AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025410420
REVIEW ARTICLE

Acoustic lithography: Field-directed cell patterning for bio-systems engineering

Yuyang Li1,2* Dengjie Sun1 Chenglin Miao1 Yuqi Gao1 Bin Zhao1 Xu Du1 Xiaoming Liu1 Tatsuo Arai2,3 Zhongqiang Zhang1*
Show Less
1 Key Laboratory of Intelligent Flexible Actuation and Control in Universities of Jiangsu Province and School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
2 Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
3 Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo, Japan
Received: 12 October 2025 | Accepted: 11 November 2025 | Published online: 17 November 2025
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The precise spatial patterning of living cells represents a foundational capability in bio-systems engineering, enabling the systematic study of collective cellular behaviors and the fabrication of increasingly complex functional tissues. Conventional methods for achieving this control, while numerous, are often constrained by static pattern formation, the need for biochemical labels that can alter cell function, or requirements for non-physiological media. In this context, acoustic-field-based manipulation has emerged as a uniquely powerful and biocompatible alternative. This review synthesizes these advancements under the unifying concept of “acoustic lithography,” a framework that captures the technology’s capacity for rapid, parallel, and label-free cellular organization. The discussion covers the core physical principles of acoustic radiation force and acoustic streaming before surveying the diverse technological landscape, from bulk and surface acoustic waves to advanced acoustic holography. It further highlights the impact of these tools across a spectrum of applications, including high-throughput analysis, biomimetic co-culture engineering, advanced biofabrication, and clinical sorting. Collectively, these applications demonstrate the field’s trajectory as it moves beyond static patterning to encompass the integrated control of structure, environment, and function. Viewing the technology through this broader engineering lens underscores its significance as a vital platform, charting a course for the next generation of dynamically engineered living systems.

Graphical abstract
Keywords
Acoustic lithography
Acoustofluidics
Biofabrication
Bio-systems engineering
Cell patterning
Funding
This work was supported in part by the National Natural Science Foundation of China under grants 62273052 and W2431050; the Jiangsu Natural Science Foundation Grant under grants BK20240856 and BK20250842; the China Postdoctoral Science Foundation under grant 2024M764123; and the Talent Research Initiation Funding of Jiangsu University under grant 5501110024.
Conflict of interest
The authors declare that they have no competing interests.
References
  1. Bishop ES, Mostafa S, Pakvasa M, et al. 3-D bioprinting technologies in tissue engineering and regenerative medicine: current and future trends. Genes Dis. 2017;4(4):185-195. doi: 10.1016/j.gendis.2017.10.002
  2. Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M. 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact Mater. 2018;3(2):144-156. doi: 10.1016/j.bioactmat.2017.11.008
  3. Martinez-Rivas A, González-Quijano GK, Proa- Coronado S, Séverac C, Dague E. Methods of micropatterning and manipulation of cells for biomedical applications. Micromachines (Basel). 2017;8(12):347. doi: 10.3390/mi8120347
  4. Che H, Selig M, Rolauffs B. Micro-patterned cell populations as advanced pharmaceutical drugs with precise functional control. Adv Drug Deliv Rev. 2022;184:114169. doi: 10.1016/j.addr.2022.114169
  5. Yang W, Wang Z, Yu T, Chen Y, Ge, Z. Recent advance in cell patterning techniques: approaches, applications and future prospects. Sens Actuators A Phys. 2022;333:113229. doi: 10.1016/j.sna.2021.113229
  6. Wang Z, Lang B, Qu Y, Li L, Song Z, Wang Z. Single-cell patterning technology for biological applications. Biomicrofluidics. 2019;13(6):061502. doi: 10.1063/1.5123518
  7. Deinum EE. The systems and interactions underpinning complex cell wall patterning. Biochem Soc Trans. 2024;52(6):2385-2398. doi: 10.1042/BST20230642
  8. Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev. 2018;132:296-332. doi: 10.1016/j.addr.2018.07.004
  9. Gu Z, Fu J, Lin H, He Y. Development of 3D bioprinting: from printing methods to biomedical applications. Asian J Pharm Sci. 2020;15(5):529-557. doi: 10.1016/j.ajps.2019.11.003
  10. Dare SC, Bajaj PS, Wankhede AN, Tawade SU, Manik KN. Three-dimensional bioprinting as a tool for tissue engineering: a review. J Pharm Bioallied Sci. 2024;16(Suppl 4):S3027-S3030. doi: 10.4103/jpbs.jpbs_678_24
  11. Vidler C, Halwes M, Kolesnik K, et al. Dynamic interface printing. Nature. 2024;634(8036):1096-1102. doi: 10.1038/s41586-024-08077-6
  12. Laschke MW, Menger MD. Life is 3D: boosting spheroid function for tissue engineering. Trends Biotechnol. 2017;35(2):133-144. doi: 10.1016/j.tibtech.2016.08.004
  13. Yoo J, Jung Y, Char K, Jang Y. Advances in cell coculture membranes recapitulating in vivo microenvironments. Trends Biotechnol. 2023;41(2):214-227. doi: 10.1016/j.tibtech.2022.07.014
  14. Wang H, Brown PC, Chow ECY, et al. 3D cell culture models: drug pharmacokinetics, safety assessment, and regulatory consideration. Clin Transl Sci. 2021;14(5):1659-1680. doi: 10.1111/cts.13066
  15. Lembong J, Lerman MJ, Kingsbury TJ, Civin CI, Fisher JP. A fluidic culture platform for spatially patterned cell growth, differentiation, and cocultures. Tissue Eng Part A. 2018;24(23-24):1715-1732. doi: 10.1089/ten.TEA.2018.0020
  16. Ning J, Sah RK, Wang J. Coculture of mesenchymal stem cells and macrophage: a narrative review. J Pharmacol Exp Ther. 2025;392(4):103531. doi: 10.1016/j.jpet.2025.103531
  17. Al-Qadami G, Raposo A, Chien CC, et al. Intestinal organoid coculture systems: current approaches, challenges, and future directions. Am J Physiol Gastrointest Liver Physiol. 2025;328(3):G252-G276. doi: 10.1152/ajpgi.00203.2024
