Beyond structure: A review of intelligent, bioresponsive, and sustainable design paradigms for three-dimensional-printed metamaterials in drug delivery
Drug administration involves the precise delivery of therapeutic agents to targeted sites in a controlled manner, maximizing efficacy while minimizing adverse effects. This goal is pursued through drug delivery systems (DDSs), built from synthetic, natural, or hybrid biomaterials, that encapsulate and release drugs via diverse administration routes and mechanisms. Their core purpose is to localize pharmacological activity, reduce systemic toxicity, and protect surrounding healthy tissues. Despite advances, persistent challenges remain, including poor bioavailability, instability in drug loading and release profiles, limited targeting accuracy, undesirable systemic persistence, and inadequate spatiotemporal control. Additional concerns include inadequate chemical stability, patient compliance, and risks of long-term toxicity, all of which hinder clinical translation. To overcome these obstacles, metamaterials—engineered structures with geometry-driven properties—have emerged as promising platforms. By leveraging additive manufacturing and nanoscale design, metamaterials offer tunable architectures and unconventional physicochemical properties, enabling precise control over release dynamics, spatial specificity, and therapeutic outcomes. This review highlights the integration of metamaterials into DDSs, focusing on material selection, structural design strategies, fabrication challenges, and the novel possibilities enabled by three-dimensional printing. We also examine their applications in sustained, pulsatile, and stimuli-responsive release, targeted therapy, theranostics, and regenerative medicine. Finally, we discuss unresolved issues such as biocompatibility, scalability, and translational barriers, emphasizing the transformative potential of metamaterial-enabled DDSs in advancing precision medicine and healthcare innovation.

- Nazir F, Tabish TA, Tariq F, Iftikhar S, Wasim R, Shahnaz G. Stimuli-sensitive drug delivery systems for site-specific antibiotic release. Drug Discov Today. 2022;27(6):1698-1705. doi: 10.1016/j.drudis.2022.02.014
- Bahadur S, Sharma M. Liposome based drug delivery for the management of psoriasis - a comprehensive review. Curr Pharm Biotechnol. 2023;24(11):1383-1396. doi: 10.2174/1389201024666221213144228
- Adepu S, Ramakrishna S. Controlled drug delivery systems: current status and future directions. Molecules. 2021;26(19):5905. doi: 10.3390/molecules26195905
- He C, He X, Zhang Y, et al. Development of a microfluidic formatted ultrasound-controlled monodisperse lipid vesicles’ hydrogel dressing combined with ultrasound for transdermal drug delivery system. Macromol Biosci. 2023;23(9):e2300049. doi: 10.1002/mabi.202300049
- Xu X, Kwong CHT, Li J, Wei J, Wang R. “Zombie” macrophages for targeted drug delivery to treat acute pneumonia. ACS Appl Mater Interfaces. 2023;15(24):29012-29022. doi: 10.1021/acsami.3c06025
- Guo S-H, Yu X-K, Zhu Y-L, Zhang L-L, Huang Y-N. Controlled release mechanism of drugs from onion-like dendrimersomes: insight from dissipative particle dynamics simulations. Phys Chem Chem Phys. 2025;27(17):9087-9094. doi: 10.1039/d4cp04780j
- Di XJ, Liang X, Shen C, Pei YW, Wu B, He ZY. Carbohydrates used in polymeric systems for drug delivery: from structures to applications. Pharmaceutics. 2022; 14(4):739. doi: 10.3390/pharmaceutics14040739
- Nishida K. Recent advances in lipid-based drug delivery. Pharmaceutics. 2021;13(7):926. doi: 10.3390/pharmaceutics13070926
- Eid AH. Drugging dancing protein clouds: a close look at disorder-based drug design. Editorial. Pharmacol Rev. 2025;77(2):100010. doi: 10.1016/j.pharmr.2024.100010
- Li J, Tang W, Yang Y, et al. A programmed cell-mimicking nanoparticle driven by potato alkaloid for targeted cancer chemoimmunotherapy. Adv Healthc Mater. 2021;10(13):2100311. doi: 10.1002/adhm.202100311
- Lin S-W, Tsai J-C, Shyong Y-J. Drug delivery of extracellular vesicles: Preparation, delivery strategies and applications. Int J Pharm. 2023;642:123185. doi: 10.1016/j.ijpharm.2023.123185
- Matalqah S, Lafi Z, Mhaidat Q, Asha N, Yousef Asha S. Applications of machine learning in liposomal formulation and development. Pharm Dev Technol. 2025;30(1):126-136. doi: 10.1080/10837450.2024.2448777
- Li R, Hu X, Li W, et al. Nebulized pH-responsive nanospray combined with pentoxifylline and edaravone to lungs for efficient treatments of acute respiratory distress syndrome. ACS Appl Mater Interfaces. 2024;16(7):8310-8320. doi: 10.1021/acsami.3c15691
- Malek-Khatabi A, Tabandeh Z, Nouri A, et al. Long-term vaccine delivery and immunological responses using biodegradable polymer-based carriers. ACS Appl Bio Mater. 2022;5(11):5015-5040. doi: 10.1021/acsabm.2c00638
- Jan N, Shah H, Khan S, et al. Old drug, new tricks: polymer-based nanoscale systems for effective cytarabine delivery. Naunyn-Schmiedeberg’s Arch Pharmacol. 2024;397(6):3565-3584. doi: 10.1007/s00210-023-02865-z
- Arslan FB, Ozturk K, Calis S. Antibody-mediated drug delivery. Int J Pharm. 2021;596:120268. doi: 10.1016/j.ijpharm.2021.120268
- Hong J, Li K, He J, Liang M. A new age of drug delivery: a comparative perspective of ferritin-drug conjugates (FDCs) and antibody-drug conjugates (ADCs). Bioconjug Chem. 2024;35(8):1142-1147. doi: 10.1021/acs.bioconjchem.4c00254
- Taokaew S, Kaewkong W, Kriangkrai W. Recent development of functional chitosan-based hydrogels for pharmaceutical and biomedical applications. Gels. 2023;9(4):277. doi: 10.3390/gels9040277
