Acoustic lithography: Field-directed cell patterning for bio-systems engineering
The precise spatial patterning of living cells represents a foundational capability in bio-systems engineering, enabling the systematic study of collective cellular behaviors and the fabrication of increasingly complex functional tissues. Conventional methods for achieving this control, while numerous, are often constrained by static pattern formation, the need for biochemical labels that can alter cell function, or requirements for non-physiological media. In this context, acoustic-field-based manipulation has emerged as a uniquely powerful and biocompatible alternative. This review synthesizes these advancements under the unifying concept of “acoustic lithography,” a framework that captures the technology’s capacity for rapid, parallel, and label-free cellular organization. The discussion covers the core physical principles of acoustic radiation force and acoustic streaming before surveying the diverse technological landscape, from bulk and surface acoustic waves to advanced acoustic holography. It further highlights the impact of these tools across a spectrum of applications, including high-throughput analysis, biomimetic co-culture engineering, advanced biofabrication, and clinical sorting. Collectively, these applications demonstrate the field’s trajectory as it moves beyond static patterning to encompass the integrated control of structure, environment, and function. Viewing the technology through this broader engineering lens underscores its significance as a vital platform, charting a course for the next generation of dynamically engineered living systems.

- Bishop ES, Mostafa S, Pakvasa M, et al. 3-D bioprinting technologies in tissue engineering and regenerative medicine: current and future trends. Genes Dis. 2017;4(4):185-195. doi: 10.1016/j.gendis.2017.10.002
- Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M. 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact Mater. 2018;3(2):144-156. doi: 10.1016/j.bioactmat.2017.11.008
- Martinez-Rivas A, González-Quijano GK, Proa- Coronado S, Séverac C, Dague E. Methods of micropatterning and manipulation of cells for biomedical applications. Micromachines (Basel). 2017;8(12):347. doi: 10.3390/mi8120347
- Che H, Selig M, Rolauffs B. Micro-patterned cell populations as advanced pharmaceutical drugs with precise functional control. Adv Drug Deliv Rev. 2022;184:114169. doi: 10.1016/j.addr.2022.114169
- Yang W, Wang Z, Yu T, Chen Y, Ge, Z. Recent advance in cell patterning techniques: approaches, applications and future prospects. Sens Actuators A Phys. 2022;333:113229. doi: 10.1016/j.sna.2021.113229
- Wang Z, Lang B, Qu Y, Li L, Song Z, Wang Z. Single-cell patterning technology for biological applications. Biomicrofluidics. 2019;13(6):061502. doi: 10.1063/1.5123518
- Deinum EE. The systems and interactions underpinning complex cell wall patterning. Biochem Soc Trans. 2024;52(6):2385-2398. doi: 10.1042/BST20230642
- Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev. 2018;132:296-332. doi: 10.1016/j.addr.2018.07.004
- Gu Z, Fu J, Lin H, He Y. Development of 3D bioprinting: from printing methods to biomedical applications. Asian J Pharm Sci. 2020;15(5):529-557. doi: 10.1016/j.ajps.2019.11.003
- Dare SC, Bajaj PS, Wankhede AN, Tawade SU, Manik KN. Three-dimensional bioprinting as a tool for tissue engineering: a review. J Pharm Bioallied Sci. 2024;16(Suppl 4):S3027-S3030. doi: 10.4103/jpbs.jpbs_678_24
- Vidler C, Halwes M, Kolesnik K, et al. Dynamic interface printing. Nature. 2024;634(8036):1096-1102. doi: 10.1038/s41586-024-08077-6
- Laschke MW, Menger MD. Life is 3D: boosting spheroid function for tissue engineering. Trends Biotechnol. 2017;35(2):133-144. doi: 10.1016/j.tibtech.2016.08.004
- Yoo J, Jung Y, Char K, Jang Y. Advances in cell coculture membranes recapitulating in vivo microenvironments. Trends Biotechnol. 2023;41(2):214-227. doi: 10.1016/j.tibtech.2022.07.014
- Wang H, Brown PC, Chow ECY, et al. 3D cell culture models: drug pharmacokinetics, safety assessment, and regulatory consideration. Clin Transl Sci. 2021;14(5):1659-1680. doi: 10.1111/cts.13066
- Lembong J, Lerman MJ, Kingsbury TJ, Civin CI, Fisher JP. A fluidic culture platform for spatially patterned cell growth, differentiation, and cocultures. Tissue Eng Part A. 2018;24(23-24):1715-1732. doi: 10.1089/ten.TEA.2018.0020
- Ning J, Sah RK, Wang J. Coculture of mesenchymal stem cells and macrophage: a narrative review. J Pharmacol Exp Ther. 2025;392(4):103531. doi: 10.1016/j.jpet.2025.103531
- Al-Qadami G, Raposo A, Chien CC, et al. Intestinal organoid coculture systems: current approaches, challenges, and future directions. Am J Physiol Gastrointest Liver Physiol. 2025;328(3):G252-G276. doi: 10.1152/ajpgi.00203.2024
- Turunen S, Haaparanta AM, Aänismaa R, Kellomäki M. Chemical and topographical patterning of hydrogels for neural cell guidance in vitro. J Tissue Eng Regen Med. 2013;7(4):253-270. doi: 10.1002/term.520
- Funano SI, Tanaka N, Tanaka Y. User-friendly cell patterning methods using a polydimethylsiloxane mold with microchannels. Dev Growth Differ. 2020;62(3): 167-176. doi: 10.1111/dgd.12637
- Wu H, Wu L, Zhou X, Liu B, Zheng B. Patterning hydrophobic surfaces by negative microcontact printing and its applications. Small. 2018;14(38):e1802128. doi: 10.1002/smll.201802128
- Slavík J, Skopalík J, Provazník I, Hubálek J. Multi-electrode array with a planar surface for cell patterning by microprinting. Sensors (Basel). 2019;19(24):5379. doi: 10.3390/s19245379
- Soffe R, Tang SY, Baratchi S, et al. Controlled rotation and vibration of patterned cell clusters using dielectrophoresis. Anal Chem. 2015;87(4):2389-2395. doi: 10.1021/ac5043335
- Mohanty S, Khalil ISM, Misra S. Contactless acoustic micro/nano manipulation: a paradigm for next generation applications in life sciences. Proc Math Phys Eng Sci. 2020;476(2243):20200621. doi: 10.1098/rspa.2020.0621
- Mölder A, Czanner S, Costen N, Hartshorne G. Automatic detection of embryo location in medical imaging using trigonometric rotation for noise reduction. IEEE. 2014; 3239-3244. doi: 10.1109/ICPR.2014.558
- Lin Z, Fan X, Sun M, Gao C, He Q, Xie H. Magnetically actuated peanut colloid motors for cell manipulation and patterning. ACS Nano. 2018;12(3):2539-2545. doi: 10.1021/acsnano.7b08344
- Rong N, He S, Li B, et al. Coupled magnetic nanoparticle-mediated isolation and single-cell image recognition to detect Bacillus’ cell size in soil. Eur J Soil Sci. 2022;73(3): e13236. doi: 10.1111/ejss.13236
- Liang S, Cao Y, Dai Y, et al. A versatile optoelectronic tweezer system for micro-objects manipulation: transportation, patterning, sorting, rotating and storage. Micromachines (Basel). 2021;12(3):271. doi: 10.3390/mi12030271
- Zhang S, Li W, Elsayed M, et al. Integrated assembly and photopreservation of topographical micropatterns. Small. 2021;17(37):e2103702. doi: 10.1002/smll.202103702
- Chu HK, Huan Z, Mills JK, Yang J, Sun D. Three-dimensional cell manipulation and patterning using dielectrophoresis via a multi-layer scaffold structure. Lab Chip. 2015;15(3):920-930. doi: 10.1039/c4lc01247j
- Collins DJ, Morahan B, Garcia-Bustos J, Doerig C, Plebanski M, Neild A. Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat Commun. 2015;6:8686. doi: 10.1038/ncomms9686
- Wu Z, Pan M, Wang J, Wen B, Lu L, Ren H. Acoustofluidics for cell patterning and tissue engineering. Eng Regen. 2022;3(4):397-406. doi: 10.1016/j.engreg.2022.08.005
- Rasouli R, Villegas KM, Tabrizian M. Acoustofluidics - changing paradigm in tissue engineering, therapeutics development, and biosensing. Lab Chip. 2023;23(5):1300-1338. doi: 10.1039/d2lc00439a
- Yang S, Rufo J, Chen Y, et al. Acoustic tweezers for advancing precision biology and medicine. Nat Rev Methods Primers. 2025;5(1):49. doi: 10.1038/s43586-025-00415-w
- Baudoin M, Thomas JL. Acoustic tweezers for particle and fluid micromanipulation. Annu Rev Fluid Mech. 2020;52(1):205-234. doi: 10.1146/annurev-fluid-010719-060154.
- Zhou Y, Ma Z, Ai Y. Submicron particle concentration and patterning with ultralow frequency acoustic vibration. Anal Chem. 2020;92(19):12795-12800. doi: 10.1021/acs.analchem.0c02765
- Tayebi M, O’Rorke R, Wong HC, et al. Massively multiplexed submicron particle patterning in acoustically driven oscillating nanocavities. Small. 2020;16(17):e2000462. doi: 10.1002/smll.202000462
- Yang Y, Ma T, Zhang Q, et al. 3D acoustic manipulation of living cells and organisms based on 2D array. IEEE Trans Biomed Eng. 2022;69(7):2342-2352. doi: 10.1109/TBME.2022.3142774
- Athanassiadis AG, Ma Z, Moreno-Gomez N, et al. Ultrasound-responsive systems as components for smart materials. Chem Rev. 2022;122(5):5165-5208. doi: 10.1021/acs.chemrev.1c00622
- Liu Y, Yin Q, Luo Y, et al. Manipulation with sound and vibration: a review on the micromanipulation system based on sub-MHz acoustic waves. Ultrason Sonochem. 2023;96:106441. doi: 10.1016/j.ultsonch.2023.106441
- Li K, Huang W, Guo H, et al. Advancements in robotic arm-based 3D bioprinting for biomedical applications. Life Med. 2023;2(6):lnad046. doi: 10.1093/lifemedi/lnad046
- Armstrong JPK, Puetzer JL, Serio A, et al. Engineering anisotropic muscle tissue using acoustic cell patterning. Adv Mater. 2018;30(43):e1802649. doi: 10.1002/adma.201802649
- Yoo J, Ahn J, Ha H, Claud Jonas J, Kim C, Ham Kim H. Single-beam acoustic tweezers for cell biology: molecular to in vivo level. IEEE Trans Ultrason Ferroelectr Freq Control. 2024;71(10):1269-1288. doi: 10.1109/TUFFC.2024.3456083
- Mehmood M, Khan UF, Maka AOM, et al. A review of thermal impact of surface acoustic waves on microlitre droplets in medical applications. Adv Mech Eng. 2022;14(8):16878132221116481. doi: 10.1177/16878132221116481
- Barani A, Paktinat H, Janmaleki M, et al. Microfluidic integrated acoustic waving for manipulation of cells and molecules. Biosens Bioelectron. 2016;85:714-725. doi: 10.1016/j.bios.2016.05.059
- Leong T, Johansson L, Juliano P, McArthur SL, Manasseh R. Ultrasonic separation of particulate fluids in small and large scale systems: a review. Ind Eng Chem Res. 2013;52(47):16555-16576. doi: 10.1021/ie402295r
- Stringer M, Zeng Z, Zhang X, et al. Methodologies, technologies, and strategies for acoustic streaming-based acoustofluidics. Appl Phys Rev. 2023;10(1):011315. doi: 10.1063/5.0134646
- Chen H, Hardwick J, Gao L, Plasencia DM, Subramanian S, Hirayama R. Acoustics in additive manufacturing: a path toward contactless, scalable, and high-precision manufacturing. Appl Phys Rev. 2025;12(3):031305. doi: 10.1063/5.0271688
- Rufo J, Zhang P, Zhong R, Lee LP, Huang TJ. A sound approach to advancing healthcare systems: the future of biomedical acoustics. Nat Commun. 2022;13(1):3459. doi: 10.1038/s41467-022-31014-y
- Wang J, Shang X, Zhou X, Chen H. Research advances of acoustic particle manipulation techniques in field-assisted manufacturing. Nanoscale. 2025;17(10):5654-5671. doi: 10.1039/d4nr04891a
- Stroganov V, Pant J, Stoychev G, et al. 4D biofabrication: 3D cell patterning using shape‐changing films. Adv Funct Mater. 2018;28(11):1706248. doi: 10.1002/adfm.201706248
- Schrage M, Medany M, Ahmed D. Ultrasound microrobots with reinforcement learning. Adv Mater Technol. 2023;8(10):2201702. doi: 10.1002/admt.202201702
- Zhang Z, Sukhov A, Harting J, Malgaretti P, Ahmed D. Rolling microswarms along acoustic virtual walls. Nat Commun. 2022;13(1):7347. doi: 10.1038/s41467-022-35078-8
- Burstow R, Andrés D, Jiménez N, Camarena F, Thanou M, Pouliopoulos AN. Acoustic holography in biomedical applications. Phys Med Biol. 2025;70(6): 06TR01. doi: 10.1088/1361-6560/adb89a
- Ma Z, Holle AW, Melde K, et al. Acoustic holographic cell patterning in a biocompatible hydrogel. Adv Mater. 2020;32(4):e1904181. doi: 10.1002/adma.201904181
- Yang S, Tian Z, Wang Z, et al. Harmonic acoustics for dynamic and selective particle manipulation. Nat Mater. 2022;21(5):540-546. doi: 10.1038/s41563-022-01210-8
- Guex AG, Di Marzio N, Eglin D, Alini M, Serra T. The waves that make the pattern: a review on acoustic manipulation in biomedical research. Mater Today Bio. 2021;10:100110. doi: 10.1016/j.mtbio.2021.100110
- Zhang C, Brunet P, Liu S, et al. Acoustofluidics at audible frequencies—a review. Eng. 2025;44:51-72. doi: 10.1016/j.eng.2024.03.020
- Qian J , Huang W , Yang R , Lam RHW , Lee JE . Low-cost laser-cut patterned chips for acoustic concentration of micro- to nanoparticles and cells by operating over a wide frequency range. Analyst. 2021;146(10):3280-3288. doi: 10.1039/d1an00197c
- Maramizonouz S, Tao X, Rahmati M, et al. Flexible and bendable acoustofluidics for particle and cell patterning. Int J Mech Sci. 2021;202-203:106536. doi: 10.1016/j.ijmecsci.2021.106536
- Armstrong JPK, Maynard SA, Pence IJ, Franklin AC, Drinkwater BW, Stevens MM. Spatiotemporal quantification of acoustic cell patterning using Voronoï tessellation. Lab Chip. 2019;19(4):562-573. doi: 10.1039/c8lc01108g
- Raymond SJ, Collins DJ, O’Rorke R, Tayebi M, Ai Y, Williams J. A deep learning approach for designed diffraction-based acoustic patterning in microchannels. Sci Rep. 2020;10(1):8745. doi: 10.1038/s41598-020-65453-8
- Zhu Z, Chen T, Huang F, et al. Free-boundary microfluidic platform for advanced materials manufacturing and applications. Adv Mater. 2024;36(7):e2304840. doi: 10.1002/adma.202304840
- Liu S, Li Y, Liu Q, et al. Thermal manipulation in multi‐layered anisotropic materials via computed thermal patterning. Adv Funct Mater. 2022;32(13):2109674. doi: 10.1002/adfm.202109674
- Ma Z, Fischer P. Acoustic micro-manipulation and its biomedical applications. Eng. 2023;24:13-16. doi: 10.1016/j.eng.2022.06.006
- Rudenko OV, Sarvazyan AP, Emelianov SY. Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium. J Acoust Soc Am. 1996;99(5):2791-2798. doi: 10.1121/1.414805
- Bruus H. Acoustofluidics 7: the acoustic radiation force on small particles. Lab Chip. 2012;12(6):1014-1021. doi: 10.1039/c2lc21068a
- Sarvazyan AP, Rudenko OV, Fatemi M. Acoustic radiation force: a review of four mechanisms for biomedical applications. IEEE Trans Ultrason Ferroelectr Freq Control. 2021;68(11):3261-3269. doi: 10.1109/TUFFC.2021.3112505
- Yin Q, Li X, Ma Z, Zhang W. Acoustically activated nozzle for microdroplet generation and dispensing. Phys Rev Appl. 2023;20(2):024067. doi: 10.1103/PhysRevApplied.20.024067
- Maramizonouz S, Rahmati M, Link A, Franke T, Fu Y. Numerical and experimental studies of acoustic streaming effects on microparticles/droplets in microchannel flow. Int J Eng Sci. 2021;169:103563. doi: 10.1016/j.ijengsci.2021.103563
- Huang Z, Su M, Yang Q, et al. A general patterning approach by manipulating the evolution of two-dimensional liquid foams. Nat Commun. 2017;8:14110. doi: 10.1038/ncomms14110
- Sarvazyan AP, Rudenko OV, Nyborg WL. Biomedical applications of radiation force of ultrasound: historical roots and physical basis. Ultrasound Med Biol. 2010;36(9):1379-1394. doi: 10.1016/j.ultrasmedbio.2010.05.015
- Beyer RT. Radiation pressure—the history of a mislabeled tensor. J Acoust Soc Am. 1978;63(4):1025-1030. doi: 10.1121/1.381833
- Gor’kov LP. On the forces acting on a small particle in an acoustical field in an ideal fluid. In: Selected Papers of Lev P. Gor’kov. 2014;315-317. doi: 10.1142/9789814366960_0008
- Laurell T, Petersson F, Nilsson A. Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem Soc Rev. 2007;36(3):492-506. doi: 10.1039/b601326k
- Doinikov AA, Regnault G, Mauger C, Blanc-Benon P, Inserra C. Acoustic microstreaming produced by two interacting gas bubbles undergoing axisymmetric shape oscillations. J Fluid Mech. 2021;931:A19. doi: 10.1017/jfm.2021.926
- Rabaud D, Thibault P, Mathieu M, Marmottant P. Acoustically bound microfluidic bubble crystals. Phys Rev Lett. 2011;106(13):134501. doi: 10.1103/PhysRevLett.106.134501
- Saeidi D, Saghafian M, Haghjooy Javanmard S, Wiklund M. A Quantitative study of the secondary acoustic radiation force on biological cells during acoustophoresis. Micromachines (Basel). 2020;11(2):152. doi: 10.3390/mi11020152
- Zhang P, Bachman H, Ozcelik A, Huang TJ. Acoustic microfluidics. Annu Rev Anal Chem (Palo Alto Calif). 2020;13(1):17-43. doi: 10.1146/annurev-anchem-090919-102205
- Wiklund M, Green R, Ohlin M. Acoustofluidics 14: applications of acoustic streaming in microfluidic devices. Lab Chip. 2012;12(14):2438-2451. doi: 10.1039/c2lc40203c
- Lighthill J. Acoustic streaming. J Sound Vib. 1978;61(3):391-418. doi: 10.1016/0022-460x(78)90388-7
- Červenka M, Bednařík M. Effect of inhomogeneous temperature fields on acoustic streaming structures in resonators. J Acoust Soc Am. 2017;141(6):4418. doi: 10.1121/1.4985386
- Doinikov AA, Gerlt MS, Pavlic A, Dual J. Acoustic streaming produced by sharp-edge structures in microfluidic devices. Microfluid Nanofluid. 2020;24(5):32. doi: 10.1007/s10404-020-02335-5
- Sadhal SS. Acoustofluidics 13: analysis of acoustic streaming by perturbation methods. Lab Chip. 2012;12(13): 2292-2300. doi: 10.1039/c2lc40202e
- Liu S, Yang Y, Ni Z, et al. Investigation into the effect of acoustic radiation force and acoustic streaming on particle patterning in acoustic standing wave fields. Sensors (Basel). 2017;17(7):1664. doi: 10.3390/s17071664
- Shi Q, Wang B, Mao H, Liu Y. Calibration and measurement of micrometre-scale pollen particles for discrete element method parameters based on the Johnson-Kendal-Roberts model. Biosyst Eng. 2024;237:83-91. doi: 10.1016/j.biosystemseng.2023.11.013
- Comeau ES, Vander Horst MA, Raeman CH, Child SZ, Hocking DC, Dalecki D. In vivo acoustic patterning of endothelial cells for tissue vascularization. Sci Rep. 2023;13(1):16082. doi: 10.1038/s41598-023-43299-0
- Yin Q, Chen K, Zhou C, et al. Acoustofluidic pick-and-place operation for label-free spatial assembly of cellular spheroid. Int J Extrem Manuf. 2025;7(4):045501. doi: 10.1088/2631-7990/adbb34
- Altay R, Yapici MK, Koşar A. A hybrid spiral microfluidic platform coupled with surface acoustic waves for circulating tumor cell sorting and separation: a numerical study. Biosensors (Basel). 2022;12(3):171. doi: 10.3390/bios12030171
- Kang B, Shin J, Park HJ, et al. High-resolution acoustophoretic 3D cell patterning to construct functional collateral cylindroids for ischemia therapy. Nat Commun. 2018;9(1):5402. doi: 10.1038/s41467-018-07823-5
- Liu X, Li Y, Liu F, et al. μSonic-hand: biomedical micromanipulation driven by acoustic gas-liquid-solid interactions. Sci Adv. 2025;11(13):eads8167. doi: 10.1126/sciadv.ads8167
- Melde K, Kremer H, Shi M, et al. Compact holographic sound fields enable rapid one-step assembly of matter in 3D. Sci Adv. 2023;9(6):eadf6182. doi: 10.1126/sciadv.adf6182
- Gao Z, Wang S, Sui Y, et al. A multifunctional acoustic tweezer for heterogenous assembloids patterning. Small Struct. 2023;4(5):2370012. doi: 10.1002/sstr.202370012
- Alarcón H, Herrera-Muñoz M, Périnet N, Mujica N, Gutiérrez P, Gordillo L. Faraday-wave contact-line shear gradient induces streaming and tracer self-organization: from vortical to hedgehoglike patterns. Phys Rev Lett. 2020;125(25):254505. doi: 10.1103/PhysRevLett.125.254505
- Tognato R, Parolini R, Jahangir S, et al. Sound-based assembly of three-dimensional cellularized and acellularized constructs. Mater Today Bio. 2023;22:100775. doi: 10.1016/j.mtbio.2023.100775
- Chansoria P, Narayanan LK, Schuchard K, Shirwaiker R. Ultrasound-assisted biofabrication and bioprinting of preferentially aligned three-dimensional cellular constructs. Biofabrication. 2019;11(3):035015. doi: 10.1088/1758-5090/ab15cf
- Lei J, Cheng F, Liu G, Li K, Guo Z. Dexterous formation of unconventional Chladni patterns using standing bulk acoustic waves. Appl Phys Lett. 2020;117(18). doi: 10.1063/5.0032304
- Gesellchen F, Bernassau AL, Déjardin T, Cumming DR, Riehle MO. Cell patterning with a heptagon acoustic tweezer—application in neurite guidance. Lab Chip. 2014;14(13):2266-2275. doi: 10.1039/c4lc00436a
- Deshmukh DV, Reichert P, Zvick J, et al. Continuous production of acoustically patterned cells within hydrogel fibers for musculoskeletal tissue engineering. Adv Funct Mater. 2022;32(30):2113038. doi: 10.1002/adfm.202113038
- Yin Q, Luo Y, Yu X, et al. Acoustic cell patterning for structured cell-laden hydrogel fibers/tubules. Adv Sci (Weinh). 2024;11(14):e2308396. doi: 10.1002/advs.202308396
- Comeau ES, Hocking DC, Dalecki D. Ultrasound patterning technologies for studying vascular morphogenesis in 3D. J Cell Sci. 2017;130(1):232-242. doi: 10.1242/jcs.188151
- Ozcelik A, Rufo J, Guo F, et al. Acoustic tweezers for the life sciences. Nat Methods. 2018;15(12):1021-1028. doi: 10.1038/s41592-018-0222-9
- Nguyen TD, Tran VT, Pudasaini S, et al. Large‐scale fabrication of 3D scaffold‐based patterns of microparticles and breast cancer cells using reusable acoustofluidic device. Adv Eng Mater. 2021;23(6):2001377. doi: 10.1002/adem.202001377
- Wu M, Ozcelik A, Rufo J, Wang Z, Fang R, Jun Huang T. Acoustofluidic separation of cells and particles. Microsyst Nanoeng. 2019;5(1):32. doi: 10.1038/s41378-019-0064-3
- Wu M, Ouyang Y, Wang Z, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc Natl Acad Sci U S A. 2017;114(40):10584-10589. doi: 10.1073/pnas.1709210114
- Tian Z, Yang S, Huang PH, et al. Wave number-spiral acoustic tweezers for dynamic and reconfigurable manipulation of particles and cells. Sci Adv. 2019;5(5):eaau6062. doi: 10.1126/sciadv.aau6062
- Shi J, Ahmed D, Mao X, Lin SC, Lawit A, Huang TJ. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip. 2009;9(20):2890-2895. doi: 10.1039/b910595f
- Jiang D, Liu J, Pan Y, Zhuang L, Wang P. Surface acoustic wave (SAW) techniques in tissue engineering. Cell Tissue Res. 2021;386(2):215-226. doi: 10.1007/s00441-020-03397-1
- Xu M, Lee PVS, Collins DJ. Microfluidic acoustic sawtooth metasurfaces for patterning and separation using traveling surface acoustic waves. Lab Chip. 2021;22(1):90-99. doi: 10.1039/d1lc00711d
- Melde K, Mark AG, Qiu T, Fischer P. Holograms for acoustics. Nature. 2016;537(7621):518-522. doi: 10.1038/nature19755
- Melde K, Choi E, Wu Z, Palagi S, Qiu T, Fischer P. Acoustic fabrication via the assembly and fusion of particles. Adv Mater. 2018;30(3):1704507. doi: 10.1002/adma.201704507
- Brown MD. Phase and amplitude modulation with acoustic holograms. Appl Phys Lett. 2019;115(5):053701. doi: 10.1063/1.5110673
- Marzo A, Seah SA, Drinkwater BW, Sahoo DR, Long B, Subramanian S. Holographic acoustic elements for manipulation of levitated objects. Nat Commun. 2015;6:8661. doi: 10.1038/ncomms9661
- Marzo A, Drinkwater BW. Holographic acoustic tweezers. Proc Natl Acad Sci U S A. 2019;116(1):84-89. doi: 10.1073/pnas.1813047115
- Xu M, Wang J, Harley WS, Lee PVS, Collins DJ. Programmable acoustic holography using medium-sound-speed modulation. Adv Sci (Weinh). 2023;10(23):e2301489. doi: 10.1002/advs.202301489
- Kucher S, Wesfreid JE, Cobelli PJ. Discovery of propagating trains of oscillons over Faraday waves in a 1D experiment. Europhys Lett. 2025,150(3):33003. doi: 10.1209/0295-5075/add180
- Chen P, Viñals J. Amplitude equation and pattern selection in Faraday waves. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999;60(1):559-570. doi: 10.1103/physreve.60.559
- Lu HF, Tien WH. Comparison of acoustic streaming flow patterns induced by solid, liquid and gas obstructions. Micromachines (Basel). 2020;11(10):891. doi: 10.3390/mi11100891
- Chen P, Luo Z, Güven S, et al. Microscale assembly directed by liquid-based template. Adv Mater. 2014;26(34):5936-5941. doi: 10.1002/adma.201402079
- Gu L, Jiang S, Xu X, et al. Size- and density-dependent acoustic differential bioassembly of spatially-defined heterocellular architecture. Biofabrication. 2022;15(1):015019. doi: 10.1088/1758-5090/aca79c
- Bush JWM, Oza AU. Hydrodynamic quantum analogs. Rep Prog Phys. 2020;84(1):017001. doi: 10.1088/1361-6633/abc22c
- Xu F, Celli J, Rizvi I, Moon S, Hasan T, Demirci U. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol J. 2011;6(2):204-212. doi: 10.1002/biot.201000340
- Foresti D, Kroll KT, Amissah R, et al. Acoustophoretic printing. Sci Adv. 2018;4(8):eaat1659. doi: 10.1126/sciadv.aat1659
- Hayakawa T, Sakuma S, Fukuhara T, Yokoyama Y, Arai F. A single cell extraction chip using vibration-induced whirling flow and a thermo-responsive gel pattern. Micromachines. 2014; 5(3):681-696. doi: 10.3390/mi5030681
- Harley W S, Kolesnik K, Xu M, et al. 3D Acoustofluidics via sub-wavelength micro-resonators. Adv Funct Mater. 2023;33(9):10. doi: 10.1016/j.biosystemseng.2020.03.003
- Surappa S, Pavagada S, Soto F, et al. Dynamically reconfigurable acoustofluidic metasurface for subwavelength particle manipulation and assembly. Nat Commun. 2025;16(1):494. doi: 10.1038/s41467-024-55337-0
- Jiang Y, Li H, Hua L, et al. Three-dimensional flow breakup characteristics of a circular jet with different nozzle geometries. Biosyst Eng. 2020;193:216-231. doi: 10.1016/j.biosystemseng.2020.03.003
- Bai X, Bin S, Yuguo D, et al. Parallel trapping, patterning, separating and rotating of micro-objects with various sizes and shapes using acoustic microstreaming. Sens Actuators A Phys. 2020;315:112340. doi: 10.1016/j.sna.2020.112340
- Hayakawa T, Sakuma S, Arai F. On-chip 3D rotation of oocyte based on a vibration-induced local whirling flow. Microsyst Nanoeng. 2015;1(1):1-9. doi: 10.1038/micronano.2015.1
- Collins DJ, O’Rorke R, Neild A, Han J, Ai Y. Acoustic fields and microfluidic patterning around embedded micro-structures subject to surface acoustic waves. Soft Matter. 2019;15(43):8691-8705. doi: 10.1039/c9sm00946a
- Huo J, Bai X, Yong J, et al. How to adjust bubble’s adhesion on solid in aqueous media: Femtosecond laser-ablated patterned shape-memory polymer surfaces to achieve bubble multi-manipulation. Chem Eng J. 2021;414:128694. doi: 10.1016/j.cej.2021.128694
- Yang Y, Jin K, Qi H, et al. Acoustic streaming microgripper for programmable three-dimensional manipulation of single cells. npj Acoust. 2025;1(1):19. doi: 10.1038/s44384-025-00022-9
- Wang L, Zhang C, Ma J, et al. Mammalian Ste20-like kinase 1 regulates AMPK to mitigate the progression of non-alcoholic fatty liver disease. Eur J Med Res. 2025; 30(1):296. doi: 10.1186/s40001-025-02557-9
- Zhou Y, Xu Q, Dong Y, Zhu S, Song S, Sun S. Supplementation of mussel peptides reduces aging phenotype, lipid deposition and oxidative stress in D-galactose-induce aging mice. J Nutr Health Aging. 2017;21(10):1314-1320. doi: 10.1007/s12603-016-0862-3
- Cassotta M, Forbes-Hernández TY, Calderón Iglesias R, et al. Links between nutrition, infectious diseases, and microbiota: emerging technologies and opportunities for human-focused research. Nutrients. 2020;12(6):1827. doi: 10.3390/nu12061827
- Zhang J, Qiu Y, Zhang H, Fan Y. Impact of frailty on adverse outcomes in patients with abdominal aortic aneurysm undergoing surgery: a systematic review and meta-analysis. J Nutr Health Aging. 2024;28(5):100213. doi: 10.1016/j.jnha.2024.100213
- Cushing K, Undvall E, Ceder Y, Lilja H, Laurell T. Reducing WBC background in cancer cell separation products by negative acoustic contrast particle immuno-acoustophoresis. Anal Chim Acta. 2018;1000:256-264. doi: 10.1016/j.aca.2017.11.064
- Li J, Li H. New insights into the folding-unfolding mechanism and conformations of cytochrome C. Chem Sci. 2022;13(25):7498-7508. doi: 10.1039/d2sc01126c
- Abraham Punnoose J, Thomas KJ, Chandrasekaran AR, et al. High-throughput single-molecule quantification of individual base stacking energies in nucleic acids. Nat Commun. 2023;14(1):631. doi: 10.1038/s41467-023-36373-8
- Woolf MS, Dignan LM, Karas SM, et al. Characterization of a centrifugal microfluidic orthogonal flow platform. Micromachines (Basel). 2022;13(3):487. doi: 10.3390/mi13030487
- Sriphutkiat Y, Kasetsirikul S, Zhou Y. Formation of cell spheroids using standing surface acoustic wave (SSAW). Int J Bioprint. 2017;4(1):130. doi: 10.18063/IJB.v4i1.130
- Zheng W, Jiang X. Synthesizing living tissues with microfluidics. Acc Chem Res. 2018;51(12):3166-3173. doi: 10.1021/acs.accounts.8b00417
- Guldiken R, Jo MC, Gallant ND, Demirci U, Zhe J. Sheathless size-based acoustic particle separation. Sensors (Basel). 2012;12(1):905-922. doi: 10.3390/s120100905
- Brugger MS, Baumgartner K, Mauritz SCF, et al. Vibration enhanced cell growth induced by surface acoustic waves as in vitro wound-healing model. Proc Natl Acad Sci U S A. 2020;117(50):31603-31613. doi: 10.1073/pnas.2005203117
- Jeger-Madiot N, Arakelian L, Setterblad N, et al. Self-organization and culture of mesenchymal stem cell spheroids in acoustic levitation. Sci Rep. 2021;11(1):8355. doi: 10.1038/s41598-021-87459-6
- Guo X, Sun M, Yang Y, et al. Controllable cell deformation using acoustic streaming for membrane permeability modulation. Adv Sci (Weinh). 2020;8(3):2002489. doi: 10.1002/advs.202002489
- Chiang HJ, Yeh SL, Peng CC, Liao WH, Tung YC. Polydimethylsiloxane-polycarbonate microfluidic devices for cell migration studies under perpendicular chemical and oxygen gradients. J Vis Exp. 2017;(120): 55292. doi: 10.3791/55292
- Hadady H, Alam A, Khurana I, et al. Optimizing alkaline hydrothermal treatment for biomimetic smart metallic orthopedic and dental implants. J Mater Sci Mater Med. 2024;35(1):31. doi: 10.1007/s10856-024-06794-y
- Sugiura S, Cha JM, Yanagawa F, Zorlutuna P, Bae H, Khademhosseini A. Dynamic three-dimensional micropatterned cell co-cultures within photocurable and chemically degradable hydrogels. J Tissue Eng Regen Med. 2016;10(8):690-699. doi: 10.1002/term.1843
- Fan L, Luo T, Guan Z, et al. Gravitational sedimentation-based approach for ultra-simple and flexible cell patterning coculture on microfluidic device. Biofabrication. 2020;12(3):035005. doi: 10.1088/1758-5090/ab80b5
- Wei J, Sun Y, Wang H, et al. Designer cellular spheroids with DNA origami for drug screening. Sci Adv. 2024;10(29):eado9880. doi: 10.1126/sciadv.ado9880
- Soto J, Linsley C, Song Y, et al. Engineering materials and devices for the prevention, diagnosis, and treatment of COVID-19 and infectious diseases. Nanomaterials (Basel). 2023;13(17):2455. doi: 10.3390/nano13172455
- Oliveira NM, Martins‐Cruz C, Oliveira MB, Reis RL, Mano JF. Coculture of spheroids/2D cell layers using a miniaturized patterned platform as a versatile method to produce scaffold‐free tissue engineering building blocks. Adv Biosyst. 2017;2(1):1700069. doi: 10.1002/adbi.201700069
- Chen J, Zhang X, Cross R Jr, et al. Atherosclerotic three-layer nanomatrix vascular sheets for high-throughput therapeutic evaluation. Biomaterials. 2024;305:122450. doi: 10.1016/j.biomaterials.2023.122450
- Liu X, Cheng J, Zhao Y. Tumor microenvironment based on extracellular matrix hydrogels for on-chip drug screening. Biosensors (Basel). 2024;14(9):429. doi: 10.3390/bios14090429
- Shan H, Chen M, Zhao S, et al. Acoustic virtual 3D scaffold for direct-interacting tumor organoid-immune cell coculture systems. Sci Adv. 2024;10(47):eadr4831. doi: 10.1126/sciadv.adr4831
- Wu Z, Ao Z, Cai H, et al. Acoustofluidic assembly of primary tumor-derived organotypic cell clusters for rapid evaluation of cancer immunotherapy. J Nanobiotechnology. 2023;21(1):40. doi: 10.1186/s12951-023-01786-6
- Wu Y, Zhao Y, Islam K, et al. Acoustofluidic engineering functional vessel-on-a-chip. Preprint. ArXiv. 2023;arXiv:2308.06219v2
- He Z, Wang J, Fike BJ, et al. A portable droplet generation system for ultra-wide dynamic range digital PCR based on a vibrating sharp-tip capillary. Biosens Bioelectron. 2021;191:113458. doi: 10.1016/j.bios.2021.113458
- Ji S, Guvendiren M. Complex 3D bioprinting methods. APL Bioeng. 2021;5(1):011508. doi: 10.1063/5.0034901
- Ginghină O, Hudiță A, Zaharia C, et al. Current landscape in organic nanosized materials advances for improved management of colorectal cancer patients. Materials (Basel). 2021;14(9):2440. doi: 10.3390/ma14092440
- Ricci G, Gibelli F, Sirignano A. Three-dimensional bioprinting of human organs and tissues: bioethical and medico-legal implications examined through a scoping review. Bioengineering (Basel). 2023;10(9):1052. doi: 10.3390/bioengineering10091052
- Ao Z, Cai H, Wu Z, et al. Controllable fusion of human brain organoids using acoustofluidics. Lab Chip. 2021;21(4):688-699. doi: 10.1039/d0lc01141j
- Son J, Bang MS, Park JK. Hand-maneuverable collagen sheet with micropatterns for 3D modular tissue engineering. ACS Biomater Sci Eng. 2019;5(1):339-345. doi: 10.1021/acsbiomaterials.8b01066
- Seguret M, Vermersch E, Jouve C, Hulot JS. Cardiac organoids to model and heal heart failure and cardiomyopathies. Biomedicines. 2021;9(5):563. doi: 10.3390/biomedicines9050563
- Agrawal P, Zhuang S, Dreher S, Mitter S, Ahmed D. SonoPrint: acoustically assisted volumetric 3D printing for composites. Adv Mater. 2024;36(40):e2408374. doi: 10.1002/adma.202408374
- Armstrong JPK, Pchelintseva E, Treumuth S, et al. Tissue engineering cartilage with deep zone cytoarchitecture by high-resolution acoustic cell patterning. Adv Healthc Mater. 2022;11(24):e2200481. doi: 10.1002/adhm.202200481
- Yu W, Zhu H, Upreti N, et al. Acoustography by beam engineering and acoustic control node: BEACON. Adv Sci (Weinh). 2024;11(46):e2403742. doi: 10.1002/advs.202403742
- Derayatifar M, Habibi M, Bhat R, Packirisamy M. Holographic direct sound printing. Nat Commun. 2024;15(1):6691. doi: 10.1038/s41467-024-50923-8
- Song K, Li G, Zu X, Du Z, Liu L, Hu Z. The fabrication and application mechanism of microfluidic systems for high throughput biomedical screening: a review. Micromachines (Basel). 2020;11(3):297. doi: 10.3390/mi11030297
- Weaver WM, Tseng P, Kunze A, et al. Advances in high-throughput single-cell microtechnologies. Curr Opin Biotechnol. 2014;25:114-123. doi: 10.1016/j.copbio.2013.09.005
- Zhang YS, Yue K, Aleman J, et al. 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng. 2017;45(1):148-163. doi: 10.1007/s10439-016-1612-8
- Schneck H, Blassl C, Meier-Stiegen F, et al. Analysing the mutational status of PIK3CA in circulating tumor cells from metastatic breast cancer patients. Mol Oncol. 2013;7(5):976-986. doi: 10.1016/j.molonc.2013.07.007
- Ge MJ, Wu QC, Wang M, et al. Detection of circulating tumor cells (CTCs) in patients with lung carcinoma by real-time fluorescent quantitative-PCR approach before and after chemotherapy. Health. 2009;01(03):231-238. doi: 10.4236/health.2009.13038
- Song D, Wang Z, Li X, et al. Application of circulating tumor cells in peripheral blood in judging the prognosis of patients with renal cancer and related indexes of blood coagulation. Open J Urol. 2022;12(1):1-6. doi: 10.4236/oju.2022.121001
- Magnusson C, Augustsson P, Undvall Anand E, et al. Acoustic enrichment of heterogeneous circulating tumor cells and clusters from metastatic prostate cancer patients. Anal Chem. 2024;96(18):6914-6921. doi: 10.1021/acs.analchem.3c05371
- Undvall Anand E, Magnusson C, Lenshof A, Ceder Y, Lilja H, Laurell T. Two-step acoustophoresis separation of live tumor cells from whole blood. Anal Chem. 2021;93(51):17076-17085. doi: 10.1021/acs.analchem.1c04050
- Zhang Y, Zhang Z, Zheng D, Huang T, Fu Q, Liu Y. Label-free separation of circulating tumor cells and clusters by alternating frequency acoustic field in a microfluidic chip. Int J Mol Sci. 2023;24(4):3338. doi: 10.3390/ijms24043338
- Wu H, Chen H, Shao X, et al. All-wood-based hybrid membrane derived from waste sawdust for efficient emulsion separation. Food Bioprod Process. 2024;149:92-99. doi: 10.1016/j.fbp.2024.11.017
- Ahmad K, Din Z, Ullah H, et al. Preparation and characterization of bio‐based nanocomposites packaging films reinforced with cellulose nanofibers from unripe banana peels. Starch-Stärke. 2022;74(5-6):2100283. doi: 10.1002/star.202100283
- Liu Y, Jing ZF, Zhang T, et al. Fabrication of functional biomass carbon aerogels derived from sisal fibers for application in selenium extraction. Food Bioprod Process. 2018;111:93-103. doi: 10.1016/j.fbp.2018.07.004
- Zhang T, Yuan D, Guo Q, et al. Preparation of a renewable biomass carbon aerogel reinforced with sisal for oil spillage clean-up: inspired by green leaves to green tofu. Food Bioprod Process. 2019;114:154-162. doi: 10.1016/j.fbp.2018.12.007
- Jing Z, Ding J, Zhang T, et al. Flexible, versatility and superhydrophobic biomass carbon aerogels derived from corn bracts for efficient oil/water separation. Food Bioprod Process. 2019;115:134-142. doi: 10.1016/j.fbp.2019.03.010
- Liu C, Xue Y, Guo J, et al. Citric acid and sucrose pretreatment improves the crispness of puffed peach chips by regulating cell structure and mechanical properties. LWT-Food Sci Technol. 2021;142:111036. doi: 10.1016/j.lwt.2021.111036
- Chen Z, Huang Q, Xia Q, et al. Intact endosperm cells in buckwheat flour limit starch gelatinization and digestibility in vitro. Food Chem. 2020;330:127318. doi: 10.1016/j.foodchem.2020.127318
- Li HT, Chen SQ, Bui AT, Xu B, Dhital S. Natural ‘capsule’in food plants: cell wall porosity controls starch digestion and fermentation. Food Hydrocoll. 2021;117:106657. doi: 10.1016/j.foodhyd.2021.106657
- Sun L, Han J, Wu J, et al. Cellulose pretreatment with inorganic salt hydrate: Dissolution, regeneration, structure and morphology. Ind Crops Prod. 2022;180:114722. doi: 10.1016/j.indcrop.2022.114722
- Yang X, Ma L, Zheng J, Qiao Y, Bai J, Cai J. Effects of atmospheric pressure plasma treatment on the quality and cellulose modification of brown rice. Innov Food Sci Emerg Technol. 2024;96:103744. doi: 10.1016/j.ifset.2024.103744
- Pu Y, Zhou Q, Yu L, et al. Longitudinal analyses of lignin deposition in green asparagus by microscopy during high oxygen modified atmosphere packaging. Food Packag Shelf Life. 2020;25:100536. doi: 10.1016/j.fpsl.2020.100536
- Liu Y, Sun W, Li B, et al. Dehydration characteristics and evolution of physicochemical properties of Platycodon grandiflorum (Jacq. A. DC.) roots (PGR) during pulse-spouted microwave vacuum drying (PSMVD). Ind Crops Prod. 2022;177:114449. doi: 10.1016/j.indcrop.2021.114449
- Khin MN, Easdani M, Aziz T, et al. Schiff ’s base crosslinked gelatin-dialdehyde cellulose film with gallic acid for improved water resistance and antimicrobial properties. Food Hydrocoll. 2025;166:111331. doi: 10.1016/j.foodhyd.2025.111331
- Li Y, Kong W, Li M, et al. Litsea cubeba essential oil as the potential natural fumigant: Inhibition of Aspergillus flavus and AFB1 production in licorice. Ind Crops Prod. 2015;80:186-193. doi: 10.1016/j.indcrop.2015.11.008
- Su M, Liu F, Luo Z, et al. The antibacterial activity and mechanism of chlorogenic acid against foodborne pathogen Pseudomonas aeruginosa. Foodborne Pathog Dis. 2019;16(12):823-830. doi: 10.1089/fpd.2019.2678
- Dai J, Bai M, Li C, Cheang WS, Cui H, Lin L. Antibacterial properties of citral against Staphylococcus aureus: from membrane damage to metabolic inhibition. Food Biosci. 2023;53:102770. doi: 10.1016/j.fbio.2023.102770
- Song L, Yang H, Cheng S, et al. Combination effects of ultrasound and citral nanoemulsion against Shigella flexneri and the preservation effect on fresh-cut carrots. Food Control. 2024;155:110069. doi: 10.1016/j.foodcont.2023.110069
- Kang L, Liang Q, Liu Y, et al. Preparation technology and preservation mechanism of novel Ag NPs-loaded ZIF-67 packaging film. Food Packag Shelf Life. 2024;45:101338. doi: 10.1016/j.fpsl.2024.101338
- Jayan H, Yin L, Xue S, Zou X, Guo Z. Raman spectroscopy-based microfluidic platforms: a promising tool for detection of foodborne pathogens in food products. Food Res Int. 2024;180:114052. doi: 10.1016/j.foodres.2024.114052
- Xia JJ, Zou B, Liu F, Wang PY, Yan Y. Sensitive glucose biosensor based on cyclodextrin modified carbon nanotubes for detecting glucose in honey. J Food Compos Anal. 2022;105: 104221. doi: 10.1016/j.jfca.2021.104221
- Hashim SBH, Tahir HE, Lui L, et al. Smart films of carbohydrate-based/sunflower wax/purple Chinese cabbage anthocyanins: a biomarker of chicken freshness. Food Chem. 2023;399:133824. doi: 10.1016/j.foodchem.2022.133824
- Hussain M, Xu J, Ahmad I, et al. Efficacy of nano-based strategies on the safe delivery and bioavailability of vitamin D: review. Food Rev Int. 2024;40(6):1581-1599. doi: 10.1080/87559129.2023.2225591
- Luo S, Yu L, Song J, Wu C, Li Y, Zhang C. Hybridization of glucosyl stevioside and hydroxypropyl methylcellulose to improve the solubility of lutein. Food Chem. 2022; 394:133490. doi: 10.1016/j.foodchem.2022.133490
- Xiao X, Bai J, Zhang J, Wu J, Dong Y. Inhibitory effect of fermented selected barley extracts with Lactobacillus plantarum dy-1 on the proliferation of human HT-29 cells. J Food Biochem. 2019;43(11):e12989. doi: 10.1111/jfbc.12989
- Farid W, Masud T, Sohail A, et al. Gastrointestinal transit tolerance, cell surface hydrophobicity, and functional attributes of Lactobacillus acidophilus strains isolated from indigenous dahi. Food Sci Nutr. 2021;9(9):5092-5102. doi: 10.1002/fsn3.2468
- Chen Q, Fang Z, Yang Z, et al. Lactobacillus plantarum-derived extracellular vesicles modulate macrophage polarization and gut homeostasis for alleviating ulcerative colitis. J Agric Food Chem. 2024;72(26):14713-14726. doi: 10.1021/acs.jafc.4c01758
- Geng A, Li N, Zayas-Garriga A, Xie R, Zhu D, Sun J. Direct conversion of minimally pretreated corncob by enzyme-intensified microbial consortia. Agric. 2024;14 (9):1610. doi: 10.3390/agriculture14091610
- Pan S, Zabed HM, Wei Y, Qi X. Technoeconomic and environmental perspectives of biofuel production from sugarcane bagasse: current status, challenges and future outlook. Ind Crops Prod. 2022;188:115684. doi: 10.1016/j.indcrop.2022.115684
- Huang W, He X, Wu J, et al. The evaluation of deep eutectic solvents and ionic liquids as cosolvents system for improving cellulase properties. Ind Crops Prod. 2023;197:116555. doi: 10.1016/j.indcrop.2023.116555
- Ji QH, Yu XJ, Yagoub AEG, Chen L, Zhou CS. Efficient removal of lignin from vegetable wastes by ultrasonic and microwave-assisted treatment with ternary deep eutectic solvent. Ind Crops Prod. 2020;149:112357. doi: 10.1016/j.indcrop.2020.112357
- Qian J, Zhou C, Ma H, Li S, Yagoub AEA, Abdualrahman MAY. Biological effect and inactivation mechanism of bacillus subtilis exposed to pulsed magnetic field: morphology, membrane permeability and intracellular contents. Food Biophys. 2016;11(4):429-435. doi: 10.1007/s11483-016-9442-7
- Qian J, Zhou C, Ma H, Li S, Yagoub AEA, Abdualrahman MAY. Proteomics analyses and morphological structure of bacillus subtilis inactivated by pulsed magnetic field. Food Biophys. 2016;11(4):436-445. doi: 10.1007/s11483-016-9444-5
- Ijinu TP, De Lellis LF, Shanmugarama S, et al. Anthocyanins as immunomodulatory dietary supplements: a nutraceutical perspective and micro-/nano-strategies for enhanced bioavailability. Nutrients. 2023;15(19):4152. doi: 10.3390/nu15194152
- Miao T, Chen K, Wei X, et al. High-throughput fabrication of cell spheroids with 3D acoustic assembly devices. Int J Bioprint. 2023;9(4):733. doi: 10.18063/ijb.733
- Xu D, Pei Y, Qiu W. Continuous and tunable droplet splitting using standing-wave acoustofluidics. Lab Chip. 2025. doi: 10.1039/d5lc00592b
- Sun J, Yao K, An J, Jing L, Huang K, Huang D. Machine learning and 3D bioprinting. Int J Bioprint. 2023;9(4):717. doi: 10.18063/ijb.717
- Komosa ER, Lin WH, Ogle BM. Toward robust and reproducible pluripotent stem cell expansion in bioprinted GelMA constructs. Int J Bioprint. 2025;11(1):363-381. doi: 10.36922/ijb.4633
- Yang Z, Liu S, Li L, et al. From nano robotic manipulation to nano manipulation robot. SmartBot. 2025;1(3):e12021. doi: 10.1002/smb2.12021
- Ates G, Bartolo P. Computational fluid dynamics for the optimization of internal bioprinting parameters and mixing conditions. Int J Bioprinting. 2023;9(6):0219. doi: 10.36922/ijb.0219
- Ng WL, Tan JS. Application of machine learning in 3D bioprinting of cultivated meat. Int J AI Mater Des. 2024;1(1):3. doi: 10.36922/ijamd.2279
- Nama N, Huang PH, Huang TJ, Costanzo F. Investigation of acoustic streaming patterns around oscillating sharp edges. Lab Chip. 2014;14(15):2824-2836. doi: 10.1039/c4lc00191e
- Li C, Mendis BL, Holland L, Li P. Investigation of the impact of liquid presence on the acoustic streaming generated by a vibrating sharp tip capillary. Microfluid Nanofluid. 2024;28(4):17 doi: 10.1007/s10404-024-02713-3
- Martinez-De-Anda AA, Rodriguez-Salvador M, Castillo- Valdez PF. The attractiveness of 4D printing in the medical field: revealing scientific and technological advances in design factors and applications. Int J Bioprinting. 2023;9(6):1112. doi: 10.36922/ijb.1112
- Ma W, Lu H, Xiao Y, et al. Advancing organoid development with 3D bioprinting. Organoid Res. 2025;1(1):025040004. doi: 10.36922/or025040004
- He Y, Xia J, Mai JDH, Upreti N, Lee LP, Huang TJ. Acoustic technologies for the orchestration of cellular functions for therapeutic applications. Sci Adv. 2025;11(29):eadu4759. doi: 10.1126/sciadv.adu4759
- Zhu W, Ma L, Shi Z, et al. Early-stage fertilised egg viability detection based on machine vision. Br Poult Sci. 2025;66(5):613-624. doi: 10.1080/00071668.2025.2470275
- Sup Yoon M, Min Lee J, Jeong Jo M, et al. Advancements in 3D bioprinting for nanoparticle evaluation: Techniques, models, and biological applications. Int J Bioprinting. 2024;10(5):4273. doi: 10.36922/ijb.4273
- Zhang Z, Shi Z, Ahmed D. SonoTransformers: transformable acoustically activated wireless microscale machines. Proc Natl Acad Sci U S A. 2024;121(6):e2314661121. doi: 10.1073/pnas.2314661121