  18. Turunen S, Haaparanta AM, Aänismaa R, Kellomäki M. Chemical and topographical patterning of hydrogels for neural cell guidance in vitro. J Tissue Eng Regen Med. 2013;7(4):253-270. doi: 10.1002/term.520
  19. Funano SI, Tanaka N, Tanaka Y. User-friendly cell patterning methods using a polydimethylsiloxane mold with microchannels. Dev Growth Differ. 2020;62(3): 167-176. doi: 10.1111/dgd.12637
  20. Wu H, Wu L, Zhou X, Liu B, Zheng B. Patterning hydrophobic surfaces by negative microcontact printing and its applications. Small. 2018;14(38):e1802128. doi: 10.1002/smll.201802128
  21. Slavík J, Skopalík J, Provazník I, Hubálek J. Multi-electrode array with a planar surface for cell patterning by microprinting. Sensors (Basel). 2019;19(24):5379. doi: 10.3390/s19245379
  22. Soffe R, Tang SY, Baratchi S, et al. Controlled rotation and vibration of patterned cell clusters using dielectrophoresis. Anal Chem. 2015;87(4):2389-2395. doi: 10.1021/ac5043335
  23. Mohanty S, Khalil ISM, Misra S. Contactless acoustic micro/nano manipulation: a paradigm for next generation applications in life sciences. Proc Math Phys Eng Sci. 2020;476(2243):20200621. doi: 10.1098/rspa.2020.0621
  24. Mölder A, Czanner S, Costen N, Hartshorne G. Automatic detection of embryo location in medical imaging using trigonometric rotation for noise reduction. IEEE. 2014; 3239-3244. doi: 10.1109/ICPR.2014.558
  25. Lin Z, Fan X, Sun M, Gao C, He Q, Xie H. Magnetically actuated peanut colloid motors for cell manipulation and patterning. ACS Nano. 2018;12(3):2539-2545. doi: 10.1021/acsnano.7b08344
  26. Rong N, He S, Li B, et al. Coupled magnetic nanoparticle-mediated isolation and single-cell image recognition to detect Bacillus’ cell size in soil. Eur J Soil Sci. 2022;73(3): e13236. doi: 10.1111/ejss.13236
  27. Liang S, Cao Y, Dai Y, et al. A versatile optoelectronic tweezer system for micro-objects manipulation: transportation, patterning, sorting, rotating and storage. Micromachines (Basel). 2021;12(3):271. doi: 10.3390/mi12030271
  28. Zhang S, Li W, Elsayed M, et al. Integrated assembly and photopreservation of topographical micropatterns. Small. 2021;17(37):e2103702. doi: 10.1002/smll.202103702
  29. Chu HK, Huan Z, Mills JK, Yang J, Sun D. Three-dimensional cell manipulation and patterning using dielectrophoresis via a multi-layer scaffold structure. Lab Chip. 2015;15(3):920-930. doi: 10.1039/c4lc01247j
  30. Collins DJ, Morahan B, Garcia-Bustos J, Doerig C, Plebanski M, Neild A. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat Commun. 2015;6:8686. doi: 10.1038/ncomms9686
  31. Wu Z, Pan M, Wang J, Wen B, Lu L, Ren H. Acoustofluidics for cell patterning and tissue engineering. Eng Regen. 2022;3(4):397-406. doi: 10.1016/j.engreg.2022.08.005
  32. Rasouli R, Villegas KM, Tabrizian M. Acoustofluidics - changing paradigm in tissue engineering, therapeutics development, and biosensing. Lab Chip. 2023;23(5):1300-1338. doi: 10.1039/d2lc00439a
  33. Yang S, Rufo J, Chen Y, et al. Acoustic tweezers for advancing precision biology and medicine. Nat Rev Methods Primers. 2025;5(1):49. doi: 10.1038/s43586-025-00415-w
  34. Baudoin M, Thomas JL. Acoustic tweezers for particle and fluid micromanipulation. Annu Rev Fluid Mech. 2020;52(1):205-234. doi: 10.1146/annurev-fluid-010719-060154.
  35. Zhou Y, Ma Z, Ai Y. Submicron particle concentration and patterning with ultralow frequency acoustic vibration. Anal Chem. 2020;92(19):12795-12800. doi: 10.1021/acs.analchem.0c02765
  36. Tayebi M, O’Rorke R, Wong HC, et al. Massively multiplexed submicron particle patterning in acoustically driven oscillating nanocavities. Small. 2020;16(17):e2000462. doi: 10.1002/smll.202000462
  37. Yang Y, Ma T, Zhang Q, et al. 3D acoustic manipulation of living cells and organisms based on 2D array. IEEE Trans Biomed Eng. 2022;69(7):2342-2352. doi: 10.1109/TBME.2022.3142774
  38. Athanassiadis AG, Ma Z, Moreno-Gomez N, et al. Ultrasound-responsive systems as components for smart materials. Chem Rev. 2022;122(5):5165-5208. doi: 10.1021/acs.chemrev.1c00622
  39. Liu Y, Yin Q, Luo Y, et al. Manipulation with sound and vibration: a review on the micromanipulation system based on sub-MHz acoustic waves. Ultrason Sonochem. 2023;96:106441. doi: 10.1016/j.ultsonch.2023.106441
  40. Li K, Huang W, Guo H, et al. Advancements in robotic arm-based 3D bioprinting for biomedical applications. Life Med. 2023;2(6):lnad046. doi: 10.1093/lifemedi/lnad046
  41. Armstrong JPK, Puetzer JL, Serio A, et al. Engineering anisotropic muscle tissue using acoustic cell patterning. Adv Mater. 2018;30(43):e1802649. doi: 10.1002/adma.201802649
  42. Yoo J, Ahn J, Ha H, Claud Jonas J, Kim C, Ham Kim H. Single-beam acoustic tweezers for cell biology: molecular to in vivo level. IEEE Trans Ultrason Ferroelectr Freq Control. 2024;71(10):1269-1288. doi: 10.1109/TUFFC.2024.3456083
  43. Mehmood M, Khan UF, Maka AOM, et al. A review of thermal impact of surface acoustic waves on microlitre droplets in medical applications. Adv Mech Eng. 2022;14(8):16878132221116481. doi: 10.1177/16878132221116481
  44. Barani A, Paktinat H, Janmaleki M, et al. Microfluidic integrated acoustic waving for manipulation of cells and molecules. Biosens Bioelectron. 2016;85:714-725. doi: 10.1016/j.bios.2016.05.059
  45. Leong T, Johansson L, Juliano P, McArthur SL, Manasseh R. Ultrasonic separation of particulate fluids in small and large scale systems: a review. Ind Eng Chem Res. 2013;52(47):16555-16576. doi: 10.1021/ie402295r
  46. Stringer M, Zeng Z, Zhang X, et al. Methodologies, technologies, and strategies for acoustic streaming-based acoustofluidics. Appl Phys Rev. 2023;10(1):011315. doi: 10.1063/5.0134646
  47. Chen H, Hardwick J, Gao L, Plasencia DM, Subramanian S, Hirayama R. Acoustics in additive manufacturing: a path toward contactless, scalable, and high-precision manufacturing. Appl Phys Rev. 2025;12(3):031305. doi: 10.1063/5.0271688
  48. Rufo J, Zhang P, Zhong R, Lee LP, Huang TJ. A sound approach to advancing healthcare systems: the future of biomedical acoustics. Nat Commun. 2022;13(1):3459. doi: 10.1038/s41467-022-31014-y
  49. Wang J, Shang X, Zhou X, Chen H. Research advances of acoustic particle manipulation techniques in field-assisted manufacturing. Nanoscale. 2025;17(10):5654-5671. doi: 10.1039/d4nr04891a
  50. Stroganov V, Pant J, Stoychev G, et al. 4D biofabrication: 3D cell patterning using shape‐changing films. Adv Funct Mater. 2018;28(11):1706248. doi: 10.1002/adfm.201706248
  51. Schrage M, Medany M, Ahmed D. Ultrasound microrobots with reinforcement learning. Adv Mater Technol. 2023;8(10):2201702. doi: 10.1002/admt.202201702
  52. Zhang Z, Sukhov A, Harting J, Malgaretti P, Ahmed D. Rolling microswarms along acoustic virtual walls. Nat Commun. 2022;13(1):7347. doi: 10.1038/s41467-022-35078-8
  53. Burstow R, Andrés D, Jiménez N, Camarena F, Thanou M, Pouliopoulos AN. Acoustic holography in biomedical applications. Phys Med Biol. 2025;70(6): 06TR01. doi: 10.1088/1361-6560/adb89a
  54. Ma Z, Holle AW, Melde K, et al. Acoustic holographic cell patterning in a biocompatible hydrogel. Adv Mater. 2020;32(4):e1904181. doi: 10.1002/adma.201904181
  55. Yang S, Tian Z, Wang Z, et al. Harmonic acoustics for dynamic and selective particle manipulation. Nat Mater. 2022;21(5):540-546. doi: 10.1038/s41563-022-01210-8
  56. Guex AG, Di Marzio N, Eglin D, Alini M, Serra T. The waves that make the pattern: a review on acoustic manipulation in biomedical research. Mater Today Bio. 2021;10:100110. doi: 10.1016/j.mtbio.2021.100110
  57. Zhang C, Brunet P, Liu S, et al. Acoustofluidics at audible frequencies—a review. Eng. 2025;44:51-72. doi: 10.1016/j.eng.2024.03.020
  58. Qian J , Huang W , Yang R , Lam RHW , Lee JE . Low-cost laser-cut patterned chips for acoustic concentration of micro- to nanoparticles and cells by operating over a wide frequency range. Analyst. 2021;146(10):3280-3288. doi: 10.1039/d1an00197c
  59. Maramizonouz S, Tao X, Rahmati M, et al. Flexible and bendable acoustofluidics for particle and cell patterning. Int J Mech Sci. 2021;202-203:106536. doi: 10.1016/j.ijmecsci.2021.106536
  60. Armstrong JPK, Maynard SA, Pence IJ, Franklin AC, Drinkwater BW, Stevens MM. Spatiotemporal quantification of acoustic cell patterning using Voronoï tessellation. Lab Chip. 2019;19(4):562-573. doi: 10.1039/c8lc01108g
  61. Raymond SJ, Collins DJ, O’Rorke R, Tayebi M, Ai Y, Williams J. A deep learning approach for designed diffraction-based acoustic patterning in microchannels. Sci Rep. 2020;10(1):8745. doi: 10.1038/s41598-020-65453-8
  62. Zhu Z, Chen T, Huang F, et al. Free-boundary microfluidic platform for advanced materials manufacturing and applications. Adv Mater. 2024;36(7):e2304840. doi: 10.1002/adma.202304840
  63. Liu S, Li Y, Liu Q, et al. Thermal manipulation in multi‐layered anisotropic materials via computed thermal patterning. Adv Funct Mater. 2022;32(13):2109674. doi: 10.1002/adfm.202109674
  64. Ma Z, Fischer P. Acoustic micro-manipulation and its biomedical applications. Eng. 2023;24:13-16. doi: 10.1016/j.eng.2022.06.006
  65. Rudenko OV, Sarvazyan AP, Emelianov SY. Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium. J Acoust Soc Am. 1996;99(5):2791-2798. doi: 10.1121/1.414805
  66. Bruus H. Acoustofluidics 7: the acoustic radiation force on small particles. Lab Chip. 2012;12(6):1014-1021. doi: 10.1039/c2lc21068a
  67. Sarvazyan AP, Rudenko OV, Fatemi M. Acoustic radiation force: a review of four mechanisms for biomedical applications. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(11):3261-3269. doi: 10.1109/TUFFC.2021.3112505
  68. Yin Q, Li X, Ma Z, Zhang W. Acoustically activated nozzle for microdroplet generation and dispensing. Phys Rev Appl. 2023;20(2):024067. doi: 10.1103/PhysRevApplied.20.024067
  69. Maramizonouz S, Rahmati M, Link A, Franke T, Fu Y. Numerical and experimental studies of acoustic streaming effects on microparticles/droplets in microchannel flow. Int J Eng Sci. 2021;169:103563. doi: 10.1016/j.ijengsci.2021.103563
  70. Huang Z, Su M, Yang Q, et al. A general patterning approach by manipulating the evolution of two-dimensional liquid foams. Nat Commun. 2017;8:14110. doi: 10.1038/ncomms14110
  71. Sarvazyan AP, Rudenko OV, Nyborg WL. Biomedical applications of radiation force of ultrasound: historical roots and physical basis. Ultrasound Med Biol. 2010;36(9):1379-1394. doi: 10.1016/j.ultrasmedbio.2010.05.015
  72. Beyer RT. Radiation pressure—the history of a mislabeled tensor. J Acoust Soc Am. 1978;63(4):1025-1030. doi: 10.1121/1.381833
  73. Gor’kov LP. On the forces acting on a small particle in an acoustical field in an ideal fluid. In: Selected Papers of Lev P. Gor’kov. 2014;315-317. doi: 10.1142/9789814366960_0008
  74. Laurell T, Petersson F, Nilsson A. Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem Soc Rev. 2007;36(3):492-506. doi: 10.1039/b601326k
  75. Doinikov AA, Regnault G, Mauger C, Blanc-Benon P, Inserra C. Acoustic microstreaming produced by two interacting gas bubbles undergoing axisymmetric shape oscillations. J Fluid Mech. 2021;931:A19. doi: 10.1017/jfm.2021.926
  76. Rabaud D, Thibault P, Mathieu M, Marmottant P. Acoustically bound microfluidic bubble crystals. Phys Rev Lett. 2011;106(13):134501. doi: 10.1103/PhysRevLett.106.134501
  77. Saeidi D, Saghafian M, Haghjooy Javanmard S, Wiklund M. A Quantitative study of the secondary acoustic radiation force on biological cells during acoustophoresis. Micromachines (Basel). 2020;11(2):152. doi: 10.3390/mi11020152
  78. Zhang P, Bachman H, Ozcelik A, Huang TJ. Acoustic microfluidics. Annu Rev Anal Chem (Palo Alto Calif). 2020;13(1):17-43. doi: 10.1146/annurev-anchem-090919-102205
  79. Wiklund M, Green R, Ohlin M. Acoustofluidics 14: applications of acoustic streaming in microfluidic devices. Lab Chip. 2012;12(14):2438-2451. doi: 10.1039/c2lc40203c