- Lin S-H, Hsu S-H. Smart hydrogels for in situ tissue drug delivery. J Biomed Sci. 2025;32(1):70. doi: 10.1186/s12929-025-01166-2
- Bordbar-Khiabani A, Gasik M. Smart hydrogels for advanced drug delivery systems. Int J Mol Sci. 2022;23(7):3665. doi: 10.3390/ijms23073665
- Yu YB, Cheng Y, Tong JY, Zhang L, Wei Y, Tian M. Recent advances in thermo-sensitive hydrogels for drug delivery. J Mater Chem B. 2021;9(13):2979-2992. doi: 10.1039/d0tb02877k
- Orbay S, Sanyal R, Sanyal A. Porous microgels for delivery of curcumin: Microfluidics-based fabrication and cytotoxicity evaluation. Micromachines. 2023;14(10):1969. doi: 10.3390/mi14101969
- Sepe F, Valentino A, Marcolongo L, et al. Polysaccharide hydrogels as delivery platforms for natural bioactive molecules: from tissue regeneration to infection control. Gels. 2025;11(3):198. doi: 10.3390/gels11030198
- Sarmadi M, Behrens AM, McHugh KJ, et al. Modeling, design, and machine learning-based framework for optimal injectability of microparticle-based drug formulations. Sci Adv. 2020;6(28):eabb6594. doi: 10.1126/sciadv.abb6594
- Zhu S, Cui H, Pan Y, et al. Responsive-hydrogel aquabots. Adv Sci. 2024;11(36):e2401215. doi: 10.1002/advs.202401215
- Ouyang JL, Hong XZ, Gao Y. Retardation and self-repair of erosion pits by a two-stage barrier on bioactive-glass/layered double hydroxide coating of biomedical magnesium alloys. Surf Coat Technol. 2021;405:126562. doi: 10.1016/j.surfcoat.2020.126562
- Sam R, Divanbeigi Kermani M, Ohadi M, Salarpour S, Dehghannoudeh G. Different applications of temperature responsive nanogels as a new drug delivery system mini review. Pharm Dev Technol. 2023;28(5):492-500. doi: 10.1080/10837450.2023.2209796
- Gvozdeva Y, Staynova R. pH-dependent drug delivery systems for ulcerative colitis treatment. Pharmaceutics. 2025;17(2):226. doi: 10.3390/pharmaceutics17020226
- Rathi R, Sanshita, Kumar A, et al. Advancements in rectal drug delivery systems: clinical trials, and patents perspective. Pharmaceutics. 2022;14(10):2210. doi: 10.3390/pharmaceutics14102210
- Abdelmohsen HAM, Copeland NA, Hardy JG. Light-responsive biomaterials for ocular drug delivery. Drug Deliv Transl Res. 2023;13(8):2159-2182. doi: 10.1007/s13346-022-01196-5
- Singh G, Nenavathu BP. Development of rGO encapsulated polymeric beads as drug delivery system for improved loading and controlled release of doxycycline drug. Drug Dev Ind Pharm. 2020;46(3):462-470. doi: 10.1080/03639045.2020.1724137
- Chen Z, Ren Z, Coluccini C, Coghi P. From micro to marvel: unleashing the full potential of click chemistry with micromachine integration. Micromachines. 2025;16(6):712. doi: 10.3390/mi16060712
- Patil V, Patil PS, Kulkarni MV, Pattekari SN, Khan ZG. Advanced microneedle arrays for transdermal antibiotic delivery. Curr Opin Pharmacol. 2025;83:102542. doi: 10.1016/j.coph.2025.102542
- Wang JT, Xie BJ, Zhu ZC, Xie GJ, Luo B. 3D-printed construct from hybrid suspension as spatially and temporally controlled protein delivery system. J Biomater Appl. 2021;36(2):264-275. doi: 10.1177/08853282211023257
- Yang YJ, Liu X, Kan C. Point cloud based online detection of geometric defects for the certification of additively manufactured mechanical metamaterials. J Manuf Syst. 2022;65:591-604. doi: 10.1016/j.jmsy.2022.09.011
- He H, Peng W, Le Ferrand H. Thermal rectification in modularly designed bulk metamaterials. Adv Mater. 2024;36(8):e2307071. doi: 10.1002/adma.202307071
- Wang Q, Chen Q, Lin Y, He D, Ji H, Tan CSH. Spike-in proteome enhances data-independent acquisition for thermal proteome profiling. Anal Chem. 2024;96(49): 19695-19705. doi: 10.1021/acs.analchem.4c04837
- Yang CT, Korangath P, Stewart J, et al. Systemically delivered antibody-labeled magnetic iron oxide nanoparticles are less toxic than plain nanoparticles when activated by alternating magnetic fields. Int J Hyperthermia. 2020;37(3): 59-75. doi: 10.1080/02656736.2020.1776901
- Ahamad N, Prabhakar A, Mehta S, et al. Trigger-responsive engineered-nanocarriers and image-guided theranostics for rheumatoid arthritis. Nanoscale. 2020;12(24):12673-12697. doi: 10.1039/d0nr01648a
- Panikkanvalappil SR, Bhagavatula SK, Deans K, Jonas O, Rashidian M, Mishra S. Enhanced tumor accumulation of multimodal magneto-plasmonic nanoparticles via an implanted micromagnet-assisted delivery strategy. Adv Healthc Mater. 2023;12(2):e2201585. doi: 10.1002/adhm.202201585
- Guan GQ, Zhang C, Liu HY, et al. Ternary alloy PtWMn as a Mn nanoreservoir for high-field MRI monitoring and highly selective ferroptosis therapy. Angew Chem Int Ed. 2022;61(31):e202117229. doi: 10.1002/anie.202117229
- Thakkar A, Ma JC, Braun JE, Horton WT, Arrieta AF. Energy-efficient defrosting of heat exchanger fins with embedded negative stiffness structures. Appl Therm Eng. 2023;222:119850. doi: 10.1016/j.applthermaleng.2022.119850
- Renjith SC, Park K, Kremer GEO. A design framework for additive manufacturing: Integration of additive manufacturing capabilities in the early design process. Int J Precis Eng Manuf. 2020;21(2):329-345. doi: 10.1007/s12541-019-00253-3
- Gong P, Yue S, Wang J, et al. Effect of ultrasound synergistic pH shift modification treatment on Hericium erinaceus protein structure and its application in 3D printing. Int J Biol Macromol. 2025;295:139562. doi: 10.1016/j.ijbiomac.2025.139562
- Yatmaz E. Growth control agent for filamentous fungi: FDM based 3D printed cubes for suspended Aspergillus sojae fermentation. Enzyme Microb Technol. 2021;150:109867. doi: 10.1016/j.enzmictec.2021.109867
- Zhao F, Liu J, Zhao J, Ge X, Ding C, Zhuang X. The mechanism of 3D-printed high internal phase Pickering emulsion gels improved by soybean protein isolate/ bacterial cellulose co-assemblies. Int J Biol Macromol. 2025; 302:140435. doi: 10.1016/j.ijbiomac.2025.140435
- Mao Y, Chen WH, Lee MH. On the simulation of 3D printing process by a novel meshless analysis procedure. J Mech. 2020;36(3):285-294. Pii: s1727719119000285. doi: 10.1017/jmech.2019.28
- Lamprou DA, Douroumis D, Andrews GP, Jones DS. 3D printing in pharmacological and pharmaceutical sciences. J Pharm Pharmacol. 2022;74(10):1365-1366. doi: 10.1093/jpp/rgac049
- S Algahtani M, Ahmad J. 3D printing technique in the development of self-nanoemulsifying drug delivery system: scope and future prospects. Ther Deliv. 2022;13(3): 135-139. doi: 10.4155/tde-2021-0082
- Zhan L, Zhou Y, Liu R, et al. Advances in growth factor-containing 3D printed scaffolds in orthopedics. Biomed Eng Online. 2025;24(1):14-14. doi: 10.1186/s12938-025-01346-z
- Eugster R, Ganguin AA, Seidi A, Aleandri S, Luciani P. 3D printing injectable microbeads using a composite liposomal ink for local treatment of peritoneal diseases. Drug Deliv Transl Res. 2024;14(6):1567-1581. doi: 10.1007/s13346-023-01472-y
- Cesur S. Combination techniques towards novel drug delivery systems manufacturing: 3D PCL scaffolds enriched with tetracycline-loaded PVP nanoparticles. Eur J Pharm Biopharm. 2024;194:36-48. doi: 10.1016/j.ejpb.2023.11.022
- Zhang P, He R. 3D-printed silicon nitride ceramic implants for clinical applications: the state of the art and prospects. RSC Adv. 2025;15(1):406-419. doi: 10.1039/d4ra07970a
- Huang W, Zhang JH, Singh V, et al. Digital light 3D printing of a polymer composite featuring robustness, self-healing, recyclability and tailorable mechanical properties. Addit Manuf. 2023;61:103343. doi: 10.1016/j.addma.2022.103343
- Zou L, Hu L, Pan PP, et al. Icariin-releasing 3D printed scaffold for bone regeneration. Compos B Eng. 2022;232:109625. doi: 10.1016/j.compositesb.2022.109625
- Singh H, Tuffaha M, Tripathi S, et al. 3D printed metamaterials: properties, fabrication, and drug delivery applications. Adv Drug Del Rev. 2025;224:115636. doi: 10.1016/j.addr.2025.115636
- Usta F, Scarpa F, Türkmen HS, Johnson P, Perriman AW, Chen YY. Multiphase lattice metamaterials with enhanced mechanical performance. Smart Mater Struct. 2021;30(2):025014. doi: 10.1088/1361-665X/abd15d
- Jin SM, Hwang JH, Wang K, et al. Symmetry breaking of Au nanospheres confined in 1D nanocylinders: exploring helical assembly by 3D transmission electron microscopy. Mater Chem Front. 2020;4(10):3032-3039. doi: 10.1039/d0qm00374c
- Chen YX, Ai B, Wong ZJ. Soft optical metamaterials. Nano Converg 2020;7(1):18. doi: 10.1186/s40580-020-00226-7
- Xie PT, Shi ZC, Feng M, et al. Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv Compos Hybrid Mater. 2022;5(2):679-695. doi: 10.1007/s42114-022-00479-2
- Yusoff NHM, Teo LRI, Phang SJ, Wong VL, Cheah KH, Lim SS. Recent advances in polymer-based 3D printing for wastewater treatment application: an overview. Chem Eng J. 2022;429:132311. doi: 10.1016/j.cej.2021.132311
- Münchinger A, Hsu LY, Fürniss F, Blasco E, Wegener M. 3D optomechanical metamaterials. Mater Today. 2022; 59:9-17. doi: 10.1016/j.mattod.2022.08.020
- Ren ZH, Chang YH, Ma YM, Shih KL, Dong BW, Lee C. Leveraging of MEMS technologies for optical metamaterials applications. Adv Optic Mater. 2020;8(3): 1900653. doi: 10.1002/adom.201900653
- Tsushima N, Higuchi R. Stiffness and strength evaluation of lattice-based mechanical metamaterials by decoupled two-scale analysis. Mater Today Commun. 2022;31:103598. doi: 10.1016/j.mtcomm.2022.103598
- Tian XY, Chen WJ, Gao RJ, Liu ST, Wang JX. Design of pore layout for perforated auxetic metamaterials with low-frequency band gaps. Appl Phys Express. 2020;13(4): 045503. doi: 10.35848/1882-0786/ab7f5b
- Davidovich MV. Can isotropic negative permittivity ε and permeability μ metamaterials exist? JETP. 2021;132(2):159-176. doi: 10.1134/S1063776121020102
- Lin IM, Yang C-Y, Wang Y-M, et al. Flexible block copolymer metamaterials featuring hollow ordered nanonetworks with ultra-high porosity and surface-to-volume ratio. Small. 2024;20(14):e2307487. doi: 10.1002/smll.202307487
- Cai J, Shahryari B, Seyedkanani A, Sasmito AP, Akbarzadeh A. Topology-dependent enhancement of pyroelectric property in nanoarchitected GaN metamaterials. Nano Lett. 2025;25(18):7603-7610. doi: 10.1021/acs.nanolett.5c01586
- Wang C, Vangelatos Z, Grigoropoulos CP, Ma Z. Micro-engineered architected metamaterials for cell and tissue engineering. Mater Today Adv. 2022;13:100206. doi: 10.1016/j.mtadv.2022.100206
- Siboro SAP, Anugrah DSB, Ramesh K, Park SH, Kim HR, Lim KT. Tunable porosity of covalently crosslinked alginate-based hydrogels and its significance in drug release behavior. Carbohydr Polym. 2021;260:117779. doi: 10.1016/j.carbpol.2021.117779
- Xu G, Zhou X, Chen W, et al. Hydrodynamic moire superlattice. Science. 2024;386(6728):1377-1383. doi: 10.1126/science.adq2329
- Kharbedia M, Caselli N, Herráez-Aguilar D, et al. Moulding hydrodynamic 2D-crystals upon parametric Faraday waves in shear-functionalized water surfaces. Nat Commun. 2021;12(1):1130. doi: 10.1038/s41467-021-21403-0
- Wang X, Roy M, Wang R, et al. Towards in vitro - in vivo correlation models for in situ forming drug implants. J Control Release. 2024;372:648-660. doi: 10.1016/j.jconrel.2024.06.058
- Skrzypek K, Nibbelink MG, Liefers-Visser J, et al. A high cell-bearing capacity multibore hollow fiber device for macroencapsulation of islets of langerhans. Macromol Biosci. 2020;20(8):2000021. doi: 10.1002/mabi.202000021
- Rauer SB, Stuwe L, Steinbeck L, et al. Cell adhesion and local cytokine control on protein-functionalized PNIPAM-co-AAc hydrogel microcarriers. Small. 2025;21(2): e2404183. doi: 10.1002/smll.202404183
- Priyadarsini SS, Saxena S, Pradhan JR, Dasgupta S. Inkjet-printed transparent micro-supercapacitors with morphology tailored co-continuous mesoporous Mn3O4. J Mater Chem A. 2022;10(40):21551-21564. doi: 10.1039/d2ta04901e
- Morales Ovalle MA, Raineri M, Vasquez Mansilla M, et al. Cytotoxic impact of catalytic activity and heating efficiency of manganese ferrite nanoparticles with different particle sizes for magnetic fluid hyperthermia. J Biomed Mater Res B Appl Biomater. 2025;113(9):e35638. doi: 10.1002/jbm.b.35638
- Omata D, Munakata L, Maruyama K, Suzuki R. Enhanced vascular permeability by microbubbles and ultrasound in drug delivery. Biol Pharm Bull. 2021;44(10):1391-1398. doi: 10.1248/bpb.b21-00453
- Bhandari A. Ocular fluid mechanics and drug delivery: a review of mathematical and computational models. Pharmacol Res. 2021;38(12):2003-2033. doi: 10.1007/s11095-021-03141-6
- Kwakernaak LJ, van Hecke M. Counting and sequential information processing in mechanical metamaterials. Phys Rev Lett. 2023;130(26):268204. doi: 10.1103/PhysRevLett.130.268204
- Jiao P, Mueller J, Raney JR, Zheng XR, Alavi AH. Mechanical metamaterials and beyond. Nat Commun. 2023;14(1):6004. doi: 10.1038/s41467-023-41679-8
- Su R, Chen J, Zhang X, et al. 3D-printed micro/nano-scaled mechanical metamaterials: fundamentals, technologies, progress, applications, and challenges. Small. 2023;19(29):e2206391. doi: 10.1002/smll.202206391
- Sinha P, Mukhopadhyay T. Programmable multi-physical mechanics of mechanical metamaterials. Mater Sci Eng R Rep. 2023;155:100745. doi: 10.1016/j.mser.2023.100745
- Gao S, Liu W, Zhang L, Gain AK. A new polymer-based mechanical metamaterial with tailorable large negative Poisson’s ratios. Polymers. 2020;12(7):1492. doi: 10.3390/polym12071492
- Babaee S, Pajovic S, Kirtane AR, et al. Temperature-responsive biometamaterials for gastrointestinal applications. Sci Transl Med. 2019;11(488):eaau8581. doi: 10.1126/scitranslmed.aau8581
- Jiang Y, Li Y. 3D printed auxetic mechanical metamaterial with chiral cells and re-entrant cores. Sci Rep. 2018; 8(1):2397. doi: 10.1038/s41598-018-20795-2
- Huang Y, Zhang XZ, Zhang LL, Cai CX. Theoretical verification of three-dimensional manufacturable pentamode metamaterial microstructure. J Phys Condens Matter. 2021;33(48):485702. doi: 10.1088/1361-648X/ac244c
- Xiao R, Feng XB, Liu WG, et al. Direct 3D printing of thin-walled cardiovascular stents with negative Poisson’s ratio (NPR) structure and functional metallic coating. Compos Struct. 2023;306:116572. doi: 10.1016/j.compstruct.2022.116572
- Biswas D, Gupta S. Effect of adaptation functions and multilayer topology on synchronization. Phys Rev E. 2024;109(2-1):024221. doi: 10.1103/PhysRevE.109.024221
- Li Y. A multiscale framework for designing high-toughness composite materials. Int J Comput Methods. 2020;17(5):1940008. doi: 10.1142/S0219876219400085
- Xu J, Cai H, Wu Z, et al. Acoustic metamaterials-driven transdermal drug delivery for rapid and on-demand management of acute disease. Nat Commun. 2023;14(1):869. doi: 10.1038/s41467-023-36581-2
- Veerabagu U, Palza H, Quero F. Review: auxetic polymer-based mechanical metamaterials for biomedical applications. ACS Biomater Sci Eng. 2022;8(7):2798-2824. doi: 10.1021/acsbiomaterials.2c00109
- Pruksawan S, Teo RLJ, Cheang YH, Chong YT, Ng ELL, Wang F. Structurally transformable and reconfigurable hydrogel-based mechanical metamaterials and their application in biomedical stents. ACS Appl Mater Interfaces. 2025;17(2):4055-4066. doi: 10.1021/acsami.4c20599
- Li T, Li Y. 3D tiled auxetic metamaterial: a new family of mechanical metamaterial with high resilience and mechanical hysteresis. Adv Mater. 2024;36(15):e2309604. doi: 10.1002/adma.202309604
- Vakalis S, Colon-Berrios JR, Chen D, Nanzer JA. Non-destructive imaging of defects using non-cooperative 5G millimeter-wave signals. Sensors. 2023;23(14):6421. doi: 10.3390/s23146421
- Fan Y, Chen J, Mou C. Pattern-reconfigurable integrated array antenna based on a coding metasurface. Opt Express. 2024;32(6):8816-8827. doi: 10.1364/OE.515878
- Sun L, Zhou ZT, Zhong JJ, et al. Implantable, degradable, therapeutic terahertz metamaterial devices. Small. 2020;16(17):2000294. doi: 10.1002/smll.202000294
- Galleani G, Abou Khalil A, Canioni L, et al. Fluorine and sodium depletion followed by refractive index modification imprinted on fluorophosphate glass surface by thermal poling. J Non-Cryst Solids. 2023;601:122054. doi: 10.1016/j.jnoncrysol.2022.122054
- Bi K, Guo Y, Zhou J, et al. Negative and near zero refraction metamaterials based on permanent magnetic ferrites. Sci Rep. 2014;4(1):4139. doi: 10.1038/srep04139
- Sukonthachat J, Bubpamala T, Poo-Arporn RP, Pholpabu P. Validation of electrochemical device setup for detection of dual antibiotic drug release from hydrogel. J Pharm Biomed Anal. 2024;245:116165. doi: 10.1016/j.jpba.2024.116165
- Huang MT, Tan AJ, Büttner F, et al. Voltage-gated optics and plasmonics enabled by solid-state proton pumping. Nat Commun. 2019;10:5030. doi: 10.1038/s41467-019-13131-3
- Royo I, Fernandez-Garcia R, Gil I. Microwave resonators for wearable sensors design: a systematic review. Sensors. 2023;23(22):9103. doi: 10.3390/s23229103
- Yu HP, Zhu YJ, Xiong ZC, Lu BQ. Bioinspired fiberboard-and-mortar structural nanocomposite based on ultralong hydroxyapatite nanowires with high mechanical performance. Chem Eng J. 2020;399:125666. doi: 10.1016/j.cej.2020.125666
- Sun L, Gu C, Tao TH, Zhou Z. A degradable antibacterial skin patch of flexible terahertz metamaterials made from silk proteins. 2020:13-15. doi: 10.1109/MEMS46641.2020.9056132
- Ayazi H, Akhavan O, Raoufi M, Varshochian R, Motlagh NSH, Atyabi F. Graphene aerogel nanoparticles for in-situ loading/pH sensitive releasing anticancer drugs. Colloids Surf B Biointerfaces. 2020;186:110712. doi: 10.1016/j.colsurfb.2019.110712
- Wu M, Liu Y, Zhu X, et al. Advances in i-motif structures: Stability, gene expression, and therapeutic applications. Int J Biol Macromol. 2025;311(Pt 4):143555. doi: 10.1016/j.ijbiomac.2025.143555
- Meng ZJ, He JK, Li DC. Additive manufacturing and large deformation responses of highly-porous polycaprolactone scaffolds with helical architectures for breast tissue engineering. Virtual Phys Prototyp. 2021;16(3):291-305. doi: 10.1080/17452759.2021.1930069
- Wu W, Ren MX, Pi B, Wu Y, Cai W, Xu JJ. Scaffold metamaterial and its application as strain sensor. Appl Phys Lett. 2015;107(9):091104. doi: 10.1063/1.4929887
- Sikorski J, Matczuk M, Stepien M, Ogorek K, Ruzik L, Jarosz M. Fe3O4 SPIONs in cancer theranostics-structure versus interactions with proteins and methods of their investigation. Nanotechnology. 2024;35(21) doi: 10.1088/1361-6528/ad2c54
- Salah D, Moghanm FS, Arshad M, et al. Polymer-peptide modified gold nanorods to improve cell conjugation and cell labelling for stem cells photoacoustic imaging. Diagnostics. 2021;11(7):1196. doi: 10.3390/diagnostics11071196
- Tao HC, Gibert J. Multifunctional mechanical metamaterials with embedded triboelectric nanogenerators. Adv Funct Mater. 2020;30(23):2001720. doi: 10.1002/adfm.202001720
- Imani IM, Kim HS, Shin J, et al. Advanced ultrasound energy transfer technologies using metamaterial structures. Adv Sci. 2024;11(31):e2401494. doi: 10.1002/advs.202401494
- Barri K, Jiao PC, Zhang QY, Chen J, Wang ZL, Alavi AH. Multifunctional meta-tribomaterial nanogenerators for energy harvesting and active sensing. Nano Energy. 2021;86:106074. doi: 10.1016/j.nanoen.2021.106074
- Hao Y, Niu Z, Yang J, et al. Self-powered terahertz modulators based on metamaterials, liquid crystals, and triboelectric nanogenerators. ACS Appl Mater Interfaces. 2024;16(25):32249-32258. doi: 10.1021/acsami.4c04251
- Xu XC, Wu Q, Pang YK, et al. Multifunctional metamaterials for energy harvesting and vibration control. Adv Funct Mater. 2022;32(7):2107896. doi: 10.1002/adfm.202107896
- Jiao P, Zhang H, Li W. Origami tribo-metamaterials with mechanoelectrical multistability. ACS Appl Mater Interfaces. 2023;15(2):2873-2880. doi: 10.1021/acsami.2c16681
- Goo B, Hong CH, Park K. 4D printing using anisotropic thermal deformation of 3D-printed thermoplastic parts. Mater Des. 2020;188:108485. doi: 10.1016/j.matdes.2020.108485
- Patdiya J, Kandasubramanian B. Progress in 4D printing of stimuli responsive materials. Polym Plast Technol Mater. 2021;60(17):1845-1883. doi: 10.1080/25740881.2021.1934016
- Chen M, Gao M, Bai L, Zheng H, Qi HJ, Zhou K. Recent advances in 4D printing of liquid crystal elastomers. Adv Mater. 2023;35(23):e2209566. doi: 10.1002/adma.202209566
- Kumar R, Sharma A, Alexiou A, Ashraf GM. Artificial intelligence in de novo drug design: are we still there? Curr Top Med Chem. 2022;22(30):2483-2492. doi: 10.2174/1568026623666221017143244
- Yu CL, Jiang JC. A perspective on using machine learning in 3D bioprinting. Int J Bioprint. 2020;6(1):253. doi: 10.18063/ijb.v6i1.253
- Chang X-Z, Liu J-S, Lu J-Q. Digital light processing 3D printing technology in biomedical engineering: a review. Macromol Biosci. 2025;25(8):e2500101. doi: 10.1002/mabi.202500101
- Chattopadhyay J, Srivastava N, Pathak TS. Comprehensive review of 3D printing techniques emphasizing thermal characterization in biomedical prototyping. J Biomater Appl. 2025;39(9):971-995. doi: 10.1177/08853282251314672
- Lai JH, Wang C, Wang M. 3D printing in biomedical engineering: processes, materials, and applications. Appl Phys Rev. 2021;8(2):021322. doi: 10.1063/5.0024177
- Ünlüer Ö, Diltemiz SE, Say MG, Hür D, Say R, Ersöz A. A powerful combination in designing polymeric scaffolds: 3D bioprinting and cryogelation. Int J Polym Mater Polym Biomater. 2022;71(4):278-290. doi: 10.1080/00914037.2020.1825083
- Choi YJ, Cho DW, Lee H. Development of silk fibroin scaffolds by using indirect 3D-bioprinting technology. Micromachines. 2022;13(1):43. doi: 10.3390/mi13010043
- Ma J, Bharambe VT, Persson KA, et al. Metallophobic coatings to enable shape reconfigurable liquid metal inside 3D printed plastics. ACS Appl Mater Interfaces. 2021;13(11):12709-12718. doi: 10.1021/acsami.0c17283
- Brassard JA, Nikolaev M, Hübscher T, Hofer M, Lutolf MP. Recapitulating macro-scale tissue self-organization through organoid bioprinting. Nat Mater. 2021;20(1):22-29. doi: 10.1038/s41563-020-00803-5
- Koffler J, Zhu W, Qu X, et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat Med. 2019;25(2):263. doi: 10.1038/s41591-018-0296-z
- Schwab A, Levato R, D’Este M, Piluso S, Eglin D, Malda J. Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev. 2020;120(19):10850-10877. doi: 10.1021/acs.chemrev.0c00084
- Daly AC, Riley L, Segura T, Burdick JA. Hydrogel microparticles for biomedical applications. Nat Rev Mater. 2020;5(1):20-43. doi: 10.1038/s41578-019-0148-6
- Cui HT, Nowicki M, Fisher JP, Zhang LG. 3D bioprinting for organ regeneration. Adv Healthc Mater. 2017;6(1): 1601118. doi: 10.1002/adhm.201601118
- Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915-946. doi: 10.1039/c7bm00765e
- Li JH, Wu CT, Chu PK, Gelinsky M. 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Mater Sci Eng R Rep. 2020;140:100543. doi: 10.1016/j.mser.2020.100543
- Ashammakhi N, Ahadian S, Xu C, et al. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio. 2019;1:100008. doi: 10.1016/j.mtbio.2019.100008
- Rutz AL, Hyland KE, Jakus AE, Burghardt WR, Shah RN. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv Mater. 2015;27(9):1607-1614. doi: 10.1002/adma.201405076
- Lim KS, Galarraga JH, Cui XL, Lindberg GCJ, Burdick JA, Woodfield TBF. Fundamentals and applications of photo-cross-linking in bioprinting. Chem Rev. 2020;120(19):10637-10669. doi: 10.1021/acs.chemrev.9b00812
- Cui XL, Li J, Hartanto Y, et al. Advances in extrusion 3D bioprinting: a focus on multicomponent hydrogel-based bioinks. Adv Healthc Mater. 2020;9(15):1901648. doi: 10.1002/adhm.201901648
- Grigorenko AN, Polini M, Novoselov KS. Graphene plasmonics. Nat Photon. 2012;6(11):749-758. doi: 10.1038/NPHOTON.2012.262
- Zheng XY, Lee H, Weisgraber TH, et al. Ultralight, ultrastiff mechanical metamaterials. Science. 2014;344(6190):1373-1377. doi: 10.1126/science.1252291
- Lee HE, Ahn HY, Mun J, et al. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature. 2018;556(7701):360. doi: 10.1038/s41586-018-0034-1
- Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3(7):e1700782. doi: 10.1126/sciadv.1700782
- Coulais C, Sabbadini A, Vink F, van Hecke M. Multi-step self-guided pathways for shape-changing metamaterials. Nature. 2018;561(7724):512. doi: 10.1038/s41586-018-0541-0
- Yang C, Boorugu M, Dopp A, et al. 4D printing reconfigurable, deployable and mechanically tunable metamaterials. Mater Horiz. 2019;6(6):1244-1250. doi: 10.1039/c9mh00302a
- Yao QF, Chen TK, Yuan X, Xie JP. Toward total synthesis of thiolate-protected metal nanoclusters. Acc Chem Res. 2018;51(6):1338-1348. doi: 10.1021/acs.accounts.8b00065
- Wauthle R, van der Stok J, Amin Yavari S, et al. Additively manufactured porous tantalum implants. Acta Biomater. 2015;14:217-225. doi: 10.1016/j.actbio.2014.12.003
- Rupp F, Liang L, Geis-Gerstorfer J, Scheideler L, Hüttig F. Surface characteristics of dental implants: a review. Dent Mater. 2018;34(1):40-57. doi: 10.1016/j.dental.2017.09.007
- Bakhsheshi-Rad HR, Hamzah E, Ismail AF, Aziz M, Najafinezhad A, Daroonparvar M. Synthesis and in-vitro performance of nanostructured monticellite coating on magnesium alloy for biomedical applications. J Alloys Compd. 2019;773:180-193. doi: 10.1016/j.jallcom.2018.08.310
- Zhi PX, Liu LX, Chang JK, et al. Advances in the study of magnesium alloys and their use in bone implant material. Metals. 2022;12(9):1500. doi: 10.3390/met12091500
- Mohammed N, Palaniandy P, Shaik F. Optimization of solar photocatalytic biodegradability of seawater using statistical modelling. J Indian Chem Soc. 2021;98(12): 100240. doi: 10.1016/j.jics.2021.100240
- Shamsuri AA, Jamil S, Abdan K. A brief review on the influence of ionic liquids on the mechanical, thermal, and chemical properties of biodegradable polymer composites. Polymers. 2021;13(16):2597. doi: 10.3390/polym13162597
- Pruksawan S, Chee HL, Wang ZZ, et al. Toughened hydrogels for 3D printing of soft auxetic structures. Chem Asian J. 2022;17(19):e202200677. doi: 10.1002/asia.202200677
- Gerasimov RA, Eremeyev VA, Petrova TO, Egorov VI, Maksimova OG, Maksimov AV. Study of mechanical properties of ferroelectrics metamaterials using computer simulation. Ferroelectrics. 2017;508(1):151-160. doi: 10.1080/00150193.2017.1289767
- Hu YQ, Jia F, Fu ZJ, Liu YJ, Leng JS. A constitutive model and its numerical implementation for reversible behavior of shape memory hydrogels. Smart Mater Struct. 2022;31(9):095032. doi: 10.1088/1361-665X/ac8257
- Dong RN, Guo BL. Smart wound dressings for wound healing. Nano Today. 2021;41:101290. doi: 10.1016/j.nantod.2021.101290
- Calder S, Baral R, Buchanan CC, et al. Low-dimensional metal-organic frameworks: a pathway to design, explore and tune magnetic structures. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2024;80(Pt 5):430-442. doi: 10.1107/S2052520624008023
- Wang C. A plug-and-play interface technology: Boosting simple but robust stretchable device assembly. Sci Bull. 2023;68(7):661-663. doi: 10.1016/j.scib.2023.03.014
- Jang KI, Chung HU, Xu S, et al. Soft network composite materials with deterministic and bio-inspired designs. Nat Commun. 2015;6:6566. doi: 10.1038/ncomms7566
- Jiang YY, Li YN. Novel 3D-printed hybrid auxetic mechanical metamaterial with chirality-induced sequential cell opening mechanisms. Adv Eng Mater. 2018;20(2):1700744. doi: 10.1002/adem.201700744
- Chen B, Wang J, Xu Z, et al. Controllable configuration of constitutional units in vanadium/iron-based polyanionic compounds for sodium-ion storage. Adv Mater. 2025;37(43):e09966-e09966. doi: 10.1002/adma.202509966
- Nashed N, Lam M, Ghafourian T, et al. An insight into the impact of thermal process on dissolution profile and physical characteristics of theophylline tablets made through 3D printing compared to conventional methods. Biomedicines. 2022;10(6):1335. doi: 10.3390/biomedicines10061335
- Zohreh N, Rastegaran Z, Hosseini SH, Akhlaghi M, Istrate C, Busuioc C. pH-triggered intracellular release of doxorubicin by a poly(glycidyl methacrylate)-based double-shell magnetic nanocarrier. Mater Sci Eng C Mater Biol Appl. 2021;118:111498. doi: 10.1016/j.msec.2020.111498
- Shi KJ, Salvage JP, Maniruzzaman M, Nokhodchi A. Role of release modifiers to modulate drug release from fused deposition modelling (FDM) 3D printed tablets. Int J Pharm. 2021;597:120315. doi: 10.1016/j.ijpharm.2021.120315
- Fina F, Goyanes A, Madla CM, et al. 3D printing of drug-loaded gyroid lattices using selective laser sintering. Int J Pharm. 2018;547(1-2):44-52. doi: 10.1016/j.ijpharm.2018.05.044
- Dhayer M, Barral V, Cleret D, et al. Material and biological characterization of 3D knitted bioresorbable poly (D,L-lactide) (PLA) and polycaprolactone (PCL) scaffolds for soft tissue regeneration: From fabrication to in vivo performance. J Biol Eng. 2025;19(1):53-53. doi: 10.1186/s13036-025-00504-0
- Vaupel S, Mau R, Kara S, Seitz H, Kragl U, Meyer J. 3D printed and stimulus responsive drug delivery systems based on synthetic polyelectrolyte hydrogels manufactured viadigital light processing. J Mater Chem B. 2023;11(28):6547-6559. doi: 10.1039/d3tb00285c
- Li H, Cheng S, Zhou K, Zang J, Wang Z, Du M. Carboxymethyl-beta-cyclodextrin grafted chitosan embedded oyster (Crassostrea gigas) ferritin can alleviate lead-induced liver injury by oral administration. Food Res Int. 2025;212:116417. doi: 10.1016/j.foodres.2025.116417
- Zhou WD, Zhang H, Liu YF, et al. Preparation of calcium alginate/polyethylene glycol acrylate double network fiber with excellent properties by dynamic molding method. Carbohydr Polym. 2019;226:115277. doi: 10.1016/j.carbpol.2019.115277
- Rafiee M, Farahani RD, Therriault D. Multi-material 3D and 4D printing: a survey. Adv Sci. 2020;7(12):1902307. doi: 10.1002/advs.201902307
- Egan PF, Shea KA, Ferguson SJ. Simulated tissue growth for 3D printed scaffolds. Biomech Model Mechanobiol. 2018;17(5):1481-1495. doi: 10.1007/s10237-018-1040-9
- Khatib O, Ren SM, Malof J, Padilla WJ. Deep learning the electromagnetic properties of metamaterials—a comprehensive review. Adv Funct Mater. 2021;31(31):2101748. doi: 10.1002/adfm.202101748
- Mohammadjafari S, Ozyegen O, Cevik M, Kavurmacioglu E, Ethier J, Basar A. Designing mm-wave electromagnetic engineered surfaces using generative adversarial networks. Neural Comput Appl. 2021;33(17):11309-11323. doi: 10.1007/s00521-020-05656-2
- Hsu YC, Yang ZZ, Buehler MJ. Generative design, manufacturing, and molecular modeling of 3D architected materials based on natural language input. APL Mater. 2022;10(4):041107. doi: 10.1063/5.0082338
- Christiansen RE, Vester-Petersen J, Madsen SP, Sigmund O. A non-linear material interpolation for design of metallic nano-particles using topology optimization. CMAME. 2019;343:23-39. doi: 10.1016/j.cma.2018.08.034
- Tezsezen E, Yigci D, Ahmadpour A, Tasoglu S. AI-based metamaterial design. ACS Appl Mater Interfaces. 2024;16(23):29547-29569. doi: 10.1021/acsami.4c04486
- Han D, Ren X, Zhang Y, et al. Lightweight auxetic metamaterials: Design and characteristic study. Compos Struct. 2022;293:115706. doi: 10.1016/j.compstruct.2022.115706
- Pantelidakis M, Mykoniatis K, Liu J, Harris G. A digital twin ecosystem for additive manufacturing using a real-time development platform. Int J Adv Manuf Technol. 2022;120(9-10):6547-6563. doi: 10.1007/s00170-022-09164-6
- Mora S, Pugno NM, Misseroni D. 3D printed architected lattice structures by material jetting. Mater Today. 2022;59:107-132. doi: 10.1016/j.mattod.2022.05.008
- Masoumi Ravandi MR, Dezianian S, Ahmad MT, Ghoddosian A, Azadi M. Compressive strength of metamaterial bones fabricated by 3D printing with different porosities in cubic cells. Mater Chem Phys. 2023; 299:127515. doi: 10.1016/j.matchemphys.2023.127515
- Mohammadi A, Hajizadeh E, Tan Y, Choong P, Oetomo D. A bioinspired 3D-printable flexure joint with cellular mechanical metamaterial architecture for soft robotic hands. Int J Bioprint. 2023;9(3):696. doi: 10.18063/ijb.696
- Flamourakis G, Spanos I, Vangelatos Z, et al. Laser-made 3D auxetic metamaterial scaffolds for tissue engineering applications. Macromol Mater Eng. 2020;305(7):2000238. doi: 10.1002/mame.202000238
- Manshor MR, Alli YA, Anuar H, Ejeromedoghene O, Omotola EO, Suhr J. 4D printing: historical evolution, computational insights and emerging applications. Mater Sci Eng B. 2023;295:116567. doi: 10.1016/j.mseb.2023.116567
- Rezvani Ghomi E, Khosravi F, Neisiany RE, Singh S, Ramakrishna S. Future of additive manufacturing in healthcare. Curr Opin Biomed Eng. 2021;17:100255. doi: 10.1016/j.cobme.2020.100255
- Fu P, Li H, Gong J, et al. 4D printing of polymers: techniques, materials, and prospects. Prog Polym Sci. 2022;126:101506. doi: 10.1016/j.progpolymsci.2022.101506
- Che QT, Seo JW, Charoensri K, Nguyen MH, Park HJ, Bae H. 4D-printed microneedles from dual-sensitive chitosan for non-transdermal drug delivery. Int J Biol Macromol. 2024;261(Pt 2):129638. doi: 10.1016/j.ijbiomac.2024.129638
- Wang XH. Biodegradable polymers, history tells polymer science’s fortune. Chin J Polym Sci. 2022;40(5):431-432. doi: 10.1007/s10118-022-2737-x
- Shamsuri AA, Abdan K, Jamil S. Preparations and properties of ionic liquid-assisted electrospun biodegradable polymer fibers. Polymers. 2022;14(12):2308. doi: 10.3390/polym14122308
- Wang X, Cao C, Shen X, et al. Universal intermolecular energy transfer strategy for extending initiator libraries of photoinhibited multiphoton lithography. ACS Appl Mater Interfaces. 2025;17(16):24327-24338. doi: 10.1021/acsami.5c00344
- Marazzi D, Trovalusci F, Vesco S, Di Nardo P. Manufacturing process of prostheses using semirigid molds by additive technologies. Methods Mol Biol. 2024;2835:317-323. doi: 10.1007/978-1-0716-3995-5_27
- Li T, Wang S, Weng Z, et al. Laser interference additive manufacturing: Mask bundle shape bionic shark skin structure. ACS Appl Mater Interfaces. 2024;16(28):37183-37196. doi: 10.1021/acsami.4c04916
- Salvalaglio M, Bouabdellaoui M, Bollani M, et al. Hyperuniform monocrystalline structures by spinodal solid-state dewetting. Phys Rev Lett. 2020;125(12):126101. doi: 10.1103/PhysRevLett.125.126101
- Kumar S, Tan SH, Zheng L, Kochmann DM. Inverse-designed spinodoid metamaterials. NPJ Comput Mater. 2020;6(1):73. doi: 10.1038/s41524-020-0341-6
- Smit T, Koppen S, Ferguson SJ, Helgason B. Conceptual design of compliant bone scaffolds by full-scale topology optimization. J Mech Behav Biomed Mater. 2023;143:105886. doi: 10.1016/j.jmbbm.2023.105886
- Sim EA, Lee S, Oh J, Lee J. GANs and DCGANs for generation of topology optimization validation curve through clustering analysis. Adv Eng Softw. 2021;152:102957. doi: 10.1016/j.advengsoft.2020.102957
- Wang T, Migliori B, Miccoli B, Shin SR. Bioinspired soft robot with incorporated microelectrodes. J Vis Exp. 2020;(156):e60717. doi: 10.3791/60717
- Goto E, Tagami T, Ogawa K, Ozeki T. Fabrication of 3D-printed contact lens composed of polyethylene glycol diacrylate for controlled release of azithromycin. Biol Pharm Bull. 2023;46(10):1461-1467. doi: 10.1248/bpb.b23-00443
- Kraisit P, Limpamanoch P, Hirun N, Limmatvapirat S. Design and development of 3D-printed bento box model for controlled drug release of propranolol HCl following pharmacopeia dissolution guidelines. Int J Pharm. 2022;628:122272. doi: 10.1016/j.ijpharm.2022.122272
- Guan S, Xu W, Tan J, et al. Metainterface heterostructure enhances sonodynamic therapy for disrupting secondary biofilms. ACS Nano. 2024;18(23):15114-15129. doi: 10.1021/acsnano.4c02605
- van Hengel IAJ, Riool M, Fratila-Apachitei LE, et al. Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus. Biomaterials. 2017;140:1-15. doi: 10.1016/j.biomaterials.2017.02.030
- Gupta R, Singh B. Chemical modification of carboxylated MWCNTs for enhanced electrical conducting and magnetic properties. Mater Sci Eng B Adv Funct Solid State Mater. 2020;262:114730. doi: 10.1016/j.mseb.2020.114730
- Nguyen DD, Kim I. Vibrational circular dichroism unveils hidden clues. Light Sci Appl. 2023;12(1):210-210. doi: 10.1038/s41377-023-01239-7
- Parsa A, Wang D, O’Hern CS, Shattuck MD, Kramer-Bottiglio R, Bongard J. Evolving programmable computational metamaterials. GECCO ‘22: Proceedings of the Genetic and Evolutionary Computation Conference Companion; 2022: 122-129. doi: 10.1145/3512290.3528861
- Yavari SA, Croes M, Akhavan B, et al. Layer by layer coating for bio-functionalization of additively manufactured meta-biomaterials. Addit Manuf. 2020;32:100991. doi: 10.1016/j.addma.2019.100991
- Kalogeropoulou M, Kracher A, Fucile P, Mihaila SM, Moroni L. Blueprints of architected materials: a guide to metamaterial design for tissue engineering. Adv Mater. 2024;36(47):e2408082. doi: 10.1002/adma.202408082
- Cooper DA, DePaolo-Boisvert J, Nicholson SA, Gad B, Minh DDL. Intracellular pocket conformations determine signaling efficacy through the μ opioid receptor. J Chem Inf Model. 2025;65(3):1465-1475. doi: 10.1021/acs.jcim.4c01437
- Lyu SN, Qin B, Deng HC, Ding XL. Origami-based cellular mechanical metamaterials with tunable Poisson’s ratio: construction and analysis. IJMS. 2021;212:106791. doi: 10.1016/j.ijmecsci.2021.106791
- Jia Y, Liu K, Zhang XS. Modulate stress distribution with bio-inspired irregular architected materials towards optimal tissue support. Nat Commun. 2024;15(1):4072. doi: 10.1038/s41467-024-47831-2
- Chiappini C, De Rosa E, Martinez JO, et al. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat Mater. 2015;14(5):532-539. doi: 10.1038/NMAT4249
- Li SN, Zhang LY, Chen XF. 3D-printed terahertz metamaterial absorber based on vertical split-ring resonator. J Appl Phys. 2021;130(3):034504. doi: 10.1063/5.0056276
- Yarali E, Klimopoulou M, David K, et al. Bone cell response to additively manufactured 3D micro-architectures with controlled Poisson’s ratio: auxetic vs. non-auxetic meta-biomaterials. Acta Biomater. 2024;177: 228-242. doi: 10.1016/j.actbio.2024.01.045
- Barri K, Zhang QY, Swink I, et al. Patient-specific self-powered metamaterial implants for detecting bone healing progress. Adv Funct Mater. 2022;32(32):2203533. doi: 10.1002/adfm.202203533
- Fina F, Madla CM, Goyanes A, Zhang JX, Gaisford S, Basit AW. Fabricating 3D printed orally disintegrating printlets using selective laser sintering. Int J Pharm. 2018;541(1-2):101-107. doi: 10.1016/j.ijpharm.2018.02.015
- Fogsgaard MB, Iannuzzo F. FEM-aided damage model calibration method for experimental results. MiRe. 2020;114:113915. doi: 10.1016/j.microrel.2020.113915
- Catsoulis S, Singh JS, Narayanan C, Lakehal D. Integrating supervised learning and applied computational multi-fluid dynamics. Int J Multiph Flow. 2022;157:104221. doi: 10.1016/j.ijmultiphaseflow.2022.104221
- Schuett M, Stamatopoulos K, Batchelor HK, Simmons MJH, Alexiadis A. Development of a digital twin of a tablet that mimics a real solid dosage form: differences in the dissolution profile in conventional mini-USP II and a biorelevant colon model. Eur J Pharm Sci. 2022;179:106310. doi: 10.1016/j.ejps.2022.106310
- Islavath SR, Deb D, Kumar H. Life cycle analysis and damage prediction of a longwall powered support using 3D numerical modelling techniques. Arab J Geosci. 2019;12(14):441. doi: 10.1007/s12517-019-4574-y
