufacturing. Biofabrication. 2022;15:1. doi: 10.1088/1758-5090/ac94a1

171 Decoene I, Nasello G, Madeiro de Costa RF, et al. Robotics-driven manufacturing of cartilaginous microtissues for skeletal tissue engineering applications. Stem Cells Transl Med. 2024;13(3):278-292. doi: 10.1093/stcltm/szad091

172 Kandarova H, Pobis P. The “Big Three” in biocompatibility testing of medical devices: implementation of alternatives to animal experimentation-are we there yet? Front Toxicol. 2023;5:1337468. doi: 10.3389/ftox.2023.1337468

173 Lee NK, Chang JW. Manufacturing cell and gene therapies: challenges in clinical translation. Ann Lab Med. 2024;44(4):314-323. doi: 10.3343/alm.2023.0382

174 Shah NN, Qin H, Yates B, et al. Clonal expansion of CAR T cells harboring lentivector integration in the CBL gene following anti-CD22 CAR T-cell therapy. Blood Adv. 2019;3(15):2317-2322. doi: 10.1182/bloodadvances.2019000219

175 Nobles CL, Sherrill-Mix S, Everett JK, et al. CD19-targeting CAR T cell immunotherapy outcomes correlate with genomic modification by vector integration. J Clin Invest. 2020;130(2):673-685. doi: 10.1172/JCI130144

176 Wagner DL, Fritsche E, Pulsipher MA, et al. Immunogenicity of CAR T cells in cancer therapy. Nat Rev Clin Oncol. 2021;18(6):379-393. doi: 10.1038/s41571-021-00476-2

177 Wielscher M, Mandaviya PR, Kuehnel B, et al. DNA methylation signature of chronic low-grade inflammation and its role in cardio-respiratory diseases. Nat Commun. 2022;13(1):2408. doi: 10.1038/s41467-022-29792-6

178 Ashammakhi N, Ahadian S, Zengjie F, et al. Advances and future perspectives in 4D bioprinting. Biotechnol J. 2018;13(12):e1800148. doi: 10.1002/biot.201800148

179 Noroozi R, Arif ZU, Taghvaei H, et al. 3D and 4D bioprinting Technologies: a game changer for the biomedical sector? Ann Biomed Eng. 2023;51(8):1683-1712. doi: 10.1007/s10439-023-03243-9

180 Lai J, Liu Y, Lu G, et al. 4D bioprinting of programmed dynamic tissues. Bioact Mater. 2024;37:348-377. doi: 10.1016/j.bioactmat.2024.03.033

181 Rahimnejad M, Jahangiri S, Zirak Hassan Kiadeh S, et al. Stimuli-responsive biomaterials: smart avenue toward 4D bioprinting. Crit Rev Biotechnol. 2024;44(5):860-891. doi: 10.1080/07388551.2023.2213398

182 Freeman S, Calabro S, Williams R, Jin S, Ye K. Bioink formulation and machine learning-empowered bioprinting optimization. Front Bioeng Biotechnol. 2022;10:913579. doi: 10.3389/fbioe.2022.913579

183 An J, Chua CK, Mironov V. Application of machine learning in 3d bioprinting: focus on development of big data and digital twin. Int J Bioprint. 2021;7(1):342. doi: 10.18063/ijb.v7i1.342

184 Zhang Z, Zhou X, Fang Y, Xiong Z, Zhang T. AI-driven 3D bioprinting for regenerative medicine: from bench to bedside. Bioact Mater. 2025;45:201-230. doi: 10.1016/j.bioactmat.2024.11.021

185 Chen C, Xie Z, Yang S, et al. Machine learning approach to investigating macrophage polarization on various titanium surface characteristics. BME Front. 2025;6:0100. doi: 10.34133/bmef.0100

186 Samandari M, Mostafavi A, Quint J, Memic A, Tamayol A. In situ bioprinting: intraoperative implementation of regenerative medicine. Trends Biotechnol. 2022;40(10):1229-1247. doi: 10.1016/j.tibtech.2022.03.009

187 Cicha I, Priefer R, Severino P, Souto EB, Jain S. Biosensor-integrated drug delivery systems as new materials for biomedical applications. Biomolecules. 2022;12:9. doi: 10.3390/biom12091198

188 Scholten K, Meng E. A review of implantable biosensors for closed-loop glucose control and other drug delivery applications. Int J Pharm. 2018;544(2):319-334. doi: 10.1016/j.ijpharm.2018.02.022

189 Correa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MA. Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunol. 2016;5(4):e73. doi: 10.1038/cti.2016.17

190 Nogal A, Valdes AM, Menni C. The role of short-chain fatty acids in the interplay between gut microbiota and diet in cardio-metabolic health. Gut Microbes. 2021;13(1):1-24. doi: 10.1080/19490976.2021.1897212

191 Biagioli M, Marchiano S, Carino A, et al. Bile acids activated receptors in inflammatory bowel disease. Cells. 2021;10:6. doi: 10.3390/cells10061281

192 Roybal KT, Lim WA. Synthetic immunology: hacking immune cells to expand their therapeutic capabilities. Annu Rev Immunol. 2017;35:229-253. doi: 10.1146/annurev-immunol-051116-052302

193 Yu S, Sun H, Li Y, Wei S, Xu J, Liu J. Hydrogels as promising platforms for engineered living bacteria-mediated therapeutic systems. Mater Today Bio. 2022;16:100435. doi: 10.1016/j.mtbio.2022.100435

194 Adamo JE, Grayson WL, Hatcher H et al. Regulatory interfaces surrounding the growing field of additive manufacturing of medical devices and biologic products. J Clin Transl Sci. 2018;2(5):301-304. doi: 10.1017/cts.2018.331

195 Laubenbacher R, Mehrad B, Shmulevich I, Trayanova N. Digital twins in medicine. Nat Comput Sci. 2024;4(3):184-191. doi: 10.1038/s43588-024-00607-6

196 Niarakis A, Laubenbacher R, An G, et al. Immune digital twins for complex human pathologies: applications, limitations, and challenges. NPJ Syst Biol Appl. 2024;10(1):141. doi: 10.1038/s41540-024-00450-5

 

 

 

 

 

Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing