AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025420422
REVIEW ARTICLE

Beyond structure: A review of intelligent, bioresponsive, and sustainable design paradigms for three-dimensional-printed metamaterials in drug delivery

Wanchong He1* Qinghua Zeng1*
Show Less
1 Shandong Key Laboratory of Applied Technology for Protein and Peptide Drugs, School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, Shandong, China
Received: 11 September 2025 | Accepted: 23 October 2025 | Published online: 18 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

Drug administration involves the precise delivery of therapeutic agents to targeted sites in a controlled manner, maximizing efficacy while minimizing adverse effects. This goal is pursued through drug delivery systems (DDSs), built from synthetic, natural, or hybrid biomaterials, that encapsulate and release drugs via diverse administration routes and mechanisms. Their core purpose is to localize pharmacological activity, reduce systemic toxicity, and protect surrounding healthy tissues. Despite advances, persistent challenges remain, including poor bioavailability, instability in drug loading and release profiles, limited targeting accuracy, undesirable systemic persistence, and inadequate spatiotemporal control. Additional concerns include inadequate chemical stability, patient compliance, and risks of long-term toxicity, all of which hinder clinical translation. To overcome these obstacles, metamaterials—engineered structures with geometry-driven properties—have emerged as promising platforms. By leveraging additive manufacturing and nanoscale design, metamaterials offer tunable architectures and unconventional physicochemical properties, enabling precise control over release dynamics, spatial specificity, and therapeutic outcomes. This review highlights the integration of metamaterials into DDSs, focusing on material selection, structural design strategies, fabrication challenges, and the novel possibilities enabled by three-dimensional printing. We also examine their applications in sustained, pulsatile, and stimuli-responsive release, targeted therapy, theranostics, and regenerative medicine. Finally, we discuss unresolved issues such as biocompatibility, scalability, and translational barriers, emphasizing the transformative potential of metamaterial-enabled DDSs in advancing precision medicine and healthcare innovation.

Graphical abstract
Keywords
Bioprinting
Drug delivery
Metamaterials
Funding
This work was supported by the Key R&D Program of Shandong Province, China (2022TZXD0033), the Science and Technology SMEs Innovation Ability Improvement Project of Shandong Province (2023TSGC0386, 2023TSGC0362), the Doctoral Research Startup Foundation of Liaocheng University (318052315, 318052366), and the Collaborative Innovation Project of “Vice General Manager of Technology” of Liaocheng (2024XT02).
Conflict of interest
The authors declare that they have no conflict of interest.
References
  1. Nazir F, Tabish TA, Tariq F, Iftikhar S, Wasim R, Shahnaz G. Stimuli-sensitive drug delivery systems for site-specific antibiotic release. Drug Discov Today. 2022;27(6):1698-1705. doi: 10.1016/j.drudis.2022.02.014
  2. Bahadur S, Sharma M. Liposome based drug delivery for the management of psoriasis - a comprehensive review. Curr Pharm Biotechnol. 2023;24(11):1383-1396. doi: 10.2174/1389201024666221213144228
  3. Adepu S, Ramakrishna S. Controlled drug delivery systems: current status and future directions. Molecules. 2021;26(19):5905. doi: 10.3390/molecules26195905
  4. He C, He X, Zhang Y, et al. Development of a microfluidic formatted ultrasound-controlled monodisperse lipid vesicles’ hydrogel dressing combined with ultrasound for transdermal drug delivery system. Macromol Biosci. 2023;23(9):e2300049. doi: 10.1002/mabi.202300049
  5. Xu X, Kwong CHT, Li J, Wei J, Wang R. “Zombie” macrophages for targeted drug delivery to treat acute pneumonia. ACS Appl Mater Interfaces. 2023;15(24):29012-29022. doi: 10.1021/acsami.3c06025
  6. Guo S-H, Yu X-K, Zhu Y-L, Zhang L-L, Huang Y-N. Controlled release mechanism of drugs from onion-like dendrimersomes: insight from dissipative particle dynamics simulations. Phys Chem Chem Phys. 2025;27(17):9087-9094. doi: 10.1039/d4cp04780j
  7. Di XJ, Liang X, Shen C, Pei YW, Wu B, He ZY. Carbohydrates used in polymeric systems for drug delivery: from structures to applications. Pharmaceutics. 2022; 14(4):739. doi: 10.3390/pharmaceutics14040739
  8. Nishida K. Recent advances in lipid-based drug delivery. Pharmaceutics. 2021;13(7):926. doi: 10.3390/pharmaceutics13070926
  9. Eid AH. Drugging dancing protein clouds: a close look at disorder-based drug design. Editorial. Pharmacol Rev. 2025;77(2):100010. doi: 10.1016/j.pharmr.2024.100010
  10. Li J, Tang W, Yang Y, et al. A programmed cell-mimicking nanoparticle driven by potato alkaloid for targeted cancer chemoimmunotherapy. Adv Healthc Mater. 2021;10(13):2100311. doi: 10.1002/adhm.202100311
  11. Lin S-W, Tsai J-C, Shyong Y-J. Drug delivery of extracellular vesicles: Preparation, delivery strategies and applications. Int J Pharm. 2023;642:123185. doi: 10.1016/j.ijpharm.2023.123185
  12. Matalqah S, Lafi Z, Mhaidat Q, Asha N, Yousef Asha S. Applications of machine learning in liposomal formulation and development. Pharm Dev Technol. 2025;30(1):126-136. doi: 10.1080/10837450.2024.2448777
  13. Li R, Hu X, Li W, et al. Nebulized pH-responsive nanospray combined with pentoxifylline and edaravone to lungs for efficient treatments of acute respiratory distress syndrome. ACS Appl Mater Interfaces. 2024;16(7):8310-8320. doi: 10.1021/acsami.3c15691
  14. Malek-Khatabi A, Tabandeh Z, Nouri A, et al. Long-term vaccine delivery and immunological responses using biodegradable polymer-based carriers. ACS Appl Bio Mater. 2022;5(11):5015-5040. doi: 10.1021/acsabm.2c00638
  15. Jan N, Shah H, Khan S, et al. Old drug, new tricks: polymer-based nanoscale systems for effective cytarabine delivery. Naunyn-Schmiedeberg’s Arch Pharmacol. 2024;397(6):3565-3584. doi: 10.1007/s00210-023-02865-z
  16. Arslan FB, Ozturk K, Calis S. Antibody-mediated drug delivery. Int J Pharm. 2021;596:120268. doi: 10.1016/j.ijpharm.2021.120268
  17. Hong J, Li K, He J, Liang M. A new age of drug delivery: a comparative perspective of ferritin-drug conjugates (FDCs) and antibody-drug conjugates (ADCs). Bioconjug Chem. 2024;35(8):1142-1147. doi: 10.1021/acs.bioconjchem.4c00254
  18. Taokaew S, Kaewkong W, Kriangkrai W. Recent development of functional chitosan-based hydrogels for pharmaceutical and biomedical applications. Gels. 2023;9(4):277. doi: 10.3390/gels9040277
  19. Lin S-H, Hsu S-H. Smart hydrogels for in situ tissue drug delivery. J Biomed Sci. 2025;32(1):70. doi: 10.1186/s12929-025-01166-2
  20. Bordbar-Khiabani A, Gasik M. Smart hydrogels for advanced drug delivery systems. Int J Mol Sci. 2022;23(7):3665. doi: 10.3390/ijms23073665
  21. Yu YB, Cheng Y, Tong JY, Zhang L, Wei Y, Tian M. Recent advances in thermo-sensitive hydrogels for drug delivery. J Mater Chem B. 2021;9(13):2979-2992. doi: 10.1039/d0tb02877k
  22. Orbay S, Sanyal R, Sanyal A. Porous microgels for delivery of curcumin: Microfluidics-based fabrication and cytotoxicity evaluation. Micromachines. 2023;14(10):1969. doi: 10.3390/mi14101969
  23. Sepe F, Valentino A, Marcolongo L, et al. Polysaccharide hydrogels as delivery platforms for natural bioactive molecules: from tissue regeneration to infection control. Gels. 2025;11(3):198. doi: 10.3390/gels11030198
  24. Sarmadi M, Behrens AM, McHugh KJ, et al. Modeling, design, and machine learning-based framework for optimal injectability of microparticle-based drug formulations. Sci Adv. 2020;6(28):eabb6594. doi: 10.1126/sciadv.abb6594
  25. Zhu S, Cui H, Pan Y, et al. Responsive-hydrogel aquabots. Adv Sci. 2024;11(36):e2401215. doi: 10.1002/advs.202401215
  26. Ouyang JL, Hong XZ, Gao Y. Retardation and self-repair of erosion pits by a two-stage barrier on bioactive-glass/layered double hydroxide coating of biomedical magnesium alloys. Surf Coat Technol. 2021;405:126562. doi: 10.1016/j.surfcoat.2020.126562
  27. Sam R, Divanbeigi Kermani M, Ohadi M, Salarpour S, Dehghannoudeh G. Different applications of temperature responsive nanogels as a new drug delivery system mini review. Pharm Dev Technol. 2023;28(5):492-500. doi: 10.1080/10837450.2023.2209796
  28. Gvozdeva Y, Staynova R. pH-dependent drug delivery systems for ulcerative colitis treatment. Pharmaceutics. 2025;17(2):226. doi: 10.3390/pharmaceutics17020226
  29. Rathi R, Sanshita, Kumar A, et al. Advancements in rectal drug delivery systems: clinical trials, and patents perspective. Pharmaceutics. 2022;14(10):2210. doi: 10.3390/pharmaceutics14102210
  30. Abdelmohsen HAM, Copeland NA, Hardy JG. Light-responsive biomaterials for ocular drug delivery. Drug Deliv Transl Res. 2023;13(8):2159-2182. doi: 10.1007/s13346-022-01196-5
  31. Singh G, Nenavathu BP. Development of rGO encapsulated polymeric beads as drug delivery system for improved loading and controlled release of doxycycline drug. Drug Dev Ind Pharm. 2020;46(3):462-470. doi: 10.1080/03639045.2020.1724137
  32. Chen Z, Ren Z, Coluccini C, Coghi P. From micro to marvel: unleashing the full potential of click chemistry with micromachine integration. Micromachines. 2025;16(6):712. doi: 10.3390/mi16060712
  33. Patil V, Patil PS, Kulkarni MV, Pattekari SN, Khan ZG. Advanced microneedle arrays for transdermal antibiotic delivery. Curr Opin Pharmacol. 2025;83:102542. doi: 10.1016/j.coph.2025.102542
  34. Wang JT, Xie BJ, Zhu ZC, Xie GJ, Luo B. 3D-printed construct from hybrid suspension as spatially and temporally controlled protein delivery system. J Biomater Appl. 2021;36(2):264-275. doi: 10.1177/08853282211023257
  35. Yang YJ, Liu X, Kan C. Point cloud based online detection of geometric defects for the certification of additively manufactured mechanical metamaterials. J Manuf Syst. 2022;65:591-604. doi: 10.1016/j.jmsy.2022.09.011
  36. He H, Peng W, Le Ferrand H. Thermal rectification in modularly designed bulk metamaterials. Adv Mater. 2024;36(8):e2307071. doi: 10.1002/adma.202307071
  37. Wang Q, Chen Q, Lin Y, He D, Ji H, Tan CSH. Spike-in proteome enhances data-independent acquisition for thermal proteome profiling. Anal Chem. 2024;96(49): 19695-19705. doi: 10.1021/acs.analchem.4c04837
  38. Yang CT, Korangath P, Stewart J, et al. Systemically delivered antibody-labeled magnetic iron oxide nanoparticles are less toxic than plain nanoparticles when activated by alternating magnetic fields. Int J Hyperthermia. 2020;37(3): 59-75. doi: 10.1080/02656736.2020.1776901
  39. Ahamad N, Prabhakar A, Mehta S, et al. Trigger-responsive engineered-nanocarriers and image-guided theranostics for rheumatoid arthritis. Nanoscale. 2020;12(24):12673-12697. doi: 10.1039/d0nr01648a
  40. Panikkanvalappil SR, Bhagavatula SK, Deans K, Jonas O, Rashidian M, Mishra S. Enhanced tumor accumulation of multimodal magneto-plasmonic nanoparticles via an implanted micromagnet-assisted delivery strategy. Adv Healthc Mater. 2023;12(2):e2201585. doi: 10.1002/adhm.202201585
  41. Guan GQ, Zhang C, Liu HY, et al. Ternary alloy PtWMn as a Mn nanoreservoir for high-field MRI monitoring and highly selective ferroptosis therapy. Angew Chem Int Ed. 2022;61(31):e202117229. doi: 10.1002/anie.202117229
  42. Thakkar A, Ma JC, Braun JE, Horton WT, Arrieta AF. Energy-efficient defrosting of heat exchanger fins with embedded negative stiffness structures. Appl Therm Eng. 2023;222:119850. doi: 10.1016/j.applthermaleng.2022.119850
  43. Renjith SC, Park K, Kremer GEO. A design framework for additive manufacturing: Integration of additive manufacturing capabilities in the early design process. Int J Precis Eng Manuf. 2020;21(2):329-345. doi: 10.1007/s12541-019-00253-3
  44. Gong P, Yue S, Wang J, et al. Effect of ultrasound synergistic pH shift modification treatment on Hericium erinaceus protein structure and its application in 3D printing. Int J Biol Macromol. 2025;295:139562. doi: 10.1016/j.ijbiomac.2025.139562
  45. Yatmaz E. Growth control agent for filamentous fungi: FDM based 3D printed cubes for suspended Aspergillus sojae fermentation. Enzyme Microb Technol. 2021;150:109867. doi: 10.1016/j.enzmictec.2021.109867
  46. Zhao F, Liu J, Zhao J, Ge X, Ding C, Zhuang X. The mechanism of 3D-printed high internal phase Pickering emulsion gels improved by soybean protein isolate/ bacterial cellulose co-assemblies. Int J Biol Macromol. 2025; 302:140435. doi: 10.1016/j.ijbiomac.2025.140435
  47. Mao Y, Chen WH, Lee MH. On the simulation of 3D printing process by a novel meshless analysis procedure. J Mech. 2020;36(3):285-294. Pii: s1727719119000285. doi: 10.1017/jmech.2019.28
  48. Lamprou DA, Douroumis D, Andrews GP, Jones DS. 3D printing in pharmacological and pharmaceutical sciences. J Pharm Pharmacol. 2022;74(10):1365-1366. doi: 10.1093/jpp/rgac049
  49. S Algahtani M, Ahmad J. 3D printing technique in the development of self-nanoemulsifying drug delivery system: scope and future prospects. Ther Deliv. 2022;13(3): 135-139. doi: 10.4155/tde-2021-0082
  50. Zhan L, Zhou Y, Liu R, et al. Advances in growth factor-containing 3D printed scaffolds in orthopedics. Biomed Eng Online. 2025;24(1):14-14. doi: 10.1186/s12938-025-01346-z
  51. Eugster R, Ganguin AA, Seidi A, Aleandri S, Luciani P. 3D printing injectable microbeads using a composite liposomal ink for local treatment of peritoneal diseases. Drug Deliv Transl Res. 2024;14(6):1567-1581. doi: 10.1007/s13346-023-01472-y
  52. Cesur S. Combination techniques towards novel drug delivery systems manufacturing: 3D PCL scaffolds enriched with tetracycline-loaded PVP nanoparticles. Eur J Pharm Biopharm. 2024;194:36-48. doi: 10.1016/j.ejpb.2023.11.022
  53. Zhang P, He R. 3D-printed silicon nitride ceramic implants for clinical applications: the state of the art and prospects. RSC Adv. 2025;15(1):406-419. doi: 10.1039/d4ra07970a
  54. Huang W, Zhang JH, Singh V, et al. Digital light 3D printing of a polymer composite featuring robustness, self-healing, recyclability and tailorable mechanical properties. Addit Manuf. 2023;61:103343. doi: 10.1016/j.addma.2022.103343
  55. Zou L, Hu L, Pan PP, et al. Icariin-releasing 3D printed scaffold for bone regeneration. Compos B Eng. 2022;232:109625. doi: 10.1016/j.compositesb.2022.109625
  56. Singh H, Tuffaha M, Tripathi S, et al. 3D printed metamaterials: properties, fabrication, and drug delivery applications. Adv Drug Del Rev. 2025;224:115636. doi: 10.1016/j.addr.2025.115636
  57. Usta F, Scarpa F, Türkmen HS, Johnson P, Perriman AW, Chen YY. Multiphase lattice metamaterials with enhanced mechanical performance. Smart Mater Struct. 2021;30(2):025014. doi: 10.1088/1361-665X/abd15d
  58. Jin SM, Hwang JH, Wang K, et al. Symmetry breaking of Au nanospheres confined in 1D nanocylinders: exploring helical assembly by 3D transmission electron microscopy. Mater Chem Front. 2020;4(10):3032-3039. doi: 10.1039/d0qm00374c
  59. Chen YX, Ai B, Wong ZJ. Soft optical metamaterials. Nano Converg 2020;7(1):18. doi: 10.1186/s40580-020-00226-7
  60. Xie PT, Shi ZC, Feng M, et al. Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv Compos Hybrid Mater. 2022;5(2):679-695. doi: 10.1007/s42114-022-00479-2
  61. Yusoff NHM, Teo LRI, Phang SJ, Wong VL, Cheah KH, Lim SS. Recent advances in polymer-based 3D printing for wastewater treatment application: an overview. Chem Eng J. 2022;429:132311. doi: 10.1016/j.cej.2021.132311
  62. Münchinger A, Hsu LY, Fürniss F, Blasco E, Wegener M. 3D optomechanical metamaterials. Mater Today. 2022; 59:9-17. doi: 10.1016/j.mattod.2022.08.020
  63. Ren ZH, Chang YH, Ma YM, Shih KL, Dong BW, Lee C. Leveraging of MEMS technologies for optical metamaterials applications. Adv Optic Mater. 2020;8(3): 1900653. doi: 10.1002/adom.201900653
  64. Tsushima N, Higuchi R. Stiffness and strength evaluation of lattice-based mechanical metamaterials by decoupled two-scale analysis. Mater Today Commun. 2022;31:103598. doi: 10.1016/j.mtcomm.2022.103598
  65. Tian XY, Chen WJ, Gao RJ, Liu ST, Wang JX. Design of pore layout for perforated auxetic metamaterials with low-frequency band gaps. Appl Phys Express. 2020;13(4): 045503. doi: 10.35848/1882-0786/ab7f5b
  66. Davidovich MV. Can isotropic negative permittivity ε and permeability μ metamaterials exist? JETP. 2021;132(2):159-176. doi: 10.1134/S1063776121020102
  67. Lin IM, Yang C-Y, Wang Y-M, et al. Flexible block copolymer metamaterials featuring hollow ordered nanonetworks with ultra-high porosity and surface-to-volume ratio. Small. 2024;20(14):e2307487. doi: 10.1002/smll.202307487
  68. Cai J, Shahryari B, Seyedkanani A, Sasmito AP, Akbarzadeh A. Topology-dependent enhancement of pyroelectric property in nanoarchitected GaN metamaterials. Nano Lett. 2025;25(18):7603-7610. doi: 10.1021/acs.nanolett.5c01586
  69. Wang C, Vangelatos Z, Grigoropoulos CP, Ma Z. Micro-engineered architected metamaterials for cell and tissue engineering. Mater Today Adv. 2022;13:100206. doi: 10.1016/j.mtadv.2022.100206
  70. Siboro SAP, Anugrah DSB, Ramesh K, Park SH, Kim HR, Lim KT. Tunable porosity of covalently crosslinked alginate-based hydrogels and its significance in drug release behavior. Carbohydr Polym. 2021;260:117779. doi: 10.1016/j.carbpol.2021.117779
  71. Xu G, Zhou X, Chen W, et al. Hydrodynamic moire superlattice. Science. 2024;386(6728):1377-1383. doi: 10.1126/science.adq2329
  72. Kharbedia M, Caselli N, Herráez-Aguilar D, et al. Moulding hydrodynamic 2D-crystals upon parametric Faraday waves in shear-functionalized water surfaces. Nat Commun. 2021;12(1):1130. doi: 10.1038/s41467-021-21403-0
  73. Wang X, Roy M, Wang R, et al. Towards in vitro - in vivo correlation models for in situ forming drug implants. J Control Release. 2024;372:648-660. doi: 10.1016/j.jconrel.2024.06.058
  74. Skrzypek K, Nibbelink MG, Liefers-Visser J, et al. A high cell-bearing capacity multibore hollow fiber device for macroencapsulation of islets of langerhans. Macromol Biosci. 2020;20(8):2000021. doi: 10.1002/mabi.202000021
  75. Rauer SB, Stuwe L, Steinbeck L, et al. Cell adhesion and local cytokine control on protein-functionalized PNIPAM-co-AAc hydrogel microcarriers. Small. 2025;21(2): e2404183. doi: 10.1002/smll.202404183
  76. Priyadarsini SS, Saxena S, Pradhan JR, Dasgupta S. Inkjet-printed transparent micro-supercapacitors with morphology tailored co-continuous mesoporous Mn3O4. J Mater Chem A. 2022;10(40):21551-21564. doi: 10.1039/d2ta04901e
  77. Morales Ovalle MA, Raineri M, Vasquez Mansilla M, et al. Cytotoxic impact of catalytic activity and heating efficiency of manganese ferrite nanoparticles with different particle sizes for magnetic fluid hyperthermia. J Biomed Mater Res B Appl Biomater. 2025;113(9):e35638. doi: 10.1002/jbm.b.35638
  78. Omata D, Munakata L, Maruyama K, Suzuki R. Enhanced vascular permeability by microbubbles and ultrasound in drug delivery. Biol Pharm Bull. 2021;44(10):1391-1398. doi: 10.1248/bpb.b21-00453
  79. Bhandari A. Ocular fluid mechanics and drug delivery: a review of mathematical and computational models. Pharmacol Res. 2021;38(12):2003-2033. doi: 10.1007/s11095-021-03141-6
  80. Kwakernaak LJ, van Hecke M. Counting and sequential information processing in mechanical metamaterials. Phys Rev Lett. 2023;130(26):268204. doi: 10.1103/PhysRevLett.130.268204
  81. Jiao P, Mueller J, Raney JR, Zheng XR, Alavi AH. Mechanical metamaterials and beyond. Nat Commun. 2023;14(1):6004. doi: 10.1038/s41467-023-41679-8
  82. Su R, Chen J, Zhang X, et al. 3D-printed micro/nano-scaled mechanical metamaterials: fundamentals, technologies, progress, applications, and challenges. Small. 2023;19(29):e2206391. doi: 10.1002/smll.202206391
  83. Sinha P, Mukhopadhyay T. Programmable multi-physical mechanics of mechanical metamaterials. Mater Sci Eng R Rep. 2023;155:100745. doi: 10.1016/j.mser.2023.100745
  84. Gao S, Liu W, Zhang L, Gain AK. A new polymer-based mechanical metamaterial with tailorable large negative Poisson’s ratios. Polymers. 2020;12(7):1492. doi: 10.3390/polym12071492
  85. Babaee S, Pajovic S, Kirtane AR, et al. Temperature-responsive biometamaterials for gastrointestinal applications. Sci Transl Med. 2019;11(488):eaau8581. doi: 10.1126/scitranslmed.aau8581
  86. Jiang Y, Li Y. 3D printed auxetic mechanical metamaterial with chiral cells and re-entrant cores. Sci Rep. 2018; 8(1):2397. doi: 10.1038/s41598-018-20795-2
  87. Huang Y, Zhang XZ, Zhang LL, Cai CX. Theoretical verification of three-dimensional manufacturable pentamode metamaterial microstructure. J Phys Condens Matter. 2021;33(48):485702. doi: 10.1088/1361-648X/ac244c
  88. Xiao R, Feng XB, Liu WG, et al. Direct 3D printing of thin-walled cardiovascular stents with negative Poisson’s ratio (NPR) structure and functional metallic coating. Compos Struct. 2023;306:116572. doi: 10.1016/j.compstruct.2022.116572
  89. Biswas D, Gupta S. Effect of adaptation functions and multilayer topology on synchronization. Phys Rev E. 2024;109(2-1):024221. doi: 10.1103/PhysRevE.109.024221
  90. Li Y. A multiscale framework for designing high-toughness composite materials. Int J Comput Methods. 2020;17(5):1940008. doi: 10.1142/S0219876219400085
  91. Xu J, Cai H, Wu Z, et al. Acoustic metamaterials-driven transdermal drug delivery for rapid and on-demand management of acute disease. Nat Commun. 2023;14(1):869. doi: 10.1038/s41467-023-36581-2
  92. Veerabagu U, Palza H, Quero F. Review: auxetic polymer-based mechanical metamaterials for biomedical applications. ACS Biomater Sci Eng. 2022;8(7):2798-2824. doi: 10.1021/acsbiomaterials.2c00109
  93. Pruksawan S, Teo RLJ, Cheang YH, Chong YT, Ng ELL, Wang F. Structurally transformable and reconfigurable hydrogel-based mechanical metamaterials and their application in biomedical stents. ACS Appl Mater Interfaces. 2025;17(2):4055-4066. doi: 10.1021/acsami.4c20599
  94. Li T, Li Y. 3D tiled auxetic metamaterial: a new family of mechanical metamaterial with high resilience and mechanical hysteresis. Adv Mater. 2024;36(15):e2309604. doi: 10.1002/adma.202309604
  95. Vakalis S, Colon-Berrios JR, Chen D, Nanzer JA. Non-destructive imaging of defects using non-cooperative 5G millimeter-wave signals. Sensors. 2023;23(14):6421. doi: 10.3390/s23146421
  96. Fan Y, Chen J, Mou C. Pattern-reconfigurable integrated array antenna based on a coding metasurface. Opt Express. 2024;32(6):8816-8827. doi: 10.1364/OE.515878
  97. Sun L, Zhou ZT, Zhong JJ, et al. Implantable, degradable, therapeutic terahertz metamaterial devices. Small. 2020;16(17):2000294. doi: 10.1002/smll.202000294
  98. Galleani G, Abou Khalil A, Canioni L, et al. Fluorine and sodium depletion followed by refractive index modification imprinted on fluorophosphate glass surface by thermal poling. J Non-Cryst Solids. 2023;601:122054. doi: 10.1016/j.jnoncrysol.2022.122054
  99. Bi K, Guo Y, Zhou J, et al. Negative and near zero refraction metamaterials based on permanent magnetic ferrites. Sci Rep. 2014;4(1):4139. doi: 10.1038/srep04139
  100. Sukonthachat J, Bubpamala T, Poo-Arporn RP, Pholpabu P. Validation of electrochemical device setup for detection of dual antibiotic drug release from hydrogel. J Pharm Biomed Anal. 2024;245:116165. doi: 10.1016/j.jpba.2024.116165
  101. Huang MT, Tan AJ, Büttner F, et al. Voltage-gated optics and plasmonics enabled by solid-state proton pumping. Nat Commun. 2019;10:5030. doi: 10.1038/s41467-019-13131-3
  102. Royo I, Fernandez-Garcia R, Gil I. Microwave resonators for wearable sensors design: a systematic review. Sensors. 2023;23(22):9103. doi: 10.3390/s23229103
  103. Yu HP, Zhu YJ, Xiong ZC, Lu BQ. Bioinspired fiberboard-and-mortar structural nanocomposite based on ultralong hydroxyapatite nanowires with high mechanical performance. Chem Eng J. 2020;399:125666. doi: 10.1016/j.cej.2020.125666
  104. Sun L, Gu C, Tao TH, Zhou Z. A degradable antibacterial skin patch of flexible terahertz metamaterials made from silk proteins. 2020:13-15. doi: 10.1109/MEMS46641.2020.9056132
  105. Ayazi H, Akhavan O, Raoufi M, Varshochian R, Motlagh NSH, Atyabi F. Graphene aerogel nanoparticles for in-situ loading/pH sensitive releasing anticancer drugs. Colloids Surf B Biointerfaces. 2020;186:110712. doi: 10.1016/j.colsurfb.2019.110712
  106. Wu M, Liu Y, Zhu X, et al. Advances in i-motif structures: Stability, gene expression, and therapeutic applications. Int J Biol Macromol. 2025;311(Pt 4):143555. doi: 10.1016/j.ijbiomac.2025.143555
  107. Meng ZJ, He JK, Li DC. Additive manufacturing and large deformation responses of highly-porous polycaprolactone scaffolds with helical architectures for breast tissue engineering. Virtual Phys Prototyp. 2021;16(3):291-305. doi: 10.1080/17452759.2021.1930069
  108. Wu W, Ren MX, Pi B, Wu Y, Cai W, Xu JJ. Scaffold metamaterial and its application as strain sensor. Appl Phys Lett. 2015;107(9):091104. doi: 10.1063/1.4929887
  109. Sikorski J, Matczuk M, Stepien M, Ogorek K, Ruzik L, Jarosz M. Fe3O4 SPIONs in cancer theranostics-structure versus interactions with proteins and methods of their investigation. Nanotechnology. 2024;35(21) doi: 10.1088/1361-6528/ad2c54
  110. Salah D, Moghanm FS, Arshad M, et al. Polymer-peptide modified gold nanorods to improve cell conjugation and cell labelling for stem cells photoacoustic imaging. Diagnostics. 2021;11(7):1196. doi: 10.3390/diagnostics11071196
  111. Tao HC, Gibert J. Multifunctional mechanical metamaterials with embedded triboelectric nanogenerators. Adv Funct Mater. 2020;30(23):2001720. doi: 10.1002/adfm.202001720
  112. Imani IM, Kim HS, Shin J, et al. Advanced ultrasound energy transfer technologies using metamaterial structures. Adv Sci. 2024;11(31):e2401494. doi: 10.1002/advs.202401494
  113. Barri K, Jiao PC, Zhang QY, Chen J, Wang ZL, Alavi AH. Multifunctional meta-tribomaterial nanogenerators for energy harvesting and active sensing. Nano Energy. 2021;86:106074. doi: 10.1016/j.nanoen.2021.106074
  114. Hao Y, Niu Z, Yang J, et al. Self-powered terahertz modulators based on metamaterials, liquid crystals, and triboelectric nanogenerators. ACS Appl Mater Interfaces. 2024;16(25):32249-32258. doi: 10.1021/acsami.4c04251
  115. Xu XC, Wu Q, Pang YK, et al. Multifunctional metamaterials for energy harvesting and vibration control. Adv Funct Mater. 2022;32(7):2107896. doi: 10.1002/adfm.202107896
  116. Jiao P, Zhang H, Li W. Origami tribo-metamaterials with mechanoelectrical multistability. ACS Appl Mater Interfaces. 2023;15(2):2873-2880. doi: 10.1021/acsami.2c16681
  117. Goo B, Hong CH, Park K. 4D printing using anisotropic thermal deformation of 3D-printed thermoplastic parts. Mater Des. 2020;188:108485. doi: 10.1016/j.matdes.2020.108485
  118. Patdiya J, Kandasubramanian B. Progress in 4D printing of stimuli responsive materials. Polym Plast Technol Mater. 2021;60(17):1845-1883. doi: 10.1080/25740881.2021.1934016
  119. Chen M, Gao M, Bai L, Zheng H, Qi HJ, Zhou K. Recent advances in 4D printing of liquid crystal elastomers. Adv Mater. 2023;35(23):e2209566. doi: 10.1002/adma.202209566
  120. Kumar R, Sharma A, Alexiou A, Ashraf GM. Artificial intelligence in de novo drug design: are we still there? Curr Top Med Chem. 2022;22(30):2483-2492. doi: 10.2174/1568026623666221017143244
  121. Yu CL, Jiang JC. A perspective on using machine learning in 3D bioprinting. Int J Bioprint. 2020;6(1):253. doi: 10.18063/ijb.v6i1.253
  122. Chang X-Z, Liu J-S, Lu J-Q. Digital light processing 3D printing technology in biomedical engineering: a review. Macromol Biosci. 2025;25(8):e2500101. doi: 10.1002/mabi.202500101
  123. Chattopadhyay J, Srivastava N, Pathak TS. Comprehensive review of 3D printing techniques emphasizing thermal characterization in biomedical prototyping. J Biomater Appl. 2025;39(9):971-995. doi: 10.1177/08853282251314672
  124. Lai JH, Wang C, Wang M. 3D printing in biomedical engineering: processes, materials, and applications. Appl Phys Rev. 2021;8(2):021322. doi: 10.1063/5.0024177
  125. Ünlüer Ö, Diltemiz SE, Say MG, Hür D, Say R, Ersöz A. A powerful combination in designing polymeric scaffolds: 3D bioprinting and cryogelation. Int J Polym Mater Polym Biomater. 2022;71(4):278-290. doi: 10.1080/00914037.2020.1825083
  126. Choi YJ, Cho DW, Lee H. Development of silk fibroin scaffolds by using indirect 3D-bioprinting technology. Micromachines. 2022;13(1):43. doi: 10.3390/mi13010043
  127. Ma J, Bharambe VT, Persson KA, et al. Metallophobic coatings to enable shape reconfigurable liquid metal inside 3D printed plastics. ACS Appl Mater Interfaces. 2021;13(11):12709-12718. doi: 10.1021/acsami.0c17283
  128. Brassard JA, Nikolaev M, Hübscher T, Hofer M, Lutolf MP. Recapitulating macro-scale tissue self-organization through organoid bioprinting. Nat Mater. 2021;20(1):22-29. doi: 10.1038/s41563-020-00803-5
  129. Koffler J, Zhu W, Qu X, et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat Med. 2019;25(2):263. doi: 10.1038/s41591-018-0296-z
  130. Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev. 2020;120(19):10850-10877. doi: 10.1021/acs.chemrev.0c00084
  131. Daly AC, Riley L, Segura T, Burdick JA. Hydrogel microparticles for biomedical applications. Nat Rev Mater. 2020;5(1):20-43. doi: 10.1038/s41578-019-0148-6
  132. Cui HT, Nowicki M, Fisher JP, Zhang LG. 3D bioprinting for organ regeneration. Adv Healthc Mater. 2017;6(1): 1601118. doi: 10.1002/adhm.201601118
  133. Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915-946. doi: 10.1039/c7bm00765e
  134. Li JH, Wu CT, Chu PK, Gelinsky M. 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Mater Sci Eng R Rep. 2020;140:100543. doi: 10.1016/j.mser.2020.100543
  135. Ashammakhi N, Ahadian S, Xu C, et al. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio. 2019;1:100008. doi: 10.1016/j.mtbio.2019.100008
  136. Rutz AL, Hyland KE, Jakus AE, Burghardt WR, Shah RN. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv Mater. 2015;27(9):1607-1614. doi: 10.1002/adma.201405076
  137. Lim KS, Galarraga JH, Cui XL, Lindberg GCJ, Burdick JA, Woodfield TBF. Fundamentals and applications of photo-cross-linking in bioprinting. Chem Rev. 2020;120(19):10637-10669. doi: 10.1021/acs.chemrev.9b00812
  138. Cui XL, Li J, Hartanto Y, et al. Advances in extrusion 3D bioprinting: a focus on multicomponent hydrogel-based bioinks. Adv Healthc Mater. 2020;9(15):1901648. doi: 10.1002/adhm.201901648
  139. Grigorenko AN, Polini M, Novoselov KS. Graphene plasmonics. Nat Photon. 2012;6(11):749-758. doi: 10.1038/NPHOTON.2012.262
  140. Zheng XY, Lee H, Weisgraber TH, et al. Ultralight, ultrastiff mechanical metamaterials. Science. 2014;344(6190):1373-1377. doi: 10.1126/science.1252291
  141. Lee HE, Ahn HY, Mun J, et al. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature. 2018;556(7701):360. doi: 10.1038/s41586-018-0034-1
  142. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3(7):e1700782. doi: 10.1126/sciadv.1700782
  143. Coulais C, Sabbadini A, Vink F, van Hecke M. Multi-step self-guided pathways for shape-changing metamaterials. Nature. 2018;561(7724):512. doi: 10.1038/s41586-018-0541-0
  144. Yang C, Boorugu M, Dopp A, et al. 4D printing reconfigurable, deployable and mechanically tunable metamaterials. Mater Horiz. 2019;6(6):1244-1250. doi: 10.1039/c9mh00302a
  145. Yao QF, Chen TK, Yuan X, Xie JP. Toward total synthesis of thiolate-protected metal nanoclusters. Acc Chem Res. 2018;51(6):1338-1348. doi: 10.1021/acs.accounts.8b00065
  146. Wauthle R, van der Stok J, Amin Yavari S, et al. Additively manufactured porous tantalum implants. Acta Biomater. 2015;14:217-225. doi: 10.1016/j.actbio.2014.12.003
  147. Rupp F, Liang L, Geis-Gerstorfer J, Scheideler L, Hüttig F. Surface characteristics of dental implants: a review. Dent Mater. 2018;34(1):40-57. doi: 10.1016/j.dental.2017.09.007
  148. Bakhsheshi-Rad HR, Hamzah E, Ismail AF, Aziz M, Najafinezhad A, Daroonparvar M. Synthesis and in-vitro performance of nanostructured monticellite coating on magnesium alloy for biomedical applications. J Alloys Compd. 2019;773:180-193. doi: 10.1016/j.jallcom.2018.08.310
  149. Zhi PX, Liu LX, Chang JK, et al. Advances in the study of magnesium alloys and their use in bone implant material. Metals. 2022;12(9):1500. doi: 10.3390/met12091500
  150. Mohammed N, Palaniandy P, Shaik F. Optimization of solar photocatalytic biodegradability of seawater using statistical modelling. J Indian Chem Soc. 2021;98(12): 100240. doi: 10.1016/j.jics.2021.100240
  151. Shamsuri AA, Jamil S, Abdan K. A brief review on the influence of ionic liquids on the mechanical, thermal, and chemical properties of biodegradable polymer composites. Polymers. 2021;13(16):2597. doi: 10.3390/polym13162597
  152. Pruksawan S, Chee HL, Wang ZZ, et al. Toughened hydrogels for 3D printing of soft auxetic structures. Chem Asian J. 2022;17(19):e202200677. doi: 10.1002/asia.202200677
  153. Gerasimov RA, Eremeyev VA, Petrova TO, Egorov VI, Maksimova OG, Maksimov AV. Study of mechanical properties of ferroelectrics metamaterials using computer simulation. Ferroelectrics. 2017;508(1):151-160. doi: 10.1080/00150193.2017.1289767
  154. Hu YQ, Jia F, Fu ZJ, Liu YJ, Leng JS. A constitutive model and its numerical implementation for reversible behavior of shape memory hydrogels. Smart Mater Struct. 2022;31(9):095032. doi: 10.1088/1361-665X/ac8257
  155. Dong RN, Guo BL. Smart wound dressings for wound healing. Nano Today. 2021;41:101290. doi: 10.1016/j.nantod.2021.101290
  156. Calder S, Baral R, Buchanan CC, et al. Low-dimensional metal-organic frameworks: a pathway to design, explore and tune magnetic structures. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2024;80(Pt 5):430-442. doi: 10.1107/S2052520624008023
  157. Wang C. A plug-and-play interface technology: Boosting simple but robust stretchable device assembly. Sci Bull. 2023;68(7):661-663. doi: 10.1016/j.scib.2023.03.014
  158. Jang KI, Chung HU, Xu S, et al. Soft network composite materials with deterministic and bio-inspired designs. Nat Commun. 2015;6:6566. doi: 10.1038/ncomms7566
  159. Jiang YY, Li YN. Novel 3D-printed hybrid auxetic mechanical metamaterial with chirality-induced sequential cell opening mechanisms. Adv Eng Mater. 2018;20(2):1700744. doi: 10.1002/adem.201700744
  160. Chen B, Wang J, Xu Z, et al. Controllable configuration of constitutional units in vanadium/iron-based polyanionic compounds for sodium-ion storage. Adv Mater. 2025;37(43):e09966-e09966. doi: 10.1002/adma.202509966
  161. Nashed N, Lam M, Ghafourian T, et al. An insight into the impact of thermal process on dissolution profile and physical characteristics of theophylline tablets made through 3D printing compared to conventional methods. Biomedicines. 2022;10(6):1335. doi: 10.3390/biomedicines10061335
  162. Zohreh N, Rastegaran Z, Hosseini SH, Akhlaghi M, Istrate C, Busuioc C. pH-triggered intracellular release of doxorubicin by a poly(glycidyl methacrylate)-based double-shell magnetic nanocarrier. Mater Sci Eng C Mater Biol Appl. 2021;118:111498. doi: 10.1016/j.msec.2020.111498
  163. Shi KJ, Salvage JP, Maniruzzaman M, Nokhodchi A. Role of release modifiers to modulate drug release from fused deposition modelling (FDM) 3D printed tablets. Int J Pharm. 2021;597:120315. doi: 10.1016/j.ijpharm.2021.120315
  164. Fina F, Goyanes A, Madla CM, et al. 3D printing of drug-loaded gyroid lattices using selective laser sintering. Int J Pharm. 2018;547(1-2):44-52. doi: 10.1016/j.ijpharm.2018.05.044
  165. Dhayer M, Barral V, Cleret D, et al. Material and biological characterization of 3D knitted bioresorbable poly (D,L-lactide) (PLA) and polycaprolactone (PCL) scaffolds for soft tissue regeneration: From fabrication to in vivo performance. J Biol Eng. 2025;19(1):53-53. doi: 10.1186/s13036-025-00504-0
  166. Vaupel S, Mau R, Kara S, Seitz H, Kragl U, Meyer J. 3D printed and stimulus responsive drug delivery systems based on synthetic polyelectrolyte hydrogels manufactured viadigital light processing. J Mater Chem B. 2023;11(28):6547-6559. doi: 10.1039/d3tb00285c
  167. Li H, Cheng S, Zhou K, Zang J, Wang Z, Du M. Carboxymethyl-beta-cyclodextrin grafted chitosan embedded oyster (Crassostrea gigas) ferritin can alleviate lead-induced liver injury by oral administration. Food Res Int. 2025;212:116417. doi: 10.1016/j.foodres.2025.116417
  168. Zhou WD, Zhang H, Liu YF, et al. Preparation of calcium alginate/polyethylene glycol acrylate double network fiber with excellent properties by dynamic molding method. Carbohydr Polym. 2019;226:115277. doi: 10.1016/j.carbpol.2019.115277
  169. Rafiee M, Farahani RD, Therriault D. Multi-material 3D and 4D printing: a survey. Adv Sci. 2020;7(12):1902307. doi: 10.1002/advs.201902307
  170. Egan PF, Shea KA, Ferguson SJ. Simulated tissue growth for 3D printed scaffolds. Biomech Model Mechanobiol. 2018;17(5):1481-1495. doi: 10.1007/s10237-018-1040-9
  171. Khatib O, Ren SM, Malof J, Padilla WJ. Deep learning the electromagnetic properties of metamaterials—a comprehensive review. Adv Funct Mater. 2021;31(31):2101748. doi: 10.1002/adfm.202101748
  172. Mohammadjafari S, Ozyegen O, Cevik M, Kavurmacioglu E, Ethier J, Basar A. Designing mm-wave electromagnetic engineered surfaces using generative adversarial networks. Neural Comput Appl. 2021;33(17):11309-11323. doi: 10.1007/s00521-020-05656-2
  173. Hsu YC, Yang ZZ, Buehler MJ. Generative design, manufacturing, and molecular modeling of 3D architected materials based on natural language input. APL Mater. 2022;10(4):041107. doi: 10.1063/5.0082338
  174. Christiansen RE, Vester-Petersen J, Madsen SP, Sigmund O. A non-linear material interpolation for design of metallic nano-particles using topology optimization. CMAME. 2019;343:23-39. doi: 10.1016/j.cma.2018.08.034
  175. Tezsezen E, Yigci D, Ahmadpour A, Tasoglu S. AI-based metamaterial design. ACS Appl Mater Interfaces. 2024;16(23):29547-29569. doi: 10.1021/acsami.4c04486
  176. Han D, Ren X, Zhang Y, et al. Lightweight auxetic metamaterials: Design and characteristic study. Compos Struct. 2022;293:115706. doi: 10.1016/j.compstruct.2022.115706
  177. Pantelidakis M, Mykoniatis K, Liu J, Harris G. A digital twin ecosystem for additive manufacturing using a real-time development platform. Int J Adv Manuf Technol. 2022;120(9-10):6547-6563. doi: 10.1007/s00170-022-09164-6
  178. Mora S, Pugno NM, Misseroni D. 3D printed architected lattice structures by material jetting. Mater Today. 2022;59:107-132. doi: 10.1016/j.mattod.2022.05.008
  179. Masoumi Ravandi MR, Dezianian S, Ahmad MT, Ghoddosian A, Azadi M. Compressive strength of metamaterial bones fabricated by 3D printing with different porosities in cubic cells. Mater Chem Phys. 2023; 299:127515. doi: 10.1016/j.matchemphys.2023.127515
  180. Mohammadi A, Hajizadeh E, Tan Y, Choong P, Oetomo D. A bioinspired 3D-printable flexure joint with cellular mechanical metamaterial architecture for soft robotic hands. Int J Bioprint. 2023;9(3):696. doi: 10.18063/ijb.696
  181. Flamourakis G, Spanos I, Vangelatos Z, et al. Laser-made 3D auxetic metamaterial scaffolds for tissue engineering applications. Macromol Mater Eng. 2020;305(7):2000238. doi: 10.1002/mame.202000238
  182. Manshor MR, Alli YA, Anuar H, Ejeromedoghene O, Omotola EO, Suhr J. 4D printing: historical evolution, computational insights and emerging applications. Mater Sci Eng B. 2023;295:116567. doi: 10.1016/j.mseb.2023.116567
  183. Rezvani Ghomi E, Khosravi F, Neisiany RE, Singh S, Ramakrishna S. Future of additive manufacturing in healthcare. Curr Opin Biomed Eng. 2021;17:100255. doi: 10.1016/j.cobme.2020.100255
  184. Fu P, Li H, Gong J, et al. 4D printing of polymers: techniques, materials, and prospects. Prog Polym Sci. 2022;126:101506. doi: 10.1016/j.progpolymsci.2022.101506
  185. Che QT, Seo JW, Charoensri K, Nguyen MH, Park HJ, Bae H. 4D-printed microneedles from dual-sensitive chitosan for non-transdermal drug delivery. Int J Biol Macromol. 2024;261(Pt 2):129638. doi: 10.1016/j.ijbiomac.2024.129638
  186. Wang XH. Biodegradable polymers, history tells polymer science’s fortune. Chin J Polym Sci. 2022;40(5):431-432. doi: 10.1007/s10118-022-2737-x
  187. Shamsuri AA, Abdan K, Jamil S. Preparations and properties of ionic liquid-assisted electrospun biodegradable polymer fibers. Polymers. 2022;14(12):2308. doi: 10.3390/polym14122308
  188. Wang X, Cao C, Shen X, et al. Universal intermolecular energy transfer strategy for extending initiator libraries of photoinhibited multiphoton lithography. ACS Appl Mater Interfaces. 2025;17(16):24327-24338. doi: 10.1021/acsami.5c00344
  189. Marazzi D, Trovalusci F, Vesco S, Di Nardo P. Manufacturing process of prostheses using semirigid molds by additive technologies. Methods Mol Biol. 2024;2835:317-323. doi: 10.1007/978-1-0716-3995-5_27
  190. Li T, Wang S, Weng Z, et al. Laser interference additive manufacturing: Mask bundle shape bionic shark skin structure. ACS Appl Mater Interfaces. 2024;16(28):37183-37196. doi: 10.1021/acsami.4c04916
  191. Salvalaglio M, Bouabdellaoui M, Bollani M, et al. Hyperuniform monocrystalline structures by spinodal solid-state dewetting. Phys Rev Lett. 2020;125(12):126101. doi: 10.1103/PhysRevLett.125.126101
  192. Kumar S, Tan SH, Zheng L, Kochmann DM. Inverse-designed spinodoid metamaterials. NPJ Comput Mater. 2020;6(1):73. doi: 10.1038/s41524-020-0341-6
  193. Smit T, Koppen S, Ferguson SJ, Helgason B. Conceptual design of compliant bone scaffolds by full-scale topology optimization. J Mech Behav Biomed Mater. 2023;143:105886. doi: 10.1016/j.jmbbm.2023.105886
  194. Sim EA, Lee S, Oh J, Lee J. GANs and DCGANs for generation of topology optimization validation curve through clustering analysis. Adv Eng Softw. 2021;152:102957. doi: 10.1016/j.advengsoft.2020.102957
  195. Wang T, Migliori B, Miccoli B, Shin SR. Bioinspired soft robot with incorporated microelectrodes. J Vis Exp. 2020;(156):e60717. doi: 10.3791/60717
  196. Goto E, Tagami T, Ogawa K, Ozeki T. Fabrication of 3D-printed contact lens composed of polyethylene glycol diacrylate for controlled release of azithromycin. Biol Pharm Bull. 2023;46(10):1461-1467. doi: 10.1248/bpb.b23-00443
  197. Kraisit P, Limpamanoch P, Hirun N, Limmatvapirat S. Design and development of 3D-printed bento box model for controlled drug release of propranolol HCl following pharmacopeia dissolution guidelines. Int J Pharm. 2022;628:122272. doi: 10.1016/j.ijpharm.2022.122272
  198. Guan S, Xu W, Tan J, et al. Metainterface heterostructure enhances sonodynamic therapy for disrupting secondary biofilms. ACS Nano. 2024;18(23):15114-15129. doi: 10.1021/acsnano.4c02605
  199. van Hengel IAJ, Riool M, Fratila-Apachitei LE, et al. Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus. Biomaterials. 2017;140:1-15. doi: 10.1016/j.biomaterials.2017.02.030
  200. Gupta R, Singh B. Chemical modification of carboxylated MWCNTs for enhanced electrical conducting and magnetic properties. Mater Sci Eng B Adv Funct Solid State Mater. 2020;262:114730. doi: 10.1016/j.mseb.2020.114730
  201. Nguyen DD, Kim I. Vibrational circular dichroism unveils hidden clues. Light Sci Appl. 2023;12(1):210-210. doi: 10.1038/s41377-023-01239-7
  202. Parsa A, Wang D, O’Hern CS, Shattuck MD, Kramer-Bottiglio R, Bongard J. Evolving programmable computational metamaterials. GECCO ‘22: Proceedings of the Genetic and Evolutionary Computation Conference Companion; 2022: 122-129. doi: 10.1145/3512290.3528861
  203. Yavari SA, Croes M, Akhavan B, et al. Layer by layer coating for bio-functionalization of additively manufactured meta-biomaterials. Addit Manuf. 2020;32:100991. doi: 10.1016/j.addma.2019.100991
  204. Kalogeropoulou M, Kracher A, Fucile P, Mihaila SM, Moroni L. Blueprints of architected materials: a guide to metamaterial design for tissue engineering. Adv Mater. 2024;36(47):e2408082. doi: 10.1002/adma.202408082
  205. Cooper DA, DePaolo-Boisvert J, Nicholson SA, Gad B, Minh DDL. Intracellular pocket conformations determine signaling efficacy through the μ opioid receptor. J Chem Inf Model. 2025;65(3):1465-1475. doi: 10.1021/acs.jcim.4c01437
  206. Lyu SN, Qin B, Deng HC, Ding XL. Origami-based cellular mechanical metamaterials with tunable Poisson’s ratio: construction and analysis. IJMS. 2021;212:106791. doi: 10.1016/j.ijmecsci.2021.106791
  207. Jia Y, Liu K, Zhang XS. Modulate stress distribution with bio-inspired irregular architected materials towards optimal tissue support. Nat Commun. 2024;15(1):4072. doi: 10.1038/s41467-024-47831-2
  208. Chiappini C, De Rosa E, Martinez JO, et al. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat Mater. 2015;14(5):532-539. doi: 10.1038/NMAT4249
  209. Li SN, Zhang LY, Chen XF. 3D-printed terahertz metamaterial absorber based on vertical split-ring resonator. J Appl Phys. 2021;130(3):034504. doi: 10.1063/5.0056276
  210. Yarali E, Klimopoulou M, David K, et al. Bone cell response to additively manufactured 3D micro-architectures with controlled Poisson’s ratio: auxetic vs. non-auxetic meta-biomaterials. Acta Biomater. 2024;177: 228-242. doi: 10.1016/j.actbio.2024.01.045
  211. Barri K, Zhang QY, Swink I, et al. Patient-specific self-powered metamaterial implants for detecting bone healing progress. Adv Funct Mater. 2022;32(32):2203533. doi: 10.1002/adfm.202203533
  212. Fina F, Madla CM, Goyanes A, Zhang JX, Gaisford S, Basit AW. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int J Pharm. 2018;541(1-2):101-107. doi: 10.1016/j.ijpharm.2018.02.015
  213. Fogsgaard MB, Iannuzzo F. FEM-aided damage model calibration method for experimental results. MiRe. 2020;114:113915. doi: 10.1016/j.microrel.2020.113915
  214. Catsoulis S, Singh JS, Narayanan C, Lakehal D. Integrating supervised learning and applied computational multi-fluid dynamics. Int J Multiph Flow. 2022;157:104221. doi: 10.1016/j.ijmultiphaseflow.2022.104221
  215. Schuett M, Stamatopoulos K, Batchelor HK, Simmons MJH, Alexiadis A. Development of a digital twin of a tablet that mimics a real solid dosage form: differences in the dissolution profile in conventional mini-USP II and a biorelevant colon model. Eur J Pharm Sci. 2022;179:106310. doi: 10.1016/j.ejps.2022.106310
  216. Islavath SR, Deb D, Kumar H. Life cycle analysis and damage prediction of a longwall powered support using 3D numerical modelling techniques. Arab J Geosci. 2019;12(14):441. doi: 10.1007/s12517-019-4574-y

 

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing