AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025420425
REVIEW ARTICLE

Toward functional bone bioprinting: Addressing the overlooked challenges of mechanical compliance

Amin Ebrahimi Sadrabadi1,2 Payam Baei3 Yalda Alibeigian1 Mohamadreza Baghaban Eslaminejad1* Samaneh Hosseini1,3*
Show Less
1 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
2 Department of Tissue Engineering, Faculty of Basic Sciences and Advanced Technologies in Medicine, Royan Institute, ACECR, Tehran, Iran
3 Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
Received: 15 October 2025 | Accepted: 3 December 2025 | Published online: 12 December 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Three-dimensional bioprinting has emerged as a transformative biofabrication technology capable of engineering complex tissue constructs for regenerative medicine. While considerable progress has been made in replicating soft tissues using hydrogel-based bioprinting, the fabrication of mechanically robust bone-mimicking constructs remains a significant challenge. The mechanical heterogeneity of bone, including its anisotropic structure, varying mineral density, and intricate extracellular matrix composition, complicates the development of bioinks that can simultaneously achieve printability, structural integrity, and cellular viability. Recent advancements have focused on optimizing the mechanical properties of bioinks through composite hydrogels, osteoinductive nanomaterials, and bioactive moieties that enhance cell adhesion and differentiation. This review examines the role of mechanical cues in directing mesenchymal stem cell fate, the interplay between material stiffness and osteogenesis, and strategies to enhance bioink performance. We highlight limitations in mechanical compliance and propose novel biomaterial designs, crosslinking strategies, and scaffold functionalization to overcome these barriers. This review aims to bridge the gap between biomaterials science and clinical translation, with the ultimate goal of advancing functional bone graft substitutes.

Graphical abstract
Keywords
3D bioprinting
Bioinks
Bone tissue engineering
Extracellular matrix
Mechanical compliance
Regenerative medicine
Funding
The authors did not receive support from any organization for the submitted work.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Chimene D, Lennox KK, Kaunas RR, Gaharwar AK. Advancedbioinks for 3d printing: a materials science perspective. Ann Biomed Eng. 2016;44(6):2090-2102. doi: 10.1007/s10439-016-1638-y
  2. Pedroza-Gonzalez SC, Rodriguez-Salvador M, Perez- Benitez BE, Alvarez MM, Santiago GT. Bioinks for 3D bioprinting: a scientometric analysis of two decades of progress. Int J Bioprint. 2021;7(2):333. doi: 10.18063/ijb.v7i2.337
  3. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677-689. doi: 10.1016/j.cell.2006.06.044
  4. Chaudhuri O, Gu L, Klumpers D, et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater. 2016;15(3):326-334. doi: 10.1038/nmat4489
  5. Bergonzi C, Bianchera A, Remaggi G, Ossiprandi MC, Bettini R, Elviri L. 3D printed chitosan/alginate hydrogels for the controlled release of silver sulfadiazine in wound healing applications: design, characterization and antimicrobial activity. Micromachines (Basel). 2023;14(1):137. doi: 10.3390/mi14010137
  6. Wang L, Zhou A, Chen C, Huang X, Zhang S, Chen J. Preparation and properties of composite hydrogels for 3D bioprinting. Polym Adv Technol. 2023;34(7):2369-2383. doi: 10.1002/pat.6057
  7. Zhang X, Yang X, Wu W, et al. Improving the mechanical properties of 3D printed GelMA composite hydrogels by tannic acid. MedComm–Biomater Appl. 2023;2(3):e51. doi: 10.1002/mba2.51
  8. Breisch M, Grasmik V, Loza K, et al. Bimetallic silver-platinum nanoparticles with combined osteo-promotive and antimicrobial activity. Nanotechnology. 2019;30(30):305101. doi: 10.1088/1361-6528/ab172b
  9. Lu N, Lu Y, Liu S, et al. Tailor-engineered POSS-based hybrid gels for bone regeneration. Biomacromolecules. 2019;20(9):3485-3493. doi: 10.1021/acs.biomac.9b00771
  10. Hoyle CE, Bowman CN. Thiol-ene click chemistry. Angew Chem Int Ed Engl. 2010;49(9):1540-1573. doi: 10.1002/anie.200903924
  11. Fairbanks BD, Schwartz MP, Halevi AE, Nuttelman CR, Bowman CN, Anseth KS. A versatile synthetic extracellular matrix mimic via thiol-norbornene photopolymerization. Adv Mater. 2009;21(48):5005-5010. doi: 10.1002/adma.200901808
  12. Mondal S, Lessard JJ, Meena CL, Sanjayan GJ, Sumerlin BS. Janus Cross-links in supramolecular networks. J Am Chem Soc. 2022;144(2):845-853. doi: 10.1021/jacs.1c10606
  13. Motloung MP, Mofokeng TG, Ray SS. Viscoelastic, thermal, and mechanical properties of melt-processed poly (epsilon-caprolactone) (PCL)/hydroxyapatite (HAP) composites. Materials (Basel). 2021;15(1):104.doi: 10.3390/ma15010104
  14. Chuysinuan P, Nooeaid P, Thanyacharoen T, Techasakul S, Pavasant P, Kanjanamekanant K. Injectable eggshell-derived hydroxyapatite-incorporated fibroin-alginate composite hydrogel for bone tissue engineering. Int J Biol Macromol. 2021;193(Pt A):799-808. doi: 10.1016/j.ijbiomac.2021.10.132
  15. Stocco TD, de Carvalho RP, Silva HCO, de Melo Sousa TS. The feasibility of 3D bioprinting for bone regeneration: key challenges and future directions. Regen Med. 2025;20(11):625-652. doi: 10.1080/17460751.2025.2572218
  16. Garcia-Aznar JM, Nasello G, Hervas-Raluy S, Perez MA, Gomez-Benito MJ. Multiscale modeling of bone tissue mechanobiology. Bone. 2021;151:116032. doi: 10.1016/j.bone.2021.116032
  17. Chmielewska A, Dean D. The role of stiffness-matching in avoiding stress shielding-induced bone loss and stress concentration-induced skeletal reconstruction device failure. Acta Biomater. 2024;173:51-65. doi: 10.1016/j.actbio.2023.11.011
  18. Florencio-Silva R, Sasso GRdS, Sasso-Cerri E, Simões MJ, Cerri PS. Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed Res. Int.. 2015;2015(1):421746. doi: 10.1155/2015/421746
  19. Raubenheimer E, Miniggio H, Lemmer L, van Heerden W. The role of bone remodelling in maintaining and restoring bone health: an overview. Clin. Rev. Bone Miner Metab. 2017;15:90-97. doi: 10.1007/s12018-017-9230-z
  20. Hadjidakis DJ, Androulakis, II. Bone remodeling. Ann N Y Acad Sci. 2006;1092(1):385-396. doi: 10.1196/annals.1365.035
  21. Crockett JC, Rogers MJ, Coxon FP, Hocking LJ, Helfrich MH. Bone remodelling at a glance. J Cell Sci. 2011;124(7): 991-998. doi: 10.1242/jcs.063032
  22. Ott SM. Cortical or trabecular bone: what’s the difference? Am J Nephrol. 2018;47(6):373-375. doi: 10.1159/000489672
  23. Reyes KJC, Stanford FC, Singhal V, et al. Bone density, microarchitecture and strength estimates in white versus African American youth with obesity. Bone. 2020;138:115514. doi: 10.1016/j.bone.2020.115514
  24. Reichert JC, Wullschleger ME, Cipitria A, et al. Custom-made composite scaffolds for segmental defect repair in long bones. Int Orthop. 2011;35(8):1229-1236. doi: 10.1007/s00264-010-1146-x
  25. Cheung AM, Adachi JD, Hanley DA, et al. High-resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the Canadian Bone Strength Working Group. Curr Osteoporos Rep. Jun 2013;11(2):136-146. doi: 10.1007/s11914-013-0140-9
  26. Das D, Zhang S, Noh I. Synthesis and characterizations of alginate-α-tricalcium phosphate microparticle hybrid film with flexibility and high mechanical property as a biomaterial. Biomed. Mater. 2018;13(2):025008. doi: 10.1088/1748-605X/aa8fa1
  27. Abelardo E. Synthetic material bioinks. In: 3D Bioprinting for Reconstructive Surgery. Amsterdam, Netherlands: Elsevier; 2018:137-144.
  28. Popp K, Xu C, Yuan A, et al. Trabecular microstructure is influenced by race and sex in Black and White young adults. Osteoporosis Int. 2019;30:201-209. doi: 10.1007/s00198-018-4729-9
  29. De Mori A, Pena Fernandez M, Blunn G, Tozzi G, Roldo M. 3D printing and electrospinning of composite hydrogels for cartilage and bone tissue engineering. Polymers (Basel). 2018;10(3):285. doi: 10.3390/polym10030285
  30. Morgan EF, Unnikrisnan GU, Hussein AI. Bone mechanical properties in healthy and diseased states. Annu Rev Biomed Eng. 2018;20(1):119-143. doi: 10.1146/annurev-bioeng-062117-121139
  31. Karpiński R, Jaworski Ł, Czubacka P. The structural and mechanical properties of the bone. J Technol Exploitat Mech Eng. 2017;3(1):43-51. doi: 10.35784/jteme.538
  32. Currey J. The structure and mechanical properties of bone. In: Bioceramics and Their Clinical Applications. Amsterdam, Netherlands: Elsevier; 2008:3-27.
  33. Vassiliou V, Chow E, Kardamakis D. Bone Metastases: A Translational and Clinical Approach. Vol 21. Dordrecht: Springer Science & Business Media; 2013.
  34. Shapiro F. Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cell Mater. 2008;15:53-76. doi: 10.22203/ecm.v015a05
  35. Kopperdahl DL, Keaveny TM. Yield strain behavior of trabecular bone. J Biomech. 1998;31(7):601-608. doi: 10.1016/s0021-9290(98)00057-8
  36. Currey JD. How well are bones designed to resist fracture? J Bone Miner Res. 2003;18(4):591-598. doi: 10.1359/jbmr.2003.18.4.591
  37. Osterhoff G, Morgan EF, Shefelbine SJ, Karim L, McNamara LM, Augat P. Bone mechanical properties and changes with osteoporosis. Injury. 2016;47 Suppl 2(Suppl 2): S11-S20. doi: 10.1016/S0020-1383(16)47003-8
  38. Boivin G, Bala Y, Doublier A, et al. The role of mineralization and organic matrix in the microhardness of bone tissue from controls and osteoporotic patients. Bone. 2008;43(3):532-538. doi: 10.1016/j.bone.2008.05.024
  39. Bala Y, Farlay D, Boivin G. Bone mineralization: from tissue to crystal in normal and pathological contexts. Osteoporos Int. 2013;24(8):2153-2166. doi: 10.1007/s00198-012-2228-y
  40. Zumstein V, Kraljević M, Wirz D, Hügli R, Müller- Gerbl M. Correlation between mineralization and mechanical strength of the subchondral bone plate of the humeral head. J Shoulder Elbow Surg. 2012;21(7): 887-893. doi: 10.1016/j.jse.2011.05.018
  41. Augat P, Schorlemmer S. The role of cortical bone and its microstructure in bone strength. Age Ageing. 2006;35 Suppl 2(suppl_2):ii27-ii31. doi: 10.1093/ageing/afl081
  42. Zebaze RM, Ghasem-Zadeh A, Bohte A, et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet. 2010;375(9727):1729-1736. doi: 10.1016/S0140-6736(10)60320-0
  43. Seeman E, Delmas PD, Hanley DA, et al. Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate. J Bone Miner Res. 2010;25(8):1886-1894. doi: 10.1002/jbmr.81
  44. Riggs BL, Melton III LJ, Robb RA, et al. A population‐based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res. 2008;23(2): 205-214. doi: 10.1359/JBMR.07102
  45. Luu YK, Pessin JE, Judex S, Rubin J, Rubin CT. Mechanical signals as a non-invasive means to influence mesenchymal stem cell fate, promoting bone and suppressing the fat phenotype. Bonekey Osteovision. 2009;6(4):132-149. doi: 10.1138/20090371
  46. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtke W, Chen CS. Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell. 2009;5(1): 17-26. doi: 10.1016/j.stem.2009.06.016
  47. Kirby TJ, Lammerding J. Cell mechanotransduction: stretch to express. Nat Mater. 2016;15(12):1227-1229. doi: 10.1038/nmat4809
  48. Yang L, Gao Q, Ge L, et al. Topography induced stiffness alteration of stem cells influences osteogenic differentiation. Biomater Sci. 2020;8(9):2638-2652. doi: 10.1039/d0bm00264j
  49. Shen B, Delaney MK, Du X. Inside-out, outside-in, and inside-outside-in: G protein signaling in integrin-mediated cell adhesion, spreading, and retraction. Curr Opin Cell Biol. 2012;24(5):600-606. doi: 10.1016/j.ceb.2012.08.011
  50. Mousavi SJ, Doweidar MH. Role of mechanical cues in cell differentiation and proliferation: a 3D numerical model. PLoS One. 2015;10(5):e0124529. doi: 10.1371/journal.pone.0124529
  51. Chowdhury F, Li Y, Poh YC, Yokohama-Tamaki T, Wang N, Tanaka TS. Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PLoS One. 2010;5(12):e15655. doi: 10.1371/journal.pone.0015655
  52. Wang LS, Chung JE, Chan PP, Kurisawa M. Injectable biodegradable hydrogels with tunable mechanical properties for the stimulation of neurogenesic differentiation of human mesenchymal stem cells in 3D culture. Biomaterials. 2010;31(6):1148-1157. doi: 10.1016/j.biomaterials.2009.10.042
  53. Zhang M, Sun Q, Liu Y, et al. Controllable ligand spacing stimulates cellular mechanotransduction and promotes stem cell osteogenic differentiation on soft hydrogels. Biomaterials. 2021;268:120543. doi: 10.1016/j.biomaterials.2020.120543
  54. Cun X, Hosta-Rigau L. Topography: a biophysical approach to direct the fate of mesenchymal stem cells in tissue engineering applications. Nanomaterials (Basel). 2020;10(10):2070. doi: 10.3390/nano10102070
  55. Godoi FC, Prakash S, Bhandari BR. 3D printing technologies applied for food design: status and prospects. J Food Eng. 2016;179:44-54. doi: 10.1016/j.jfoodeng.2016.01.025
  56. Hölzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016;8(3):032002. doi: 10.1088/1758-5090/8/3/032002
  57. Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv. 2017;35(2):217-239. doi: 10.1016/j.biotechadv.2016.12.006
  58. Saunders RE, Derby B. Inkjet printing biomaterials for tissue engineering: bioprinting. Int Mater Rev. 2014;59(8):430-448. doi: 10.1179/1743280414Y.0000000040
  59. Xu T, Jin J, Gregory C, Hickman JJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials. 2005;26(1):93-99. doi: 10.1016/j.biomaterials.2004.04.011
  60. Mancha Sanchez E, Gomez-Blanco JC, Lopez Nieto E, et al. Hydrogels for bioprinting: a systematic review of hydrogels synthesis, bioprinting parameters, and bioprinted structures behavior. Front Bioeng Biotechnol. 2020;8:776. doi: 10.3389/fbioe.2020.00776
  61. Kyle S, Jessop ZM, Al‐Sabah A, Whitaker IS. ‘Printability’of candidate biomaterials for extrusion based 3D printing: state‐of‐the‐art. Adv Healthcare Mater. 2017;6(16):1700264. doi: 10.1002/adhm.201700264
  62. Li M, Tian X, Zhu N, Schreyer DJ, Chen X. Modeling process-induced cell damage in the biodispensing process. Tissue Eng Part C Methods. 2010;16(3):533-542. doi: 10.1089/ten.TEC.2009.0178
  63. Aljohani W, Ullah MW, Zhang X, Yang G. Bioprinting and its applications in tissue engineering and regenerative medicine. Int J Biol Macromol. 2018;107(Pt A):261-275. doi: 10.1016/j.ijbiomac.2017.08.171
  64. Shanjani Y, Pan CC, Elomaa L, Yang Y. A novel bioprinting method and system for forming hybrid tissue engineering constructs. Biofabrication. 2015;7(4):045008. doi: 10.1088/1758-5090/7/4/045008
  65. Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel P. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials. 2014;35(1):49-62. doi: 10.1016/j.biomaterials.2013.09.078
  66. Diamantides N, Dugopolski C, Blahut E, Kennedy S, Bonassar LJ. High density cell seeding affects the rheology and printability of collagen bioinks. Biofabrication. 2019;11(4):045016. doi: 10.1088/1758-5090/ab3524
  67. Gregory T, Benhal P, Scutte A, et al. Rheological characterization of cell-laden alginate-gelatin hydrogels for 3D biofabrication. J Mech Behav Biomed Mater. 2022;136:105474. doi: 10.1016/j.jmbbm.2022.105474
  68. Guo Z, Ma C, Xie W, Tang A, Liu W. An effective DLP 3D printing strategy of high strength and toughness cellulose hydrogel towards strain sensing. Carbohydr Polym. 2023;315:121006. doi: 10.1016/j.carbpol.2023.121006
  69. Müller SJ, Fabry B, Gekle S. Predicting cell stress and strain during extrusion bioprinting. Phys Rev Appl. 2023;19(6):064061. doi: 10.48550/arXiv.2209.13666
  70. Boularaoui S, Shanti A, Khan KA, Iacoponi S, Christoforou N, Stefanini C. Harnessing shear stress preconditioning to improve cell viability in 3D post-printed biostructures using extrusion bioprinting. Bioprinting. 2022;25:e00184. doi: 10.1016/j.bprint.2021.e00184
  71. Lyu J, Johnson M, Creagh-Flynn J, et al. Instant gelation system as self-healable and printable 3D cell culture bioink based on dynamic covalent chemistry. ACS Appl Mater Interfaces. 2020;12(35):38918-38924. doi.org/10.1021/acsami.0c08567
  72. Ashammakhi N, Ahadian S, Xu C, et al. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio. 2019;1:100008. doi: 10.1016/j.mtbio.2019.100008
  73. Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev. 2020;120(19):11028-11055. doi: 10.1021/acs.chemrev.0c00084
  74. Oh D, Shirzad M, Kim MC, Chung EJ, Nam SY. Rheology-informed hierarchical machine learning model for the prediction of printing resolution in extrusion-based bioprinting. Int J Bioprint. 2023;9(6):308-324. doi: 10.36922/ijb.1280
  75. Wu L, Zhao J, Huang J, Huang P, Zhao H. Advances and challenges in 3D bioprinting of bone organoids: materials, techniques, and functionalization strategies. Int J Bioprint. 2025;0(0) doi: 10.36922/ijb025190183
  76. Khalaf AT, Wei Y, Wan J, et al. Bone tissue engineering through 3D bioprinting of bioceramic scaffolds: a review and update. Life. 2022;12(6):903. doi: 10.3390/life12060903
  77. Lakatos E, Magyar L, Bojtar I. Material properties of the mandibular trabecular bone. J Med Eng. 2014;2014(1):470539. doi: 10.1155/2014/470539
  78. Luo Y. Toward fully automated personalized orthopedic treatments: innovations and interdisciplinary gaps. Bioengineering (Basel). 2024;11(8):817. doi: 10.3390/bioengineering11080817
  79. Zhou J, See CW, Sreenivasamurthy S, Zhu D. Customized additive manufacturing in bone scaffolds-the gateway to precise bone defect treatment. Research (Wash D C). 2023;6:0239. doi: 10.34133/research.0239
  80. Varshney S, Dwivedi A, Pandey V. Bioprinting techniques for regeneration of oral and craniofacial tissues: current advances and future prospects. J Oral Biol Craniofac Res. 2025;15(2):331-346. doi: 10.1016/j.jobcr.2025.01.019
  81. Lai Y, Fan J, Li P, et al. Recent advances in 3D bioprinting for cartilage and osteochondral regeneration. Int J Bioprint. 2025;0(0). doi: 10.36922/ijb025120098
  82. Eschweiler J, Horn N, Rath B, et al. The biomechanics of cartilage: an overview. Life (Basel). 2021;11(4). doi: 10.3390/life11040302
  83. Petitjean N, Canadas P, Royer P, Noel D, Le Floc’h S. Cartilage biomechanics: from the basic facts to the challenges of tissue engineering. J Biomed Mater Res A. 2023;111(7):1067-1089. doi: 10.1002/jbm.a.37478
  84. Dąbrowski M, Rogala P, Uklejewski R, Patalas A, Winiecki M, Gapiński B. Subchondralbone relative area and density in human osteoarthritic femoral heads assessed with micro- CT before and after mechanical embedding of the innovative multi-spiked connecting scaffold for resurfacing THA endoprostheses: a pilot study. J Clinic Med. 2021;10(13):2937. doi: 10.3390/jcm10132937
  85. Lu J, Gao Y, Cao C, et al. 3D bioprinted scaffolds for osteochondral regeneration: advancements and applications. Mater Today Bio. 2025;32:101834. doi: 10.1016/j.mtbio.2025.101834
  86. Gao D, Li R, Pan J, et al. 3D bioprinting bone/cartilage organoids: construction, applications, and challenges. J Orthop Translat. 2025;55:75-93. doi: 10.1016/j.jot.2025.08.008
  87. Wang J, Chen X, Li R, et al. Standardization and consensus in the development and application of bone organoids. Review. Theranostics. 2025;15(2):682-706. doi: 10.7150/thno.105840
  88. Ohman-Magi C, Holub O, Wu D, Hall RM, Persson C. Density and mechanical properties of vertebral trabecular bone: a review. JOR Spine. Dec 2021;4(4):e1176. doi: 10.1002/jsp2.1176
  89. Inzana JA, Olvera D, Fuller SM, et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials. 2014;35(13):4026-4034. doi: 10.1016/j.biomaterials.2014.01.064
  90. Bendtsen ST, Quinnell SP, Wei M. Development of a novel alginate-polyvinyl alcohol-hydroxyapatite hydrogel for 3D bioprinting bone tissue engineered scaffolds. J Biomed Mater Res A. 2017;105(5):1457-1468. doi: 10.1002/jbm.a.36036
  91. Monavari M, Medhekar R, Nawaz Q, et al. A 3D printed bone tissue engineering scaffold composed of alginate dialdehyde-gelatine reinforced by lysozyme loaded cerium doped mesoporous silica-calcia nanoparticles. Macromol Biosci. 2022;22(9):e2200113. doi: 10.1002/mabi.202200113
  92. Ojansivu M, Rashad A, Ahlinder A, et al. Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells. Biofabrication. 2019;11(3):035010. doi: 10.1088/1758-5090/ab0692
  93. Wang LL, Highley CB, Yeh YC, Galarraga JH, Uman S, Burdick JA. Three-dimensional extrusion bioprinting of single- and double-network hydrogels containing dynamic covalent crosslinks. J Biomed Mater Res A. 2018;106(4):865-875. doi: 10.1002/jbm.a.36323
  94. Zhang X, Yan Z, Guan G, et al. Polyethylene glycol diacrylate scaffold filled with cell-laden methacrylamide gelatin/ alginate hydrogels used for cartilage repair. J Biomater Appl. 2022;36(6):1019-1032. doi: 10.1177/08853282211044853
  95. Hsieh CT, Hsu SH. Double- network polyurethane-gelatin hydrogel with tunable modulus for high-resolution 3D bioprinting. ACS Appl Mater Interfaces. 2019;11(36):32746-32757. doi: 10.1021/acsami.9b10784
  96. Lee J, Hong J, Kim W, Kim GH. Bone-derived dECM/ alginate bioink for fabricating a 3D cell-laden mesh structure for bone tissue engineering. Carbohydr Polym. 2020;250:116914. doi: 10.1016/j.carbpol.2020.116914
  97. Chen Z, Zhang H, Huang J, et al. DNA-encoded dynamic hydrogels for 3D bioprinted cartilage organoids. Mater Today Bio. 2025;31:101509. doi: 10.1016/j.mtbio.2025.101509
  98. Leite AJ, Sarker B, Zehnder T, Silva R, Mano JF, Boccaccini AR. Bioplotting of a bioactive alginate dialdehyde-gelatin composite hydrogel containing bioactive glass nanoparticles. Biofabrication. 2016;8(3):035005. doi: 10.1088/1758-5090/8/3/035005
  99. Korkeamaki JT, Rashad A, Ojansivu M, et al. Systematic development and bioprinting of novel nanostructured multi-material bioinks for bone tissue engineering. Biofabrication. 2025;17(2):025005. doi: 10.1088/1758-5090/ada63b
  100. Liu B, Li J, Lei X, et al. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Mater Sci Eng C Mater Biol Appl. 2020;112:110905. doi: 10.1016/j.msec.2020.110905
  101. Mathur V, Agarwal P, Kasturi M, Srinivasan V, Seetharam RN, Vasanthan KS. Innovative bioinks for 3D bioprinting: exploring technological potential and regulatory challenges. J Tissue Eng. 2025;16:20417314241308022. doi: 10.1177/20417314241308022
  102. Bastos AR, da Silva LP, Maia FR, et al. Hydroxyapatite/ alginate/gellan gum inks with osteoconduction and osteogenic potential for bioprinting bone tissue analogues. Int J Biol Macromol. 2024;271(Pt 2):132611. doi: 10.1016/j.ijbiomac.2024.132611
  103. Yang J, Chen Z, Gao C, et al. A mechanical-assisted post-bioprinting strategy for challenging bone defects repair. Nat Commun. 2024;15(1):3565. doi: 10.1038/s41467-024-48023-8
  104. Ebrahimi Sadrabadi A, Baei P, Hosseini S, Baghaban Eslaminejad M. Decellularized extracellular matrix as a potent natural biomaterial for regenerative medicine. Adv Exp Med Biol. 2021;(1341):27-43. doi: 10.1007/5584_2020_504
  105. Baroncelli M, Van Der Eerden BC, Chatterji S, et al. Human osteoblast-derived extracellular matrix with high homology to bone proteome is osteopromotive. Tissue Eng Part A. 2018;24(17-18):1377-1389. doi: 10.1089/ten.TEA.2017.0448
  106. Jones L, Thomsen JS, Mosekilde L, Bosch C, Melsen B. Biomechanical evaluation of rat skull defects, 1, 3, and 6 months after implantation with osteopromotive substances. J Craniomaxillofac Surg. 2007;35(8):350-357. doi: 10.1016/j.jcms.2007.06.004
  107. Biehl A, Gracioso Martins AM, Davis ZG, et al. Towards a standardized multi-tissue decellularization protocol for the derivation of extracellular matrix materials. Biomater Sci. 2023;11(2):641-654. doi: 10.1039/d2bm01012g
  108. Ramos‐Rodriguez DH, Leach JK. Decellularized cell‐secreted extracellular matrices as biomaterials for tissue engineering. Small Sci. 2025;5(2):2400335. doi: 10.1002/smsc.202400335
  109. Cao B, Zhang K, Zuo R, et al. 3D-bioprinted functional scaffold based on synergistic induction of i-PRF and laponite exerts efficient and personalized bone regeneration via miRNA-mediated TGF-beta/Smads signaling. Int J Surg. 2025;111(5):3193-3211. doi: 10.1097/JS9.0000000000002312
  110. Deng Y, Yang W-Z, Shi D, et al. Bioinspired and osteopromotive polydopamine nanoparticle-incorporated fibrous membranes for robust bone regeneration. NPG Asia Mater. 2019;11(1):39. doi: 10.1038/s41427-019-0139-5
  111. Grasmik V, Breisch M, Loza K, et al. Synthesis and biological characterization of alloyed silver-platinum nanoparticles: from compact core-shell nanoparticles to hollow nanoalloys. RSC Adv. 2018;8(67):38582-38590. doi: 10.1039/c8ra06461j
  112. Wolff N, Bialas N, Loza K, et al. Increased cytotoxicity of bimetallic ultrasmall silver-platinum nanoparticles (2 nm) on cells and bacteria in comparison to silver nanoparticles of the same size. Materials (Basel). 2024;17(15):3702. doi: 10.3390/ma17153702
  113. Seo JJ, Mandakhbayar N, Kang MS, et al. Antibacterial, proangiogenic, and osteopromotive nanoglass paste coordinates regenerative process following bacterial infection in hard tissue. Biomaterials. 2021;268:120593. doi: 10.1016/j.biomaterials.2020.120593
  114. Sadeghianmaryan A, Naghieh S, Yazdanpanah Z, et al. Fabrication of chitosan/alginate/hydroxyapatite hybrid scaffolds using 3D printing and impregnating techniques for potential cartilage regeneration. Int J Biol Macromol. 2022;204:62-75. doi: 10.1016/j.ijbiomac.2022.01.201
  115. Seok JM, Kim MJ, Park JH, et al. A bioactive microparticle-loaded osteogenically enhanced bioprinted scaffold that permits sustained release of BMP-2. Mater Today Bio. 2023;21:100685. doi: 10.1016/j.mtbio.2023.100685
  116. Osidak EO, Kozhukhov VI, Osidak MS, Domogatsky SP. Collagen as bioink for bioprinting: a comprehensive review. Int J Bioprint. 2020;6(3):270. doi: 10.18063/ijb.v6i3.270
  117. Hogan KJ, Oztatli H, Perez MR, et al. Development of photoreactive demineralized bone matrix 3D printing colloidal inks for bone tissue engineering. Regen Biomater. 2023;10:rbad090. doi: 10.1093/rb/rbad090
  118. Im S, Choe G, Seok JM, et al. An osteogenic bioink composed of alginate, cellulose nanofibrils, and polydopamine nanoparticles for 3D bioprinting and bone tissue engineering. Int J Biol Macromol. 2022;205:520-529. doi: 10.1016/j.ijbiomac.2022.02.012
  119. Ghosh S, Webster TJ. Metallic nanoscaffolds as osteogenic promoters: advances, challenges and scope. Metals. 2021;11(9):1356. doi: 10.3390/met11091356
  120. Palivela BC, Bandari SD, Mamilla RS. Extrusion-based 3D printing of bioactive glass scaffolds-process parameters and mechanical properties: a review. Bioprinting. 2022;27:e00219.
  121. Badhe RV, Chatterjee A, Bijukumar D, Mathew MT. Current advancements in bio-ink technology for cartilage and bone tissue engineering. Bone. 2023;171:116746. doi: 10.1016/j.bone.2023.116746
  122. Genova T, Roato I, Carossa M, Motta C, Cavagnetto D, Mussano F. Advances on bone substitutes through 3D bioprinting. Int J Mol Sci. 2020;21(19):7012. doi: 10.3390/ijms21197012
  123. Bahraminasab M. Challenges on optimization of 3D-printed bone scaffolds. Biomed Eng Online. 2020;19(1):69. doi: 10.1186/s12938-020-00810-2
  124. Midha S, Dalela M, Sybil D, Patra P, Mohanty S. Advances in three-dimensional bioprinting of bone: progress and challenges. J Tissue Eng Regen Med. 2019;13(6):925-945. doi: 10.1002/term.2847
Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing