AccScience Publishing / IJB / Online First / DOI: 10.36922/IJB025350357
REVIEW ARTICLE

3D printing-driven evolution in lung surgery: From precision resection to biomaterial-based functional reconstruction

Zhenghao Dong1† Wenjing Jiang2† Xiang Lin1 Yu Tong1 Beinuo Wang1 Jian Zhou1* Hu Liao1*
Show Less
1 Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
2 West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
†These authors contributed equally to this work.
Received: 30 August 2025 | Accepted: 2 October 2025 | Published online: 23 October 2025
(This article belongs to the Special Issue 3D-Printed Biomedical Devices)
© 2025 by the Author(s). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License ( https://creativecommons.org/licenses/by/4.0/ )
Abstract

The complexity and variability of lung anatomy, together with the difficulty of repairing lung tissue defects, have long constrained the progress of lung surgery in the era of precision and individualized treatment. In recent years, three-dimensional (3D) printing, deeply integrated with biomedical materials, has emerged as a transformative innovation in regenerative medicine and tissue engineering, offering new strategies to overcome these technical bottlenecks. This review summarizes the current status and clinical applications of 3D printing in lung surgery. By enabling the accurate reproduction of patient-specific anatomical models and the fabrication of functional tissue substitutes in combination with bioactive materials, 3D printing provides unprecedented opportunities to address major challenges such as complex lung nodule resection and bronchial repair and reconstruction. Initially confined to the generation of static anatomical models for surgical planning, teaching, and training, the technology has now advanced, especially with the integration of artificial intelligence, toward the development of real-time intraoperative navigation guides and customized implants. Collectively, these advances have transformed 3D printing from an auxiliary adjunct into a pivotal driver of personalized approaches in lung surgery, with the potential to reshape surgical paradigms and expand future therapeutic frontiers.

Graphical abstract
Keywords
3D printing
Artificial intelligence
Bronchial reconstruction
Lung surgery
Preoperative planning
Funding
None.
Conflict of interest
The authors declare they have no competing interests.
References
  1. Kroll E, Artzi D. Enhancing aerospace engineering students’ learning with 3D printing wind-tunnel models. Rapid Prototyp J. 2011;17(5):393-402. doi: 10.1108/13552541111156522
  2. Meng M, Wang J, Huang H, Liu X, Zhang J, Li Z. 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. J Orthop Translat. 2023;42:94-112. doi: 10.1016/j.jot.2023.08.004
  3. Khorsandi D, Fahimipour A, Abasian P, et al. 3D and 4D printing in dentistry and maxillofacial surgery: printing techniques, materials, and applications. Acta Biomater. 2021;122:26-49. doi: 10.1016/j.actbio.2020.12.044
  4. Bartel T, Rivard A, Jimenez A, Mestres CA, Müller S. Medical three-dimensional printing opens up new opportunities in cardiology and cardiac surgery. Eur Heart J. 2018;39(15):1246-1254. doi: 10.1093/eurheartj/ehx016
  5. Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online. 2016;15(1):115. doi: 10.1186/s12938-016-0236-4
  6. Grunert R, Winkler D, Frank F, et al. 3D-printing of the elbow in complex posttraumatic elbow-stiffness for preoperative planning, surgery-simulation and postoperative control. 3D Print Med. 2023;9(1):28. doi: 10.1186/s41205-023-00191-x
  7. Lam EHY, Yu F, Zhu S, Wang Z. 3D bioprinting for next-generation personalized medicine. Int J Mol Sci. 2023;24(7):6357. doi: 10.3390/ijms24076357
  8. Jovic TH, Combellack EJ, Jessop ZM, Whitaker IS. 3D bioprinting and the future of surgery. Front Surg. 2020;7:609836. doi: 10.3389/fsurg.2020.609836
  9. Leiter A, Veluswamy RR, Wisnivesky JP. The global burden of lung cancer: current status and future trends. Nat Rev Clin Oncol. 2023;20(9):624-639. doi: 10.1038/s41571-023-00798-3
  10. GBD 2019 Chronic Respiratory Diseases Collaborators. Global burden of chronic respiratory diseases and risk factors, 1990-2019: an update from the Global Burden of Disease Study 2019. EClinicalMedicine. 2023;59:101936. doi: 10.1016/j.eclinm.2023.101936
  11. Choi HK, Mazzone PJ. Lung cancer screening. Med Clin North Am. 2022;106(6):1041-1053. doi: 10.1016/j.mcna.2022.07.007
  12. McDermott S, Fintelmann FJ, Bierhals AJ, et al. Image-guided preoperative localization of pulmonary nodules for video-assisted and robotically assisted surgery. Radiographics. 2019;39(5):1264-1279. doi: 10.1148/rg.2019180183
  13. Ch’ng S, Wong GL, Clark JR. Reconstruction of the trachea. J Reconstr Microsurg. 2014;30(3):153-162. doi: 10.1055/s-0033-1358786
  14. Siddiqui FM, Diamond JM. Lung transplantation for chronic obstructive pulmonary disease: past, present, and future directions. Curr Opin Pulm Med. 2018;24(2):199-204. doi: 10.1097/MCP.0000000000000452
  15. Aranda JL, Jiménez MF, Rodríguez M, Varela G. Tridimensional titanium-printed custom-made prosthesis for sternocostal reconstruction. Eur J Cardiothorac Surg. 2015;48(4):e92-e94. doi: 10.1093/ejcts/ezv265
  16. Jacob S, Pooley RA, Thomas M. Three-dimensional-printed model as a template for chest wall reconstruction. Heart Lung Circ. 2020;29(10):1566-1570. doi: 10.1016/j.hlc.2020.02.004
  17. Pontiki AA, Natarajan S, Parker FNH, et al. Chest wall reconstruction using 3-dimensional printing: functional and mechanical results. Ann Thorac Surg. 2022;114(3):979-988. doi: 10.1016/j.athoracsur.2021.07.103
  18. Lin K-H, Huang Y-J, Hsu H-H, et al. The role of three-dimensional printing in the nuss procedure: three-dimensional printed model-assisted Nuss procedure. Ann Thorac Surg. 2018;105(2):413-417. doi: 10.1016/j.athoracsur.2017.09.031
  19. Grigoroiu M, Paul J-F, Brian E, et al. 3D printing in anatomical lung segmentectomies: a randomized pilot trial. Heliyon. 2024;10(11):e31842. doi: 10.1016/j.heliyon.2024.e31842
  20. Song X, Zhang P, Luo B, et al. Multi-tissue integrated tissue-engineered trachea regeneration based on 3D printed bioelastomer scaffolds. Adv Sci (Weinh). 2024;11(39):e2405420. doi: 10.1002/advs.202405420
  21. Malik HH, Darwood ARJ, Shaunak S, et al. Three-dimensional printing in surgery: a review of current surgical applications. J Surg Res. 2015;199(2):512-522. doi: 10.1016/j.jss.2015.06.051
  22. Ntiamoah P, Gildea TR, Baiera A. Determination of patient-specific airway stent fit using novel 3D reconstruction measurement techniques: a 4-year follow-up of a patient. Ther Adv Respir Dis. 2023;17:17534666221137999. doi: 10.1177/17534666221137999
  23. Paunovic N, Bao YY, Coulter FB, et al. Digital light 3D printing of customized bioresorbable airway stents with elastomeric properties. Sci Adv. 2021;7(6):eabe9499. doi: 10.1126/sciadv.abe9499
  24. Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226:119536. doi: 10.1016/j.biomaterials.2019.119536
  25. Kim W, Lee Y, Kang D, Kwak T, Lee H-R, Jung S. 3D inkjet-bioprinted lung-on-a-chip. ACS Biomater Sci Eng. 2023;9(5):2806-2815. doi: 10.1021/acsbiomaterials.3c00089
  26. Cornejo J, Cornejo-Aguilar JA, Vargas M, et al. Anatomical engineering and 3D printing for surgery and medical devices: international review and future exponential innovations. BioMed Res Int. 2022;2022:6797745. doi: 10.1155/2022/6797745
  27. Mitsouras D, Liacouras P, Imanzadeh A, et al. Medical 3D printing for the radiologist. Radiographics. 2015;35(7):1965-1988. doi: 10.1148/rg.2015140320
  28. Ma ZY, Wang J, Qin LG, Chortos A. 3D printing in biofabrication: from surface textures to biological engineering. Chem Eng J. 2024;500:156477. doi: 10.1016/j.cej.2024.156477
  29. Ciocca L, Fantini M, De Crescenzio F, Persiani F, Scotti R. Computer-aided design and manufacturing construction of a surgical template for craniofacial implant positioning to support a definitive nasal prosthesis. Clin Oral Implants Res. 2011;22(8):850-856. doi: 10.1111/j.1600-0501.2010.02066.x
  30. Liu Y-f, Xu L-w, Zhu H-y, Liu SS-Y. Technical procedures for template-guided surgery for mandibular reconstruction based on digital design and manufacturing. Biomed Eng Online. 2014;13:63. doi: 10.1186/1475-925X-13-63
  31. Niikura T, Sugimoto M, Lee SY, et al. Tactile surgical navigation system for complex acetabular fracture surgery. Orthopedics. 2014;37(4):237-242. doi: 10.3928/01477447-20140401-05
  32. Sachdev A, Acharya S, Gadodia T, et al. A review on techniques and biomaterials used in 3D bioprinting. Cureus. 2022;14(8):e28463. doi: 10.7759/cureus.28463
  33. Tappa K, Jammalamadaka U. Novel biomaterials used in medical 3D printing techniques. J Funct Biomater. 2018;9(1):17. doi: 10.3390/jfb9010017
  34. Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9:4. doi: 10.1186/s13036-015-0001-4
  35. Mohan N, Senthil P, Vinodh S, Jayanth N. A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual Phys Prototyp. 2017;12(1):47-59. doi: 10.1080/17452759.2016.1274490
  36. Velu R, Calais T, Jayakumar A, Raspall F. A comprehensive review on bio-nanomaterials for medical implants and feasibility studies on fabrication of such implants by additive manufacturing technique. Materials (Basel). 2019;13(1):92. doi: 10.3390/ma13010092
  37. Zaharin HA, Rani AMA, Ginta TL, Azam FI. Additive manufacturing technology for biomedical components: a review. IOP Conf Ser: Mater Sci Eng. 2017;328:012003. doi: 10.1088/1757-899x/328/1/012003
  38. Melchels FPW, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31(24):6121-6130. doi: 10.1016/j.biomaterials.2010.04.050
  39. Wong TM, Jin J, Lau TW, et al. The use of three-dimensional printing technology in orthopaedic surgery. J Orthop Surg (Hong Kong). 2017;25(1):2309499016684077. doi: 10.1177/2309499016684077
  40. Mazzoli A. Selective laser sintering in biomedical engineering. Med Biol Eng Comput. 2013;51(3):245-256. doi: 10.1007/s11517-012-1001-x
  41. Williams JM, Adewunmi A, Schek RM, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26(23):4817-4827. doi: 10.1016/j.biomaterials.2004.11.057
  42. Gao C, Wang C, Jin H, et al. Additive manufacturing technique-designed metallic porous implants for clinical application in orthopedics. RSC Adv. 2018;8(44): 25210-25227. doi: 10.1039/c8ra04815k
  43. Grover T, Pandey A, Kumari ST, et al. Role of titanium in bio implants and additive manufacturing: an overview. Mater Today: Proc. 2020;26:3071-3080. doi: 10.1016/j. matpr.2020.02.636
  44. Thompson SM, Bian LK, Shamsaei N, Yadollahi A. An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics. Addit Manuf. 2015;8:36-62. doi: 10.1016/j.addma.2015.07.001
  45. Li YZ, Hu YB, Cong WL, Zhi L, Guo ZN. Additive manufacturing of alumina using laser engineered net shaping: effects of deposition variables. Ceram Int. 2017;43(10):7768-7775. doi: 10.1016/j.ceramint.2017.03.085
  46. Wang Y, Wang K, Li X, et al. 3D fabrication and characterization of phosphoric acid scaffold with a HA/β- TCP weight ratio of 60:40 for bone tissue engineering applications. PLoS One. 2017;12(4):e0174870. doi: 10.1371/journal.pone.0174870
  47. Burmeister DM, Stone R, Wrice N, et al. Delivery of allogeneic adipose stem cells in polyethylene glycol-fibrin hydrogels as an adjunct to meshed autografts after sharp debridement of deep partial thickness burns. Stem Cells Transl Med. 2018;7(4):360-372. doi: 10.1002/sctm.17-0160
  48. Attarilar S, Ebrahimi M, Djavanroodi F, Fu Y, Wang L, Yang J. 3D printing technologies in metallic implants: a thematic review on the techniques and procedures. Int J Bioprint. 2021;7(1):306. doi: 10.18063/ijb.v7i1.306
  49. Jang EJ, Patel R, Sankpal NV, Bouchard LS, Patel M. Alginate, hyaluronic acid, and chitosan-based 3D printing hydrogel for cartilage tissue regeneration. Eur Polym J. 2024;202:112651. doi: 10.1016/j.eurpolymj.2023.112651
  50. Schuchert MJ, Abbas G, Awais O, et al. Anatomic segmentectomy for the solitary pulmonary nodule and early-stage lung cancer. Ann Thorac Surg. 2012;93(6):1780-1785. doi: 10.1016/j.athoracsur.2011.11.074
  51. Fan J, Wang L, Jiang GN, Gao W. Sublobectomy versus lobectomy for Stage I non-small-cell lung cancer, a meta-analysis of published studies. Ann Surg Oncol. 2012;19(2):661-668. doi: 10.1245/s10434-011-1931-9
  52. Hwang Y, Kang CH, Kim H-S, Jeon JH, Park IK, Kim YT. Comparison of thoracoscopic segmentectomy and thoracoscopic lobectomy on the patients with non-small cell lung cancer: a propensity score matching study. Eur J Cardiothorac Surg.2015;48(2):273-278. doi: 10.1093/ejcts/ezu422
  53. Fourdrain A, De Dominicis F, Blanchard C, et al. Three-dimensional CT angiography of anatomic variations in the pulmonary arterial tree. Surg Radiol Anat. 2018;40(1):45-53. doi: 10.1007/s00276-017-1914-z
  54. Decaluwe H, Petersen RH, Hansen H, et al. Major intraoperative complications during video-assisted thoracoscopic anatomical lung resections: an intention-to-treat analysis. Eur J Cardiothorac Surg. 2015;48(4):588-598. doi: 10.1093/ejcts/ezv287
  55. Gossot D, Lutz JA, Grigoroiu M, Brian E, Seguin- Givelet A. Unplanned procedures during thoracoscopic segmentectomies. Ann Thorac Surg. 2017;104(5):1710-1717. doi: 10.1016/j.athoracsur.2017.05.081
  56. Akiba T, Marushima H, Harada J, Kobayashi S, Morikawa T. Importance of preoperative imaging with 64-row three-dimensional multidetector computed tomography for safer video-assisted thoracic surgery in lung cancer. Surg Today. 2009;39(10):844-847. doi: 10.1007/s00595-009-3965-1
  57. Hagiwara M, Shimada Y, Kato Y, et al. High-quality 3-dimensional image simulation for pulmonary lobectomy and segmentectomy: results of preoperative assessment of pulmonary vessels and short-term surgical outcomes in consecutive patients undergoing video-assisted thoracic surgery†. Eur J Cardiothorac Surg. 2014;46(6): e120-e126. doi: 10.1093/ejcts/ezu375
  58. Oizumi H, Kanauchi N, Kato H, et al. Anatomic thoracoscopic pulmonary segmentectomy under 3-dimensional multidetector computed tomography simulation: a report of 52 consecutive cases. J Thorac Cardiovasc Surg. 2011;141(3):678-682. doi: 10.1016/j.jtcvs.2010.08.027
  59. Sun Z, Wong YH, Yeong CH. Patient-specific 3D-printed low-cost models in medical education and clinical practice. Micromachines. 2023;14(2):464. doi: 10.3390/mi14020464
  60. Chen Y, Zhang J, Chen Q, et al. Three-dimensional printing technology for localised thoracoscopic segmental resection for lung cancer: a quasi-randomised clinical trial. World J Surg Oncol. 2020;18(1):223. doi: 10.1186/s12957-020-01998-2
  61. Zheng Y-x, Yu D-f, Zhao J-g, Wu Y-l, Zheng B. 3D printout models vs. 3D-rendered images: which is better for preoperative planning? J Surg Educ. 2016;73(3):518-523. doi: 10.1016/j.jsurg.2016.01.003
  62. Qiu B, Ji Y, He H, Zhao J, Xue Q, Gao S. Three-dimensional reconstruction/personalized three-dimensional printed model for thoracoscopic anatomical partial-lobectomy in stage I lung cancer: a retrospective study. Transl Lung Cancer Res. 2020;9(4):1235-1246. doi: 10.21037/tlcr-20-571
  63. Akiba T, Nakada T, Inagaki T. Simulation of the fissureless technique for thoracoscopic segmentectomy using rapid prototyping. Ann Thorac Cardiovasc Surg. 2015;21(1):84-86. doi: 10.5761/atcs.nm.13-00322
  64. Nardini M, Dunning J. Pulmonary nodules precision localization techniques. Future Oncol. 2020;16(16s):15-19. doi: 10.2217/fon-2019-0069
  65. Hou Y-L, Wang Y-D, Guo H-Q, Zhang Y, Guo Y, Han H. Ultrasound location of pulmonary nodules in video-assisted thoracoscopic surgery for precise sublobectomy. Thorac Cancer. 2020;11(5):1354-1360. doi: 10.1111/1759-7714.13384
  66. Cornella KN, Repper DC, Palafox BA, et al. A surgeon’s guide for various lung nodule localization techniques and the newest technologies. Innovations (Phila). 2021; 16(1):26-33. doi: 10.1177/1556984520966999
  67. Suffo M, Quiroga-De Castro M, Galán-Romero L, Andrés- Cano P. Intra-hospital patient-specific 3D printed surgical guide for patients with thoracic scoliotic deformities, the collaboration between engineer and surgeon. 3D Print Med. 2025;11(1):40. doi: 10.1186/s41205-025-00279-6
  68. Li K, Ding N, Xu Y, et al. Synchronous resection of 12 small pulmonary nodules guided by a noninvasive 3D printed emulation model: a case report. Thorac Cancer. 2022;13(15):2260-2263. doi: 10.1111/1759-7714.14546
  69. Fu R, Chai Y-F, Zhang J-T, et al. Three-dimensional printed navigational template for localizing small pulmonary nodules: a case-controlled study. Thorac Cancer. 2020;11(9):2690-2697. doi: 10.1111/1759-7714.13550
  70. Tang H, Yue P, Wei N, et al. Three-dimensional printing template for intraoperative localization of pulmonary nodules in the pleural cavity. JTCVS Tech. 2022;16:139-148. doi: 10.1016/j.xjtc.2022.10.003
  71. Zhang L, Li M, Li Z, et al. Three-dimensional printing of navigational template in localization of pulmonary nodule: a pilot study. J Thorac Cardiovasc Surg. 2017;154(6):2113-2119.e7. doi: 10.1016/j.jtcvs.2017.08.065
  72. E H, Chen J, Sun W, et al. Three-dimensionally printed navigational template: a promising guiding approach for lung biopsy. Transl Lung Cancer Res. 2022;11(3):393-403. doi: 10.21037/tlcr-22-172
  73. Thacharodi A, Singh P, Meenatchi R, et al. Revolutionizing healthcare and medicine: the impact of modern technologies for a healthier future-a comprehensive review. Health Care Sci. 2024;3(5):329-349. doi: 10.1002/hcs2.115
  74. Chen Z, Zhang Y, Yan Z, et al. Artificial intelligence assisted display in thoracic surgery: development and possibilities. J Thorac Dis. 2021;13(12):6994-7005. doi: 10.21037/jtd-21-1240
  75. Huang H, Wu Y. A deep learning-based method for rapid 3D whole-heart modeling in congenital heart disease. Cardiology. 2025;150(3):243-258. doi: 10.1159/000541980
  76. Isikay I, Cekic E, Baylarov B, Tunc O, Hanalioglu S. Narrative review of patient-specific 3D visualization and reality technologies in skull base neurosurgery: enhancements in surgical training, planning, and navigation. Front Surg. 2024;11:1427844. doi: 10.3389/fsurg.2024.1427844
  77. Fu R, Zhang C, Zhang T, et al. A three-dimensional printing navigational template combined with mixed reality technique for localizing pulmonary nodules. Interact Cardiovasc Thorac Surg. 2021;32(4):552-559. doi: 10.1093/icvts/ivaa300
  78. Li C, Zheng B, Yu Q, Yang B, Liang C, Liu Y. Augmented reality and 3-dimensional printing technologies for guiding complex thoracoscopic surgery. Ann Thorac Surg. 2021;112(5):1624-1631. doi: 10.1016/j.athoracsur.2020.10.037
  79. Krivitsky A, Paunović N, Klein K, et al. 3D printed drug-eluting stents: toward personalized therapy for airway stenosis. J Control Release. 2025;377:553-562. doi: 10.1016/j.jconrel.2024.11.031
  80. Chen S, Du T, Zhang H, Zhang Y, Qiao A. Advances in studies on tracheal stent design addressing the related complications. Mater Today Bio. 2024;29:101263. doi: 10.1016/j.mtbio.2024.101263
  81. Sabath BF, Ost DE. Update on airway stents. Curr Opin Pulm Med. 2018;24(4):343-349. doi: 10.1097/MCP.0000000000000486
  82. Ayub A, Al-Ayoubi AM, Bhora FY. Stents for airway strictures: selection and results. J Thorac Dis. 2017;9(S2):S116-S121. doi: 10.21037/jtd.2017.01.56
  83. Alraiyes AH, Avasarala SK, Machuzak MS, Gildea TR. 3D printing for airway disease. AME Med J. 2019;4:14. doi: 10.21037/amj.2019.01.05
  84. Xu J, Ong HX, Traini D, Byrom M, Williamson J, Young PM. The utility of 3D-printed airway stents to improve treatment strategies for central airway obstructions. Drug Dev Ind Pharm. 2019;45(1):1-10. doi: 10.1080/03639045.2018.1522325
  85. Guibert N, Moreno B, Plat G, Didier A, Mazieres J, Hermant C. Stenting of complex malignant central-airway obstruction guided by a three-dimensional printed model of the airways. Ann Thorac Surg. 2017;103(4):e357-e359. doi: 10.1016/j.athoracsur.2016.09.082
  86. Shai S-E, Lai Y-L, Li H-N, Hung S-C. 3-D printing model used to streamline surgical procedures for an intricate condition of airway compression caused by devastating mediastinal chondrosarcoma: a case report. J Med Case Rep. 2020;14(1):14. doi: 10.1186/s13256-019-2312-4
  87. Jin Z, Fu Y, Zhang Y, Guo S. Lesion-adaptative bionic tracheal stent with local paclitaxel release for enhanced therapy of tracheal tumor and stenosis. ACS Biomater Sci Eng. 2024;10(10):6677-6689. doi: 10.1021/acsbiomaterials.4c01523
  88. Gildea TR, Young BP, Machuzak MS. Application of 3D printing for patient-specific silicone stents: 1-year follow-up on 2 patients. Respiration. 2018;96(5):488-494. doi: 10.1159/000489669
  89. Fiorelli A, Scaramuzzi R, Minerva I, et al. Three-dimensional (3D) printed model to plan the endoscopic treatment of upper airway stenosis. J Bronchol Intervent Pulmonol. 2018;25(4):349-354. doi: 10.1097/LBR.0000000000000504
  90. Schleich S, Kronen P, Krivitsky A, et al. Effects of shape and structure of a new 3D-printed personalized bioresorbable tracheal stent on fit and biocompatibility in a rabbit model. PLoS One. 2024;19(6):e0300847. doi: 10.1371/journal.pone.0300847
  91. Natale G, Reginelli A, Testa D, et al. The use of 3D printing model as tool for planning endoscopic treatment of benign airway stenosis. Transl Cancer Res. 2020;9(3): 2117-2122. doi: 10.21037/tcr.2020.01.22
  92. Tan B, Gan S, Wang X, Liu W, Li X. Applications of 3D bioprinting in tissue engineering: advantages, deficiencies, improvements, and future perspectives. J Mater Chem B. 2021;9(27):5385-5413. doi: 10.1039/d1tb00172h
  93. Shiwarski DJ, Hudson AR, Tashman JW, et al. 3D bioprinting of collagen-based high-resolution internally perfusable scaffolds for engineering fully biologic tissue systems. Sci Adv. 2025;11(17):eadu5905. doi: 10.1126/sciadv.adu5905
  94. Erben A, Hörning M, Hartmann B, et al. Precision 3D-printed cell scaffolds mimicking native tissue composition and mechanics. Adv Healthc Mater. 2020;9(24):e2000918. doi: 10.1002/adhm.202000918
  95. Huo Y, Xu Y, Wu X, et al. Functional trachea reconstruction using 3D-bioprinted native-like tissue architecture based on designable tissue-specific bioinks. Adv Sci (Weinh). 2022;9(29):e2202181. doi: 10.1002/advs.202202181
  96. Zhang Y, Liu Y, Shu C, et al. 3D bioprinting of the airways and lungs for applications in tissue engineering and in vitro models. J Tissue Eng. 2024;15:20417314241309183. doi: 10.1177/20417314241309183
  97. Dabaghi M, Carpio MB, Moran-Mirabal JM, Hirota JA. 3D (bio)printing of lungs: past, present, and future. Eur Respir J. 2023;61(1):2200417. doi: 10.1183/13993003.00417-2022
  98. De Santis MM, Alsafadi HN, Tas S, et al. Extracellular-matrix-reinforced bioinks for 3d bioprinting human tissue. Adv Mater. 2021;33(3):e2005476. doi: 10.1002/adma.202005476
  99. Echave MC, Saenz del Burgo L, Pedraz JL, Orive G. Gelatin as biomaterial for tissue engineering. Curr Pharm Des. 2017;23(24):3567-3584. doi: 10.2174/0929867324666170511123101
  100. Izgordu MS, Uzgur EI, Ulag S, et al. Investigation of 3D-printed polycaprolactone-/polyvinylpyrrolidone-based constructs. Cartilage. 2021;13(2_suppl):626S-635S. doi: 10.1177/1947603519897302
  101. Ren P, Wei D, Liang M, Xu L, Zhang T, Zhang Q. Alginate/ gelatin-based hybrid hydrogels with function of injecting and encapsulating cells in situ. Int J Biol Macromol. 2022;212:67-84. doi: 10.1016/j.ijbiomac.2022.05.058
  102. Wang N, Yu K-K, Li K, Yu X-Q. A biocompatible polyethylene glycol/alginate composite hydrogel with significant reactive oxygen species consumption for promoting wound healing. J Mater Chem B. 2023;11(29):6934-6942. doi: 10.1039/d3tb00771e
  103. Ng WL, Ayi TC, Liu Y-C, Sing SL, Yeong WY, Tan B-H. Fabrication and characterization of 3d bioprinted triple-layered human alveolar lung models. Int J Bioprint. 2021;7(2):332. doi: 10.18063/ijb.v7i2.332
  104. da Rosa NN, Appel JM, Irioda AC, et al. Three-dimensional bioprinting of an in vitro lung model. Int J Mol Sci. 2023;24(6):5852. doi: 10.3390/ijms24065852
  105. Frankowski J, Kurzątkowska M, Sobczak M, Piotrowska U. Utilization of 3D bioprinting technology in creating human tissue and organoid models for preclinical drug research - state-of-the-art. Int J Pharm. 2023;644:123313. doi: 10.1016/j.ijpharm.2023.123313
  106. Liu C, Shi C, Wang S, et al. Bridging the gap: how patient-derived lung cancer organoids are transforming personalized medicine. Front Cell Dev Biol. 2025;13:1554268. doi: 10.3389/fcell.2025.1554268
  107. Yang D, Miao Y, Li L, et al. From virtual to reality: application of a novel 3D printing hollow model for early-stage lung cancer in the clinical teaching of thoracoscopic sublobar resection. Front Oncol. 2025;15:1526592. doi: 10.3389/fonc.2025.1526592
  108. Meershoek AJA, Loonen TGJ, Maal TJJ, Hekma EJ, Hugen N. Three dimensional printing as a tool for anatomical training in lung surgery. Med Sci Educ. 2023; 33(4):873-878. doi: 10.1007/s40670-023-01807-x
  109. Tanaka T, Shimada Y, Furumoto H, et al. Comparative analysis of the results of video-assisted thoracic surgery lobectomy simulation using the three-dimensional-printed biotexture wet-lung model and surgeons’ experience. Interact Cardiovasc Thorac Surg. 2021;32(2):284-290. doi: 10.1093/icvts/ivaa240
  110. Morikawa T, Yamashita M, Odaka M, et al. A step-by-step development of real-size chest model for simulation of thoracoscopic surgery. Interact Cardiovasc Thorac Surg. 2017;25(2):173-176. doi: 10.1093/icvts/ivx110
  111. PSTRN PSTRNPS. Development of a 3D-printed neonatal congenital diaphragmatic hernia model and standardisation of intra-operative measurement. Pediatr Surg Int. 2023;40(1):28. doi: 10.1007/s00383-023-05600-0
  112. Choi C, Wells J, Luenenschloss N, et al. The role of motion tracking in assessing technical skill acquisition using a neonatal 3D-printed thoracoscopic esophageal atresia/ tracheo-esophageal fistula simulator. J Pediatr Surg. 2022;57(6):1087-1091. doi: 10.1016/j.jpedsurg.2022.01.029
  113. Youn JK, Ko D, Yang H-B, Kim H-Y. A 3D printed esophageal atresia-tracheoesophageal fistula thorascopy simulator for young surgeons. Sci Rep. 2024;14(1):11489. doi: 10.1038/s41598-024-62154-4
  114. Hong D, Kim H, Kim T, Kim Y-H, Kim N. Development of patient specific, realistic, and reusable video assisted thoracoscopic surgery simulator using 3D printing and pediatric computed tomography images. Sci Rep. 2021;11(1):6191. doi: 10.1038/s41598-021-85738-w
  115. Weatherall AD, Rogerson MD, Quayle MR, Cooper MG, McMenamin PG, Adams JW. A novel 3-dimensional printing fabrication approach for the production of pediatric airway models. Anesth Analg. 2021;133(5): 1251-1259. doi: 10.1213/ANE.0000000000005260
  116. Liu W-L, Lee IH, Lee L-N, Yang S-H, Chao K-Y. A 3D-printed high-fidelity bronchial tree for bronchoscopy. Respir Care. 2023;68(4):527-530. doi: 10.4187/respcare.10671
  117. Ho BHK, Chen CJ, Tan GJS, et al. Multi-material three dimensional printed models for simulation of bronchoscopy. BMC Med Educ. 2019;19(1):236. doi: 10.1186/s12909-019-1677-9
  118. Maier P, Silvestro E, Goldfarb SB, Piccione J, Phinizy PA, Andronikou S. Three-dimensional printed realistic pediatric static and dynamic airway models for bronchoscopy and foreign body removal training. Pediatr Pulmonol. 2021;56(8):2654-2659. doi: 10.1002/ppul.25516
  119. Parotto M, Jiansen JQ, AboTaiban A, et al. Evaluation of a low-cost, 3D-printed model for bronchoscopy training. Anaesthesiol Intensive Ther. 2017;49(3):189-197. doi: 10.5603/AIT.a2017.0035
  120. Ghazy A, Chaban R, Vahl C-F, Dorweiler B. Development and evaluation of 3-dimensional printed models of the human tracheobronchial system for training in flexible bronchoscopy. Interact Cardiovasc Thorac Surg. 2019;28(1):137-143. doi: 10.1093/icvts/ivy215
  121. Shaylor R, Golden E, Goren O, Verenkin V, Cohen B. Development and validation of a hybrid bronchoscopy trainer using three-dimensional printing. Simul Healthc. 2024;19(1):52-55. doi: 10.1097/SIH.0000000000000687
  122. Ekman T, Barakat A, Heiberg E. Generalizable deep learning framework for 3D medical image segmentation using limited training data. 3D Print Med. 2025;11(1):9. doi: 10.1186/s41205-025-00254-1
  123. Zhang Z, Wang Y, Wang W. Machine learning in gel-based additive manufacturing: from material design to process optimization. Gels. 2025;11(8):582. doi: 10.3390/gels11080582
  124. Im JY, Halliburton SS, Mei K, et al. Patient-derived PixelPrint phantoms for evaluating clinical imaging performance of a deep learning CT reconstruction algorithm. Phys Med Biol. 2024;69(11):115009. doi: 10.1088/1361-6560/ad3dba
  125. Rahmani Dabbagh S, Ozcan O, Tasoglu S. Machine learning-enabled optimization of extrusion-based 3D printing. Methods. 2022;206:27-40. doi: 10.1016/j.ymeth.2022.08.002
  126. Yilmaz B, Kara BY. Mathematical surface function-based design and 3D printing of airway stents. 3D Print Med. 2022;8(1):24. doi: 10.1186/s41205-022-00154-8
  127. Ayechu-Abendaño A, Pérez-Jiménez A, Sánchez-Matás C, et al. Computational analysis of polymeric biodegradable and customizable airway stent designs. Polymers. 2024;16(12):1691. doi: 10.3390/polym16121691
  128. Rezapour Sarabi M, Alseed MM, Karagoz AA, Tasoglu S. Machine learning-enabled prediction of 3D-printed microneedle features. Biosensors (Basel). 2022;12(7):491. doi: 10.3390/bios12070491
  129. Rojek I, Dostatni E, Kopowski J, Macko M, Mikołajewski D. AI-based support system for monitoring the quality of a product within industry 4.0 paradigm. Sensors (Basel). 2022;22(21):8107. doi: 10.3390/s22218107
  130. Pradhan A, Pattnaik G, Das S, Acharya B, Patra CN. Advancements in lung cancer: molecular insights, innovative therapies, and future prospects. Med Oncol. 2025; 42(9):383. doi: 10.1007/s12032-025-02725-1
  131. Hrubovčák J, Tulinský L, Pieš M, et al. The utilization of 3D printing in surgery as an innovative approach to preoperative planning. Rozhl Chir. 2024;103(8):305-312. doi: 10.48095/ccrvch2024305
  132. Wang T, Zhang J, Wang J, Pei YH, Qiu XJ, Wang YL. Paclitaxel drug-eluting tracheal stent could reduce granulation tissue formation in a canine model. Chin Med J. 2016;129(22):2708-2713. doi: 10.4103/0366-6999.193461
  133. Liang Y, Wei S, Zhang A. Bioengineered tracheal graft with enhanced vascularization and mechanical stability for functional airway reconstruction. Regen Ther. 2025;29:364-380. doi: 10.1016/j.reth.2025.03.016
  134. Pelizzo G, Costanzo S, Roveri M, et al. Developing virtual reality head mounted display (HMD) set-up for thoracoscopic surgery of complex congenital lung malformations in children. Children (Basel). 2022;9(1):50. doi: 10.3390/children9010050
  135. Cen J, Liufu R, Wen S, et al. Three-dimensional printing, virtual reality and mixed reality for pulmonary atresia: early surgical outcomes evaluation. Heart Lung Circ. 2021;30(2):296-302. doi: 10.1016/j.hlc.2020.03.017
  136. Pun S, Haney LC, Barrile R. Modelling human physiology on-chip: historical perspectives and future directions. Micromachines. 2021;12(10):1250. doi: 10.3390/mi12101250
  137. Hua W, Zhang C, Raymond L, et al. Embedded 3D printing of engineered lung cancer model for assisting fine-needle aspiration biopsy. Biofabrication. 2024. doi: 10.1088/1758-5090/ad9fe0
  138. Kwok JKS, Lau RWH, Zhao Z-R, et al. Multi-dimensional printing in thoracic surgery: current and future applications. J Thorac Dis. 2018;10(Suppl 6):S756-S763. doi: 10.21037/jtd.2018.02.91
  139. Harun A, Bendele N, Khalil MI, et al. 3D tumor-mimicking phantom models for assessing NIR I/II nanoparticles in fluorescence-guided surgical interventions. ACS Nano. 2025;19(21):19757-19776. doi: 10.1021/acsnano.5c01919

 

 



Share
Back to top
International Journal of Bioprinting, Electronic ISSN: 2424-8002 Print ISSN: 2424-7723, Published by AccScience Publishing