  80. Lighthill J. Acoustic streaming. J Sound Vib. 1978;61(3):391-418. doi: 10.1016/0022-460x(78)90388-7
  81. Červenka M, Bednařík M. Effect of inhomogeneous temperature fields on acoustic streaming structures in resonators. J Acoust Soc Am. 2017;141(6):4418. doi: 10.1121/1.4985386
  82. Doinikov AA, Gerlt MS, Pavlic A, Dual J. Acoustic streaming produced by sharp-edge structures in microfluidic devices. Microfluid Nanofluid. 2020;24(5):32. doi: 10.1007/s10404-020-02335-5
  83. Sadhal SS. Acoustofluidics 13: analysis of acoustic streaming by perturbation methods. Lab Chip. 2012;12(13): 2292-2300. doi: 10.1039/c2lc40202e
  84. Liu S, Yang Y, Ni Z, et al. Investigation into the effect of acoustic radiation force and acoustic streaming on particle patterning in acoustic standing wave fields. Sensors (Basel). 2017;17(7):1664. doi: 10.3390/s17071664
  85. Shi Q, Wang B, Mao H, Liu Y. Calibration and measurement of micrometre-scale pollen particles for discrete element method parameters based on the Johnson-Kendal-Roberts model. Biosyst Eng. 2024;237:83-91. doi: 10.1016/j.biosystemseng.2023.11.013
  86. Comeau ES, Vander Horst MA, Raeman CH, Child SZ, Hocking DC, Dalecki D. In vivo acoustic patterning of endothelial cells for tissue vascularization. Sci Rep. 2023;13(1):16082. doi: 10.1038/s41598-023-43299-0
  87. Yin Q, Chen K, Zhou C, et al. Acoustofluidic pick-and-place operation for label-free spatial assembly of cellular spheroid. Int J Extrem Manuf. 2025;7(4):045501. doi: 10.1088/2631-7990/adbb34
  88. Altay R, Yapici MK, Koşar A. A hybrid spiral microfluidic platform coupled with surface acoustic waves for circulating tumor cell sorting and separation: a numerical study. Biosensors (Basel). 2022;12(3):171. doi: 10.3390/bios12030171
  89. Kang B, Shin J, Park HJ, et al. High-resolution acoustophoretic 3D cell patterning to construct functional collateral cylindroids for ischemia therapy. Nat Commun. 2018;9(1):5402. doi: 10.1038/s41467-018-07823-5
  90. Liu X, Li Y, Liu F, et al. μSonic-hand: biomedical micromanipulation driven by acoustic gas-liquid-solid interactions. Sci Adv. 2025;11(13):eads8167. doi: 10.1126/sciadv.ads8167
  91. Melde K, Kremer H, Shi M, et al. Compact holographic sound fields enable rapid one-step assembly of matter in 3D. Sci Adv. 2023;9(6):eadf6182. doi: 10.1126/sciadv.adf6182
  92. Gao Z, Wang S, Sui Y, et al. A multifunctional acoustic tweezer for heterogenous assembloids patterning. Small Struct. 2023;4(5):2370012. doi: 10.1002/sstr.202370012
  93. Alarcón H, Herrera-Muñoz M, Périnet N, Mujica N, Gutiérrez P, Gordillo L. Faraday-wave contact-line shear gradient induces streaming and tracer self-organization: from vortical to hedgehoglike patterns. Phys Rev Lett. 2020;125(25):254505. doi: 10.1103/PhysRevLett.125.254505
  94. Tognato R, Parolini R, Jahangir S, et al. Sound-based assembly of three-dimensional cellularized and acellularized constructs. Mater Today Bio. 2023;22:100775. doi: 10.1016/j.mtbio.2023.100775
  95. Chansoria P, Narayanan LK, Schuchard K, Shirwaiker R. Ultrasound-assisted biofabrication and bioprinting of preferentially aligned three-dimensional cellular constructs. Biofabrication. 2019;11(3):035015. doi: 10.1088/1758-5090/ab15cf
  96. Lei J, Cheng F, Liu G, Li K, Guo Z. Dexterous formation of unconventional Chladni patterns using standing bulk acoustic waves. Appl Phys Lett. 2020;117(18). doi: 10.1063/5.0032304
  97. Gesellchen F, Bernassau AL, Déjardin T, Cumming DR, Riehle MO. Cell patterning with a heptagon acoustic tweezer—application in neurite guidance. Lab Chip. 2014;14(13):2266-2275. doi: 10.1039/c4lc00436a
  98. Deshmukh DV, Reichert P, Zvick J, et al. Continuous production of acoustically patterned cells within hydrogel fibers for musculoskeletal tissue engineering. Adv Funct Mater. 2022;32(30):2113038. doi: 10.1002/adfm.202113038
  99. Yin Q, Luo Y, Yu X, et al. Acoustic cell patterning for structured cell-laden hydrogel fibers/tubules. Adv Sci (Weinh). 2024;11(14):e2308396. doi: 10.1002/advs.202308396
  100. Comeau ES, Hocking DC, Dalecki D. Ultrasound patterning technologies for studying vascular morphogenesis in 3D. J Cell Sci. 2017;130(1):232-242. doi: 10.1242/jcs.188151
  101. Ozcelik A, Rufo J, Guo F, et al. Acoustic tweezers for the life sciences. Nat Methods. 2018;15(12):1021-1028. doi: 10.1038/s41592-018-0222-9
  102. Nguyen TD, Tran VT, Pudasaini S, et al. Large‐scale fabrication of 3D scaffold‐based patterns of microparticles and breast cancer cells using reusable acoustofluidic device. Adv Eng Mater. 2021;23(6):2001377. doi: 10.1002/adem.202001377
  103. Wu M, Ozcelik A, Rufo J, Wang Z, Fang R, Jun Huang T. Acoustofluidic separation of cells and particles. Microsyst Nanoeng. 2019;5(1):32. doi: 10.1038/s41378-019-0064-3
  104. Wu M, Ouyang Y, Wang Z, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc Natl Acad Sci U S A. 2017;114(40):10584-10589. doi: 10.1073/pnas.1709210114
  105. Tian Z, Yang S, Huang PH, et al. Wave number-spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells. Sci Adv. 2019;5(5):eaau6062. doi: 10.1126/sciadv.aau6062
  106. Shi J, Ahmed D, Mao X, Lin SC, Lawit A, Huang TJ. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip. 2009;9(20):2890-2895. doi: 10.1039/b910595f
  107. Jiang D, Liu J, Pan Y, Zhuang L, Wang P. Surface acoustic wave (SAW) techniques in tissue engineering. Cell Tissue Res. 2021;386(2):215-226. doi: 10.1007/s00441-020-03397-1
  108. Xu M, Lee PVS, Collins DJ. Microfluidic acoustic sawtooth metasurfaces for patterning and separation using traveling surface acoustic waves. Lab Chip. 2021;22(1):90-99. doi: 10.1039/d1lc00711d
  109. Melde K, Mark AG, Qiu T, Fischer P. Holograms for acoustics. Nature. 2016;537(7621):518-522. doi: 10.1038/nature19755
  110. Melde K, Choi E, Wu Z, Palagi S, Qiu T, Fischer P. Acoustic fabrication via the assembly and fusion of particles. Adv Mater. 2018;30(3):1704507. doi: 10.1002/adma.201704507
  111. Brown MD. Phase and amplitude modulation with acoustic holograms. Appl Phys Lett. 2019;115(5):053701. doi: 10.1063/1.5110673
  112. Marzo A, Seah SA, Drinkwater BW, Sahoo DR, Long B, Subramanian S. Holographic acoustic elements for manipulation of levitated objects. Nat Commun. 2015;6:8661. doi: 10.1038/ncomms9661
  113. Marzo A, Drinkwater BW. Holographic acoustic tweezers. Proc Natl Acad Sci U S A. 2019;116(1):84-89. doi: 10.1073/pnas.1813047115
  114. Xu M, Wang J, Harley WS, Lee PVS, Collins DJ. Programmable acoustic holography using medium-sound-speed modulation. Adv Sci (Weinh). 2023;10(23):e2301489. doi: 10.1002/advs.202301489
  115. Kucher S, Wesfreid JE, Cobelli PJ. Discovery of propagating trains of oscillons over Faraday waves in a 1D experiment. Europhys Lett. 2025,150(3):33003. doi: 10.1209/0295-5075/add180
  116. Chen P, Viñals J. Amplitude equation and pattern selection in Faraday waves. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999;60(1):559-570. doi: 10.1103/physreve.60.559
  117. Lu HF, Tien WH. Comparison of acoustic streaming flow patterns induced by solid, liquid and gas obstructions. Micromachines (Basel). 2020;11(10):891. doi: 10.3390/mi11100891
  118. Chen P, Luo Z, Güven S, et al. Microscale assembly directed by liquid-based template. Adv Mater. 2014;26(34):5936-5941. doi: 10.1002/adma.201402079
  119. Gu L, Jiang S, Xu X, et al. Size- and density-dependent acoustic differential bioassembly of spatially-defined heterocellular architecture. Biofabrication. 2022;15(1):015019. doi: 10.1088/1758-5090/aca79c
  120. Bush JWM, Oza AU. Hydrodynamic quantum analogs. Rep Prog Phys. 2020;84(1):017001. doi: 10.1088/1361-6633/abc22c
  121. Xu F, Celli J, Rizvi I, Moon S, Hasan T, Demirci U. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol J. 2011;6(2):204-212. doi: 10.1002/biot.201000340
  122. Foresti D, Kroll KT, Amissah R, et al. Acoustophoretic printing. Sci Adv. 2018;4(8):eaat1659. doi: 10.1126/sciadv.aat1659
  123. Hayakawa T, Sakuma S, Fukuhara T, Yokoyama Y, Arai F. A single cell extraction chip using vibration-induced whirling flow and a thermo-responsive gel pattern. Micromachines. 2014; 5(3):681-696. doi: 10.3390/mi5030681
  124. Harley W S, Kolesnik K, Xu M, et al. 3D Acoustofluidics via sub-wavelength micro-resonators. Adv Funct Mater. 2023;33(9):10. doi: 10.1016/j.biosystemseng.2020.03.003
  125. Surappa S, Pavagada S, Soto F, et al. Dynamically reconfigurable acoustofluidic metasurface for subwavelength particle manipulation and assembly. Nat Commun. 2025;16(1):494. doi: 10.1038/s41467-024-55337-0
  126. Jiang Y, Li H, Hua L, et al. Three-dimensional flow breakup characteristics of a circular jet with different nozzle geometries. Biosyst Eng. 2020;193:216-231. doi: 10.1016/j.biosystemseng.2020.03.003
  127. Bai X, Bin S, Yuguo D, et al. Parallel trapping, patterning, separating and rotating of micro-objects with various sizes and shapes using acoustic microstreaming. Sens Actuators A Phys. 2020;315:112340. doi: 10.1016/j.sna.2020.112340
  128. Hayakawa T, Sakuma S, Arai F. On-chip 3D rotation of oocyte based on a vibration-induced local whirling flow. Microsyst Nanoeng. 2015;1(1):1-9. doi: 10.1038/micronano.2015.1
  129. Collins DJ, O’Rorke R, Neild A, Han J, Ai Y. Acoustic fields and microfluidic patterning around embedded micro-structures subject to surface acoustic waves. Soft Matter. 2019;15(43):8691-8705. doi: 10.1039/c9sm00946a
  130. Huo J, Bai X, Yong J, et al. How to adjust bubble’s adhesion on solid in aqueous media: Femtosecond laser-ablated patterned shape-memory polymer surfaces to achieve bubble multi-manipulation. Chem Eng J. 2021;414:128694. doi: 10.1016/j.cej.2021.128694
  131. Yang Y, Jin K, Qi H, et al. Acoustic streaming microgripper for programmable three-dimensional manipulation of single cells. npj Acoust. 2025;1(1):19. doi: 10.1038/s44384-025-00022-9
  132. Wang L, Zhang C, Ma J, et al. Mammalian Ste20-like kinase 1 regulates AMPK to mitigate the progression of non-alcoholic fatty liver disease. Eur J Med Res. 2025; 30(1):296. doi: 10.1186/s40001-025-02557-9
  133. Zhou Y, Xu Q, Dong Y, Zhu S, Song S, Sun S. Supplementation of mussel peptides reduces aging phenotype, lipid deposition and oxidative stress in D-galactose-induce aging mice. J Nutr Health Aging. 2017;21(10):1314-1320. doi: 10.1007/s12603-016-0862-3
  134. Cassotta M, Forbes-Hernández TY, Calderón Iglesias R, et al. Links between nutrition, infectious diseases, and microbiota: emerging technologies and opportunities for human-focused research. Nutrients. 2020;12(6):1827. doi: 10.3390/nu12061827
  135. Zhang J, Qiu Y, Zhang H, Fan Y. Impact of frailty on adverse outcomes in patients with abdominal aortic aneurysm undergoing surgery: a systematic review and meta-analysis. J Nutr Health Aging. 2024;28(5):100213. doi: 10.1016/j.jnha.2024.100213
  136. Cushing K, Undvall E, Ceder Y, Lilja H, Laurell T. Reducing WBC background in cancer cell separation products by negative acoustic contrast particle immuno-acoustophoresis. Anal Chim Acta. 2018;1000:256-264. doi: 10.1016/j.aca.2017.11.064
  137. Li J, Li H. New insights into the folding-unfolding mechanism and conformations of cytochrome C. Chem Sci. 2022;13(25):7498-7508. doi: 10.1039/d2sc01126c
  138. Abraham Punnoose J, Thomas KJ, Chandrasekaran AR, et al. High-throughput single-molecule quantification of individual base stacking energies in nucleic acids. Nat Commun. 2023;14(1):631. doi: 10.1038/s41467-023-36373-8
  139. Woolf MS, Dignan LM, Karas SM, et al. Characterization of a centrifugal microfluidic orthogonal flow platform. Micromachines (Basel). 2022;13(3):487. doi: 10.3390/mi13030487
  140. Sriphutkiat Y, Kasetsirikul S, Zhou Y. Formation of cell spheroids using standing surface acoustic wave (SSAW). Int J Bioprint. 2017;4(1):130. doi: 10.18063/IJB.v4i1.130
  141. Zheng W, Jiang X. Synthesizing living tissues with microfluidics. Acc Chem Res. 2018;51(12):3166-3173. doi: 10.1021/acs.accounts.8b00417
  142. Guldiken R, Jo MC, Gallant ND, Demirci U, Zhe J. Sheathless size-based acoustic particle separation. Sensors (Basel). 2012;12(1):905-922. doi: 10.3390/s120100905
  143. Brugger MS, Baumgartner K, Mauritz SCF, et al. Vibration enhanced cell growth induced by surface acoustic waves as in vitro wound-healing model. Proc Natl Acad Sci U S A. 2020;117(50):31603-31613. doi: 10.1073/pnas.2005203117
  144. Jeger-Madiot N, Arakelian L, Setterblad N, et al. Self-organization and culture of mesenchymal stem cell spheroids in acoustic levitation. Sci Rep. 2021;11(1):8355. doi: 10.1038/s41598-021-87459-6
  145. Guo X, Sun M, Yang Y, et al. Controllable cell deformation using acoustic streaming for membrane permeability modulation. Adv Sci (Weinh). 2020;8(3):2002489. doi: 10.1002/advs.202002489
  146. Chiang HJ, Yeh SL, Peng CC, Liao WH, Tung YC. Polydimethylsiloxane-polycarbonate microfluidic devices for cell migration studies under perpendicular chemical and oxygen gradients. J Vis Exp. 2017;(120): 55292. doi: 10.3791/55292
  147. Hadady H, Alam A, Khurana I, et al. Optimizing alkaline hydrothermal treatment for biomimetic smart metallic orthopedic and dental implants. J Mater Sci Mater Med. 2024;35(1):31. doi: 10.1007/s10856-024-06794-y
  148. Sugiura S, Cha JM, Yanagawa F, Zorlutuna P, Bae H, Khademhosseini A. Dynamic three-dimensional micropatterned cell co-cultures within photocurable and chemically degradable hydrogels. J Tissue Eng Regen Med. 2016;10(8):690-699. doi: 10.1002/term.1843
  149. Fan L, Luo T, Guan Z, et al. Gravitational sedimentation-based approach for ultra-simple and flexible cell patterning coculture on microfluidic device. Biofabrication. 2020;12(3):035005. doi: 10.1088/1758-5090/ab80b5
  150. Wei J, Sun Y, Wang H, et al. Designer cellular spheroids with DNA origami for drug screening. Sci Adv. 2024;10(29):eado9880. doi: 10.1126/sciadv.ado9880
  151. Soto J, Linsley C, Song Y, et al. Engineering materials and devices for the prevention, diagnosis, and treatment of COVID-19 and infectious diseases. Nanomaterials (Basel). 2023;13(17):2455. doi: 10.3390/nano13172455
  152. Oliveira NM, Martins‐Cruz C, Oliveira MB, Reis RL, Mano JF. Coculture of spheroids/2D cell layers using a miniaturized patterned platform as a versatile method to produce scaffold‐free tissue engineering building blocks. Adv Biosyst. 2017;2(1):1700069. doi: 10.1002/adbi.201700069
  153. Chen J, Zhang X, Cross R Jr, et al. Atherosclerotic three-layer nanomatrix vascular sheets for high-throughput therapeutic evaluation. Biomaterials. 2024;305:122450. doi: 10.1016/j.biomaterials.2023.122450
  154. Liu X, Cheng J, Zhao Y. Tumor microenvironment based on extracellular matrix hydrogels for on-chip drug screening. Biosensors (Basel). 2024;14(9):429. doi: 10.3390/bios14090429
  155. Shan H, Chen M, Zhao S, et al. Acoustic virtual 3D scaffold for direct-interacting tumor organoid-immune cell coculture systems. Sci Adv. 2024;10(47):eadr4831. doi: 10.1126/sciadv.adr4831
  156. Wu Z, Ao Z, Cai H, et al. Acoustofluidic assembly of primary tumor-derived organotypic cell clusters for rapid evaluation of cancer immunotherapy. J Nanobiotechnology. 2023;21(1):40. doi: 10.1186/s12951-023-01786-6
  157. Wu Y, Zhao Y, Islam K, et al. Acoustofluidic engineering functional vessel-on-a-chip. Preprint. ArXiv. 2023;arXiv:2308.06219v2
  158. He Z, Wang J, Fike BJ, et al. A portable droplet generation system for ultra-wide dynamic range digital PCR based on a vibrating sharp-tip capillary. Biosens Bioelectron. 2021;191:113458. doi: 10.1016/j.bios.2021.113458
  159. Ji S, Guvendiren M. Complex 3D bioprinting methods. APL Bioeng. 2021;5(1):011508. doi: 10.1063/5.0034901
  160. Ginghină O, Hudiță A, Zaharia C, et al. Current landscape in organic nanosized materials advances for improved management of colorectal cancer patients. Materials (Basel). 2021;14(9):2440. doi: 10.3390/ma14092440
  161. Ricci G, Gibelli F, Sirignano A. Three-dimensional bioprinting of human organs and tissues: bioethical and medico-legal implications examined through a scoping review. Bioengineering (Basel). 2023;10(9):1052. doi: 10.3390/bioengineering10091052
  162. Ao Z, Cai H, Wu Z, et al. Controllable fusion of human brain organoids using acoustofluidics. Lab Chip. 2021;21(4):688-699. doi: 10.1039/d0lc01141j
  163. Son J, Bang MS, Park JK. Hand-maneuverable collagen sheet with micropatterns for 3D modular tissue engineering. ACS Biomater Sci Eng. 2019;5(1):339-345. doi: 10.1021/acsbiomaterials.8b01066
  164. Seguret M, Vermersch E, Jouve C, Hulot JS. Cardiac organoids to model and heal heart failure and cardiomyopathies. Biomedicines. 2021;9(5):563. doi: 10.3390/biomedicines9050563
  165. Agrawal P, Zhuang S, Dreher S, Mitter S, Ahmed D. SonoPrint: acoustically assisted volumetric 3D printing for composites. Adv Mater. 2024;36(40):e2408374. doi: 10.1002/adma.202408374
  166. Armstrong JPK, Pchelintseva E, Treumuth S, et al. Tissue engineering cartilage with deep zone cytoarchitecture by high-resolution acoustic cell patterning. Adv Healthc Mater. 2022;11(24):e2200481. doi: 10.1002/adhm.202200481
  167. Yu W, Zhu H, Upreti N, et al. Acoustography by beam engineering and acoustic control node: BEACON. Adv Sci (Weinh). 2024;11(46):e2403742. doi: 10.1002/advs.202403742
  168. Derayatifar M, Habibi M, Bhat R, Packirisamy M. Holographic direct sound printing. Nat Commun. 2024;15(1):6691. doi: 10.1038/s41467-024-50923-8
  169. Song K, Li G, Zu X, Du Z, Liu L, Hu Z. The fabrication and application mechanism of microfluidic systems for high throughput biomedical screening: a review. Micromachines (Basel). 2020;11(3):297. doi: 10.3390/mi11030297
  170. Weaver WM, Tseng P, Kunze A, et al. Advances in high-throughput single-cell microtechnologies. Curr Opin Biotechnol. 2014;25:114-123. doi: 10.1016/j.copbio.2013.09.005
  171. Zhang YS, Yue K, Aleman J, et al. 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng. 2017;45(1):148-163. doi: 10.1007/s10439-016-1612-8
  172. Schneck H, Blassl C, Meier-Stiegen F, et al. Analysing the mutational status of PIK3CA in circulating tumor cells from metastatic breast cancer patients. Mol Oncol. 2013;7(5):976-986. doi: 10.1016/j.molonc.2013.07.007
  173. Ge MJ, Wu QC, Wang M, et al. Detection of circulating tumor cells (CTCs) in patients with lung carcinoma by real-time fluorescent quantitative-PCR approach before and after chemotherapy. Health. 2009;01(03):231-238. doi: 10.4236/health.2009.13038
  174. Song D, Wang Z, Li X, et al. Application of circulating tumor cells in peripheral blood in judging the prognosis of patients with renal cancer and related indexes of blood coagulation. Open J Urol. 2022;12(1):1-6. doi: 10.4236/oju.2022.121001
  175. Magnusson C, Augustsson P, Undvall Anand E, et al. Acoustic enrichment of heterogeneous circulating tumor cells and clusters from metastatic prostate cancer patients. Anal Chem. 2024;96(18):6914-6921. doi: 10.1021/acs.analchem.3c05371
  176. Undvall Anand E, Magnusson C, Lenshof A, Ceder Y, Lilja H, Laurell T. Two-step acoustophoresis separation of live tumor cells from whole blood. Anal Chem. 2021;93(51):17076-17085. doi: 10.1021/acs.analchem.1c04050
  177. Zhang Y, Zhang Z, Zheng D, Huang T, Fu Q, Liu Y. Label-free separation of circulating tumor cells and clusters by alternating frequency acoustic field in a microfluidic chip. Int J Mol Sci. 2023;24(4):3338. doi: 10.3390/ijms24043338
  178. Wu H, Chen H, Shao X, et al. All-wood-based hybrid membrane derived from waste sawdust for efficient emulsion separation. Food Bioprod Process. 2024;149:92-99. doi: 10.1016/j.fbp.2024.11.017
  179. Ahmad K, Din Z, Ullah H, et al. Preparation and characterization of bio‐based nanocomposites packaging films reinforced with cellulose nanofibers from unripe banana peels. Starch-Stärke. 2022;74(5-6):2100283. doi: 10.1002/star.202100283
  180. Liu Y, Jing ZF, Zhang T, et al. Fabrication of functional biomass carbon aerogels derived from sisal fibers for application in selenium extraction. Food Bioprod Process. 2018;111:93-103. doi: 10.1016/j.fbp.2018.07.004
  181. Zhang T, Yuan D, Guo Q, et al. Preparation of a renewable biomass carbon aerogel reinforced with sisal for oil spillage clean-up: inspired by green leaves to green tofu. Food Bioprod Process. 2019;114:154-162. doi: 10.1016/j.fbp.2018.12.007
  182. Jing Z, Ding J, Zhang T, et al. Flexible, versatility and superhydrophobic biomass carbon aerogels derived from corn bracts for efficient oil/water separation. Food Bioprod Process. 2019;115:134-142. doi: 10.1016/j.fbp.2019.03.010
  183. Liu C, Xue Y, Guo J, et al. Citric acid and sucrose pretreatment improves the crispness of puffed peach chips by regulating cell structure and mechanical properties. LWT-Food Sci Technol. 2021;142:111036. doi: 10.1016/j.lwt.2021.111036
  184. Chen Z, Huang Q, Xia Q, et al. Intact endosperm cells in buckwheat flour limit starch gelatinization and digestibility in vitro. Food Chem. 2020;330:127318. doi: 10.1016/j.foodchem.2020.127318
  185. Li HT, Chen SQ, Bui AT, Xu B, Dhital S. Natural ‘capsule’in food plants: cell wall porosity controls starch digestion and fermentation. Food Hydrocoll. 2021;117:106657. doi: 10.1016/j.foodhyd.2021.106657
  186. Sun L, Han J, Wu J, et al. Cellulose pretreatment with inorganic salt hydrate: Dissolution, regeneration, structure and morphology. Ind Crops Prod. 2022;180:114722. doi: 10.1016/j.indcrop.2022.114722
  187. Yang X, Ma L, Zheng J, Qiao Y, Bai J, Cai J. Effects of atmospheric pressure plasma treatment on the quality and cellulose modification of brown rice. Innov Food Sci Emerg Technol. 2024;96:103744. doi: 10.1016/j.ifset.2024.103744
  188. Pu Y, Zhou Q, Yu L, et al. Longitudinal analyses of lignin deposition in green asparagus by microscopy during high oxygen modified atmosphere packaging. Food Packag Shelf Life. 2020;25:100536. doi: 10.1016/j.fpsl.2020.100536
  189. Liu Y, Sun W, Li B, et al. Dehydration characteristics and evolution of physicochemical properties of Platycodon grandiflorum (Jacq. A. DC.) roots (PGR) during pulse-spouted microwave vacuum drying (PSMVD). Ind Crops Prod. 2022;177:114449. doi: 10.1016/j.indcrop.2021.114449
  190. Khin MN, Easdani M, Aziz T, et al. Schiff ’s base crosslinked gelatin-dialdehyde cellulose film with gallic acid for improved water resistance and antimicrobial properties. Food Hydrocoll. 2025;166:111331. doi: 10.1016/j.foodhyd.2025.111331
  191. Li Y, Kong W, Li M, et al. Litsea cubeba essential oil as the potential natural fumigant: Inhibition of Aspergillus flavus and AFB1 production in licorice. Ind Crops Prod. 2015;80:186-193. doi: 10.1016/j.indcrop.2015.11.008
  192. Su M, Liu F, Luo Z, et al. The antibacterial activity and mechanism of chlorogenic acid against foodborne pathogen Pseudomonas aeruginosa. Foodborne Pathog Dis. 2019;16(12):823-830. doi: 10.1089/fpd.2019.2678
  193. Dai J, Bai M, Li C, Cheang WS, Cui H, Lin L. Antibacterial properties of citral against Staphylococcus aureus: from membrane damage to metabolic inhibition. Food Biosci. 2023;53:102770. doi: 10.1016/j.fbio.2023.102770
  194. Song L, Yang H, Cheng S, et al. Combination effects of ultrasound and citral nanoemulsion against Shigella flexneri and the preservation effect on fresh-cut carrots. Food Control. 2024;155:110069. doi: 10.1016/j.foodcont.2023.110069
  195. Kang L, Liang Q, Liu Y, et al. Preparation technology and preservation mechanism of novel Ag NPs-loaded ZIF-67 packaging film. Food Packag Shelf Life. 2024;45:101338. doi: 10.1016/j.fpsl.2024.101338
  196. Jayan H, Yin L, Xue S, Zou X, Guo Z. Raman spectroscopy-based microfluidic platforms: a promising tool for detection of foodborne pathogens in food products. Food Res Int. 2024;180:114052. doi: 10.1016/j.foodres.2024.114052
  197. Xia JJ, Zou B, Liu F, Wang PY, Yan Y. Sensitive glucose biosensor based on cyclodextrin modified carbon nanotubes for detecting glucose in honey. J Food Compos Anal. 2022;105: 104221. doi: 10.1016/j.jfca.2021.104221
  198. Hashim SBH, Tahir HE, Lui L, et al. Smart films of carbohydrate-based/sunflower wax/purple Chinese cabbage anthocyanins: a biomarker of chicken freshness. Food Chem. 2023;399:133824. doi: 10.1016/j.foodchem.2022.133824
  199. Hussain M, Xu J, Ahmad I, et al. Efficacy of nano-based strategies on the safe delivery and bioavailability of vitamin D: review. Food Rev Int. 2024;40(6):1581-1599. doi: 10.1080/87559129.2023.2225591
  200. Luo S, Yu L, Song J, Wu C, Li Y, Zhang C. Hybridization of glucosyl stevioside and hydroxypropyl methylcellulose to improve the solubility of lutein. Food Chem. 2022; 394:133490. doi: 10.1016/j.foodchem.2022.133490
  201. Xiao X, Bai J, Zhang J, Wu J, Dong Y. Inhibitory effect of fermented selected barley extracts with Lactobacillus plantarum dy-1 on the proliferation of human HT-29 cells. J Food Biochem. 2019;43(11):e12989. doi: 10.1111/jfbc.12989
  202. Farid W, Masud T, Sohail A, et al. Gastrointestinal transit tolerance, cell surface hydrophobicity, and functional attributes of Lactobacillus acidophilus strains isolated from indigenous dahi. Food Sci Nutr. 2021;9(9):5092-5102. doi: 10.1002/fsn3.2468
  203. Chen Q, Fang Z, Yang Z, et al. Lactobacillus plantarum-derived extracellular vesicles modulate macrophage polarization and gut homeostasis for alleviating ulcerative colitis. J Agric Food Chem. 2024;72(26):14713-14726. doi: 10.1021/acs.jafc.4c01758
  204. Geng A, Li N, Zayas-Garriga A, Xie R, Zhu D, Sun J. Direct conversion of minimally pretreated corncob by enzyme-intensified microbial consortia. Agric. 2024;14 (9):1610. doi: 10.3390/agriculture14091610
  205. Pan S, Zabed HM, Wei Y, Qi X. Technoeconomic and environmental perspectives of biofuel production from sugarcane bagasse: current status, challenges and future outlook. Ind Crops Prod. 2022;188:115684. doi: 10.1016/j.indcrop.2022.115684
  206. Huang W, He X, Wu J, et al. The evaluation of deep eutectic solvents and ionic liquids as cosolvents system for improving cellulase properties. Ind Crops Prod. 2023;197:116555. doi: 10.1016/j.indcrop.2023.116555
  207. Ji QH, Yu XJ, Yagoub AEG, Chen L, Zhou CS. Efficient removal of lignin from vegetable wastes by ultrasonic and microwave-assisted treatment with ternary deep eutectic solvent. Ind Crops Prod. 2020;149:112357. doi: 10.1016/j.indcrop.2020.112357
  208. Qian J, Zhou C, Ma H, Li S, Yagoub AEA, Abdualrahman MAY. Biological effect and inactivation mechanism of bacillus subtilis exposed to pulsed magnetic field: morphology, membrane permeability and intracellular contents. Food Biophys. 2016;11(4):429-435. doi: 10.1007/s11483-016-9442-7
  209. Qian J, Zhou C, Ma H, Li S, Yagoub AEA, Abdualrahman MAY. Proteomics analyses and morphological structure of bacillus subtilis inactivated by pulsed magnetic field. Food Biophys. 2016;11(4):436-445. doi: 10.1007/s11483-016-9444-5
  210. Ijinu TP, De Lellis LF, Shanmugarama S, et al. Anthocyanins as immunomodulatory dietary supplements: a nutraceutical perspective and micro-/nano-strategies for enhanced bioavailability. Nutrients. 2023;15(19):4152. doi: 10.3390/nu15194152
  211. Miao T, Chen K, Wei X, et al. High-throughput fabrication of cell spheroids with 3D acoustic assembly devices. Int J Bioprint. 2023;9(4):733. doi: 10.18063/ijb.733
  212. Xu D, Pei Y, Qiu W. Continuous and tunable droplet splitting using standing-wave acoustofluidics. Lab Chip. 2025. doi: 10.1039/d5lc00592b
  213. Sun J, Yao K, An J, Jing L, Huang K, Huang D. Machine learning and 3D bioprinting. Int J Bioprint. 2023;9(4):717. doi: 10.18063/ijb.717
  214. Komosa ER, Lin WH, Ogle BM. Toward robust and reproducible pluripotent stem cell expansion in bioprinted GelMA constructs. Int J Bioprint. 2025;11(1):363-381. doi: 10.36922/ijb.4633
  215. Yang Z, Liu S, Li L, et al. From nano robotic manipulation to nano manipulation robot. SmartBot. 2025;1(3):e12021. doi: 10.1002/smb2.12021
  216. Ates G, Bartolo P. Computational fluid dynamics for the optimization of internal bioprinting parameters and mixing conditions. Int J Bioprinting. 2023;9(6):0219. doi: 10.36922/ijb.0219
  217. Ng WL, Tan JS. Application of machine learning in 3D bioprinting of cultivated meat. Int J AI Mater Des. 2024;1(1):3. doi: 10.36922/ijamd.2279
  218. Nama N, Huang PH, Huang TJ, Costanzo F. Investigation of acoustic streaming patterns around oscillating sharp edges. Lab Chip. 2014;14(15):2824-2836. doi: 10.1039/c4lc00191e
  219. Li C, Mendis BL, Holland L, Li P. Investigation of the impact of liquid presence on the acoustic streaming generated by a vibrating sharp tip capillary. Microfluid Nanofluid. 2024;28(4):17 doi: 10.1007/s10404-024-02713-3
  220. Martinez-De-Anda AA, Rodriguez-Salvador M, Castillo- Valdez PF. The attractiveness of 4D printing in the medical field: revealing scientific and technological advances in design factors and applications. Int J Bioprinting. 2023;9(6):1112. doi: 10.36922/ijb.1112
  221. Ma W, Lu H, Xiao Y, et al. Advancing organoid development with 3D bioprinting. Organoid Res. 2025;1(1):025040004. doi: 10.36922/or025040004
  222. He Y, Xia J, Mai JDH, Upreti N, Lee LP, Huang TJ. Acoustic technologies for the orchestration of cellular functions for therapeutic applications. Sci Adv. 2025;11(29):eadu4759. doi: 10.1126/sciadv.adu4759
  223. Zhu W, Ma L, Shi Z, et al. Early-stage fertilised egg viability detection based on machine vision. Br Poult Sci. 2025;66(5):613-624. doi: 10.1080/00071668.2025.2470275
  224. Sup Yoon M, Min Lee J, Jeong Jo M, et al. Advancements in 3D bioprinting for nanoparticle evaluation: Techniques, models, and biological applications. Int J Bioprinting. 2024;10(5):4273. doi: 10.36922/ijb.4273
  225. Zhang Z, Shi Z, Ahmed D. SonoTransformers: transformable acoustically activated wireless microscale machines. Proc Natl Acad Sci U S A. 2024;121(6):e2314661121. doi: 10.1073/pnas.2314661121

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing