3D printing-driven evolution in lung surgery: From precision resection to biomaterial-based functional reconstruction
The complexity and variability of lung anatomy, together with the difficulty of repairing lung tissue defects, have long constrained the progress of lung surgery in the era of precision and individualized treatment. In recent years, three-dimensional (3D) printing, deeply integrated with biomedical materials, has emerged as a transformative innovation in regenerative medicine and tissue engineering, offering new strategies to overcome these technical bottlenecks. This review summarizes the current status and clinical applications of 3D printing in lung surgery. By enabling the accurate reproduction of patient-specific anatomical models and the fabrication of functional tissue substitutes in combination with bioactive materials, 3D printing provides unprecedented opportunities to address major challenges such as complex lung nodule resection and bronchial repair and reconstruction. Initially confined to the generation of static anatomical models for surgical planning, teaching, and training, the technology has now advanced, especially with the integration of artificial intelligence, toward the development of real-time intraoperative navigation guides and customized implants. Collectively, these advances have transformed 3D printing from an auxiliary adjunct into a pivotal driver of personalized approaches in lung surgery, with the potential to reshape surgical paradigms and expand future therapeutic frontiers.

- Kroll E, Artzi D. Enhancing aerospace engineering students’ learning with 3D printing wind-tunnel models. Rapid Prototyp J. 2011;17(5):393-402. doi: 10.1108/13552541111156522
- Meng M, Wang J, Huang H, Liu X, Zhang J, Li Z. 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. J Orthop Translat. 2023;42:94-112. doi: 10.1016/j.jot.2023.08.004
- Khorsandi D, Fahimipour A, Abasian P, et al. 3D and 4D printing in dentistry and maxillofacial surgery: printing techniques, materials, and applications. Acta Biomater. 2021;122:26-49. doi: 10.1016/j.actbio.2020.12.044
- Bartel T, Rivard A, Jimenez A, Mestres CA, Müller S. Medical three-dimensional printing opens up new opportunities in cardiology and cardiac surgery. Eur Heart J. 2018;39(15):1246-1254. doi: 10.1093/eurheartj/ehx016
- Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online. 2016;15(1):115. doi: 10.1186/s12938-016-0236-4
- Grunert R, Winkler D, Frank F, et al. 3D-printing of the elbow in complex posttraumatic elbow-stiffness for preoperative planning, surgery-simulation and postoperative control. 3D Print Med. 2023;9(1):28. doi: 10.1186/s41205-023-00191-x
- Lam EHY, Yu F, Zhu S, Wang Z. 3D bioprinting for next-generation personalized medicine. Int J Mol Sci. 2023;24(7):6357. doi: 10.3390/ijms24076357
- Jovic TH, Combellack EJ, Jessop ZM, Whitaker IS. 3D bioprinting and the future of surgery. Front Surg. 2020;7:609836. doi: 10.3389/fsurg.2020.609836
- Leiter A, Veluswamy RR, Wisnivesky JP. The global burden of lung cancer: current status and future trends. Nat Rev Clin Oncol. 2023;20(9):624-639. doi: 10.1038/s41571-023-00798-3
- GBD 2019 Chronic Respiratory Diseases Collaborators. Global burden of chronic respiratory diseases and risk factors, 1990-2019: an update from the Global Burden of Disease Study 2019. EClinicalMedicine. 2023;59:101936. doi: 10.1016/j.eclinm.2023.101936
- Choi HK, Mazzone PJ. Lung cancer screening. Med Clin North Am. 2022;106(6):1041-1053. doi: 10.1016/j.mcna.2022.07.007
- McDermott S, Fintelmann FJ, Bierhals AJ, et al. Image-guided preoperative localization of pulmonary nodules for video-assisted and robotically assisted surgery. Radiographics. 2019;39(5):1264-1279. doi: 10.1148/rg.2019180183
- Ch’ng S, Wong GL, Clark JR. Reconstruction of the trachea. J Reconstr Microsurg. 2014;30(3):153-162. doi: 10.1055/s-0033-1358786
- Siddiqui FM, Diamond JM. Lung transplantation for chronic obstructive pulmonary disease: past, present, and future directions. Curr Opin Pulm Med. 2018;24(2):199-204. doi: 10.1097/MCP.0000000000000452
- Aranda JL, Jiménez MF, Rodríguez M, Varela G. Tridimensional titanium-printed custom-made prosthesis for sternocostal reconstruction. Eur J Cardiothorac Surg. 2015;48(4):e92-e94. doi: 10.1093/ejcts/ezv265
- Jacob S, Pooley RA, Thomas M. Three-dimensional-printed model as a template for chest wall reconstruction. Heart Lung Circ. 2020;29(10):1566-1570. doi: 10.1016/j.hlc.2020.02.004
- Pontiki AA, Natarajan S, Parker FNH, et al. Chest wall reconstruction using 3-dimensional printing: functional and mechanical results. Ann Thorac Surg. 2022;114(3):979-988. doi: 10.1016/j.athoracsur.2021.07.103
- Lin K-H, Huang Y-J, Hsu H-H, et al. The role of three-dimensional printing in the nuss procedure: three-dimensional printed model-assisted Nuss procedure. Ann Thorac Surg. 2018;105(2):413-417. doi: 10.1016/j.athoracsur.2017.09.031
- Grigoroiu M, Paul J-F, Brian E, et al. 3D printing in anatomical lung segmentectomies: a randomized pilot trial. Heliyon. 2024;10(11):e31842. doi: 10.1016/j.heliyon.2024.e31842
- Song X, Zhang P, Luo B, et al. Multi-tissue integrated tissue-engineered trachea regeneration based on 3D printed bioelastomer scaffolds. Adv Sci (Weinh). 2024;11(39):e2405420. doi: 10.1002/advs.202405420
- Malik HH, Darwood ARJ, Shaunak S, et al. Three-dimensional printing in surgery: a review of current surgical applications. J Surg Res. 2015;199(2):512-522. doi: 10.1016/j.jss.2015.06.051
- Ntiamoah P, Gildea TR, Baiera A. Determination of patient-specific airway stent fit using novel 3D reconstruction measurement techniques: a 4-year follow-up of a patient. Ther Adv Respir Dis. 2023;17:17534666221137999. doi: 10.1177/17534666221137999
- Paunovic N, Bao YY, Coulter FB, et al. Digital light 3D printing of customized bioresorbable airway stents with elastomeric properties. Sci Adv. 2021;7(6):eabe9499. doi: 10.1126/sciadv.abe9499
- Matai I, Kaur G, Seyedsalehi A, McClinton A, Laurencin CT. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials. 2020;226:119536. doi: 10.1016/j.biomaterials.2019.119536
- Kim W, Lee Y, Kang D, Kwak T, Lee H-R, Jung S. 3D inkjet-bioprinted lung-on-a-chip. ACS Biomater Sci Eng. 2023;9(5):2806-2815. doi: 10.1021/acsbiomaterials.3c00089
- Cornejo J, Cornejo-Aguilar JA, Vargas M, et al. Anatomical engineering and 3D printing for surgery and medical devices: international review and future exponential innovations. BioMed Res Int. 2022;2022:6797745. doi: 10.1155/2022/6797745
- Mitsouras D, Liacouras P, Imanzadeh A, et al. Medical 3D printing for the radiologist. Radiographics. 2015;35(7):1965-1988. doi: 10.1148/rg.2015140320
- Ma ZY, Wang J, Qin LG, Chortos A. 3D printing in biofabrication: from surface textures to biological engineering. Chem Eng J. 2024;500:156477. doi: 10.1016/j.cej.2024.156477
- Ciocca L, Fantini M, De Crescenzio F, Persiani F, Scotti R. Computer-aided design and manufacturing construction of a surgical template for craniofacial implant positioning to support a definitive nasal prosthesis. Clin Oral Implants Res. 2011;22(8):850-856. doi: 10.1111/j.1600-0501.2010.02066.x
- Liu Y-f, Xu L-w, Zhu H-y, Liu SS-Y. Technical procedures for template-guided surgery for mandibular reconstruction based on digital design and manufacturing. Biomed Eng Online. 2014;13:63. doi: 10.1186/1475-925X-13-63
- Niikura T, Sugimoto M, Lee SY, et al. Tactile surgical navigation system for complex acetabular fracture surgery. Orthopedics. 2014;37(4):237-242. doi: 10.3928/01477447-20140401-05
- Sachdev A, Acharya S, Gadodia T, et al. A review on techniques and biomaterials used in 3D bioprinting. Cureus. 2022;14(8):e28463. doi: 10.7759/cureus.28463
- Tappa K, Jammalamadaka U. Novel biomaterials used in medical 3D printing techniques. J Funct Biomater. 2018;9(1):17. doi: 10.3390/jfb9010017
- Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9:4. doi: 10.1186/s13036-015-0001-4
- Mohan N, Senthil P, Vinodh S, Jayanth N. A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual Phys Prototyp. 2017;12(1):47-59. doi: 10.1080/17452759.2016.1274490
- Velu R, Calais T, Jayakumar A, Raspall F. A comprehensive review on bio-nanomaterials for medical implants and feasibility studies on fabrication of such implants by additive manufacturing technique. Materials (Basel). 2019;13(1):92. doi: 10.3390/ma13010092
- Zaharin HA, Rani AMA, Ginta TL, Azam FI. Additive manufacturing technology for biomedical components: a review. IOP Conf Ser: Mater Sci Eng. 2017;328:012003. doi: 10.1088/1757-899x/328/1/012003
- Melchels FPW, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials. 2010;31(24):6121-6130. doi: 10.1016/j.biomaterials.2010.04.050
- Wong TM, Jin J, Lau TW, et al. The use of three-dimensional printing technology in orthopaedic surgery. J Orthop Surg (Hong Kong). 2017;25(1):2309499016684077. doi: 10.1177/2309499016684077
- Mazzoli A. Selective laser sintering in biomedical engineering. Med Biol Eng Comput. 2013;51(3):245-256. doi: 10.1007/s11517-012-1001-x
- Williams JM, Adewunmi A, Schek RM, et al. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials. 2005;26(23):4817-4827. doi: 10.1016/j.biomaterials.2004.11.057
- Gao C, Wang C, Jin H, et al. Additive manufacturing technique-designed metallic porous implants for clinical application in orthopedics. RSC Adv. 2018;8(44): 25210-25227. doi: 10.1039/c8ra04815k
- Grover T, Pandey A, Kumari ST, et al. Role of titanium in bio implants and additive manufacturing: an overview. Mater Today: Proc. 2020;26:3071-3080. doi: 10.1016/j. matpr.2020.02.636
- Thompson SM, Bian LK, Shamsaei N, Yadollahi A. An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics. Addit Manuf. 2015;8:36-62. doi: 10.1016/j.addma.2015.07.001
- Li YZ, Hu YB, Cong WL, Zhi L, Guo ZN. Additive manufacturing of alumina using laser engineered net shaping: effects of deposition variables. Ceram Int. 2017;43(10):7768-7775. doi: 10.1016/j.ceramint.2017.03.085
- Wang Y, Wang K, Li X, et al. 3D fabrication and characterization of phosphoric acid scaffold with a HA/β- TCP weight ratio of 60:40 for bone tissue engineering applications. PLoS One. 2017;12(4):e0174870. doi: 10.1371/journal.pone.0174870
- Burmeister DM, Stone R, Wrice N, et al. Delivery of allogeneic adipose stem cells in polyethylene glycol-fibrin hydrogels as an adjunct to meshed autografts after sharp debridement of deep partial thickness burns. Stem Cells Transl Med. 2018;7(4):360-372. doi: 10.1002/sctm.17-0160
- Attarilar S, Ebrahimi M, Djavanroodi F, Fu Y, Wang L, Yang J. 3D printing technologies in metallic implants: a thematic review on the techniques and procedures. Int J Bioprint. 2021;7(1):306. doi: 10.18063/ijb.v7i1.306
- Jang EJ, Patel R, Sankpal NV, Bouchard LS, Patel M. Alginate, hyaluronic acid, and chitosan-based 3D printing hydrogel for cartilage tissue regeneration. Eur Polym J. 2024;202:112651. doi: 10.1016/j.eurpolymj.2023.112651
- Schuchert MJ, Abbas G, Awais O, et al. Anatomic segmentectomy for the solitary pulmonary nodule and early-stage lung cancer. Ann Thorac Surg. 2012;93(6):1780-1785. doi: 10.1016/j.athoracsur.2011.11.074
- Fan J, Wang L, Jiang GN, Gao W. Sublobectomy versus lobectomy for Stage I non-small-cell lung cancer, a meta-analysis of published studies. Ann Surg Oncol. 2012;19(2):661-668. doi: 10.1245/s10434-011-1931-9
- Hwang Y, Kang CH, Kim H-S, Jeon JH, Park IK, Kim YT. Comparison of thoracoscopic segmentectomy and thoracoscopic lobectomy on the patients with non-small cell lung cancer: a propensity score matching study. Eur J Cardiothorac Surg.2015;48(2):273-278. doi: 10.1093/ejcts/ezu422
- Fourdrain A, De Dominicis F, Blanchard C, et al. Three-dimensional CT angiography of anatomic variations in the pulmonary arterial tree. Surg Radiol Anat. 2018;40(1):45-53. doi: 10.1007/s00276-017-1914-z
- Decaluwe H, Petersen RH, Hansen H, et al. Major intraoperative complications during video-assisted thoracoscopic anatomical lung resections: an intention-to-treat analysis. Eur J Cardiothorac Surg. 2015;48(4):588-598. doi: 10.1093/ejcts/ezv287
- Gossot D, Lutz JA, Grigoroiu M, Brian E, Seguin- Givelet A. Unplanned procedures during thoracoscopic segmentectomies. Ann Thorac Surg. 2017;104(5):1710-1717. doi: 10.1016/j.athoracsur.2017.05.081
- Akiba T, Marushima H, Harada J, Kobayashi S, Morikawa T. Importance of preoperative imaging with 64-row three-dimensional multidetector computed tomography for safer video-assisted thoracic surgery in lung cancer. Surg Today. 2009;39(10):844-847. doi: 10.1007/s00595-009-3965-1
- Hagiwara M, Shimada Y, Kato Y, et al. High-quality 3-dimensional image simulation for pulmonary lobectomy and segmentectomy: results of preoperative assessment of pulmonary vessels and short-term surgical outcomes in consecutive patients undergoing video-assisted thoracic surgery†. Eur J Cardiothorac Surg. 2014;46(6): e120-e126. doi: 10.1093/ejcts/ezu375
- Oizumi H, Kanauchi N, Kato H, et al. Anatomic thoracoscopic pulmonary segmentectomy under 3-dimensional multidetector computed tomography simulation: a report of 52 consecutive cases. J Thorac Cardiovasc Surg. 2011;141(3):678-682. doi: 10.1016/j.jtcvs.2010.08.027
- Sun Z, Wong YH, Yeong CH. Patient-specific 3D-printed low-cost models in medical education and clinical practice. Micromachines. 2023;14(2):464. doi: 10.3390/mi14020464
- Chen Y, Zhang J, Chen Q, et al. Three-dimensional printing technology for localised thoracoscopic segmental resection for lung cancer: a quasi-randomised clinical trial. World J Surg Oncol. 2020;18(1):223. doi: 10.1186/s12957-020-01998-2
- Zheng Y-x, Yu D-f, Zhao J-g, Wu Y-l, Zheng B. 3D printout models vs. 3D-rendered images: which is better for preoperative planning? J Surg Educ. 2016;73(3):518-523. doi: 10.1016/j.jsurg.2016.01.003
- Qiu B, Ji Y, He H, Zhao J, Xue Q, Gao S. Three-dimensional reconstruction/personalized three-dimensional printed model for thoracoscopic anatomical partial-lobectomy in stage I lung cancer: a retrospective study. Transl Lung Cancer Res. 2020;9(4):1235-1246. doi: 10.21037/tlcr-20-571
- Akiba T, Nakada T, Inagaki T. Simulation of the fissureless technique for thoracoscopic segmentectomy using rapid prototyping. Ann Thorac Cardiovasc Surg. 2015;21(1):84-86. doi: 10.5761/atcs.nm.13-00322
- Nardini M, Dunning J. Pulmonary nodules precision localization techniques. Future Oncol. 2020;16(16s):15-19. doi: 10.2217/fon-2019-0069
- Hou Y-L, Wang Y-D, Guo H-Q, Zhang Y, Guo Y, Han H. Ultrasound location of pulmonary nodules in video-assisted thoracoscopic surgery for precise sublobectomy. Thorac Cancer. 2020;11(5):1354-1360. doi: 10.1111/1759-7714.13384
- Cornella KN, Repper DC, Palafox BA, et al. A surgeon’s guide for various lung nodule localization techniques and the newest technologies. Innovations (Phila). 2021; 16(1):26-33. doi: 10.1177/1556984520966999
- Suffo M, Quiroga-De Castro M, Galán-Romero L, Andrés- Cano P. Intra-hospital patient-specific 3D printed surgical guide for patients with thoracic scoliotic deformities, the collaboration between engineer and surgeon. 3D Print Med. 2025;11(1):40. doi: 10.1186/s41205-025-00279-6
- Li K, Ding N, Xu Y, et al. Synchronous resection of 12 small pulmonary nodules guided by a noninvasive 3D printed emulation model: a case report. Thorac Cancer. 2022;13(15):2260-2263. doi: 10.1111/1759-7714.14546
- Fu R, Chai Y-F, Zhang J-T, et al. Three-dimensional printed navigational template for localizing small pulmonary nodules: a case-controlled study. Thorac Cancer. 2020;11(9):2690-2697. doi: 10.1111/1759-7714.13550
- Tang H, Yue P, Wei N, et al. Three-dimensional printing template for intraoperative localization of pulmonary nodules in the pleural cavity. JTCVS Tech. 2022;16:139-148. doi: 10.1016/j.xjtc.2022.10.003
- Zhang L, Li M, Li Z, et al. Three-dimensional printing of navigational template in localization of pulmonary nodule: a pilot study. J Thorac Cardiovasc Surg. 2017;154(6):2113-2119.e7. doi: 10.1016/j.jtcvs.2017.08.065
- E H, Chen J, Sun W, et al. Three-dimensionally printed navigational template: a promising guiding approach for lung biopsy. Transl Lung Cancer Res. 2022;11(3):393-403. doi: 10.21037/tlcr-22-172
- Thacharodi A, Singh P, Meenatchi R, et al. Revolutionizing healthcare and medicine: the impact of modern technologies for a healthier future-a comprehensive review. Health Care Sci. 2024;3(5):329-349. doi: 10.1002/hcs2.115
- Chen Z, Zhang Y, Yan Z, et al. Artificial intelligence assisted display in thoracic surgery: development and possibilities. J Thorac Dis. 2021;13(12):6994-7005. doi: 10.21037/jtd-21-1240
- Huang H, Wu Y. A deep learning-based method for rapid 3D whole-heart modeling in congenital heart disease. Cardiology. 2025;150(3):243-258. doi: 10.1159/000541980
- Isikay I, Cekic E, Baylarov B, Tunc O, Hanalioglu S. Narrative review of patient-specific 3D visualization and reality technologies in skull base neurosurgery: enhancements in surgical training, planning, and navigation. Front Surg. 2024;11:1427844. doi: 10.3389/fsurg.2024.1427844
- Fu R, Zhang C, Zhang T, et al. A three-dimensional printing navigational template combined with mixed reality technique for localizing pulmonary nodules. Interact Cardiovasc Thorac Surg. 2021;32(4):552-559. doi: 10.1093/icvts/ivaa300
- Li C, Zheng B, Yu Q, Yang B, Liang C, Liu Y. Augmented reality and 3-dimensional printing technologies for guiding complex thoracoscopic surgery. Ann Thorac Surg. 2021;112(5):1624-1631. doi: 10.1016/j.athoracsur.2020.10.037
- Krivitsky A, Paunović N, Klein K, et al. 3D printed drug-eluting stents: toward personalized therapy for airway stenosis. J Control Release. 2025;377:553-562. doi: 10.1016/j.jconrel.2024.11.031
- Chen S, Du T, Zhang H, Zhang Y, Qiao A. Advances in studies on tracheal stent design addressing the related complications. Mater Today Bio. 2024;29:101263. doi: 10.1016/j.mtbio.2024.101263
- Sabath BF, Ost DE. Update on airway stents. Curr Opin Pulm Med. 2018;24(4):343-349. doi: 10.1097/MCP.0000000000000486
- Ayub A, Al-Ayoubi AM, Bhora FY. Stents for airway strictures: selection and results. J Thorac Dis. 2017;9(S2):S116-S121. doi: 10.21037/jtd.2017.01.56
- Alraiyes AH, Avasarala SK, Machuzak MS, Gildea TR. 3D printing for airway disease. AME Med J. 2019;4:14. doi: 10.21037/amj.2019.01.05
- Xu J, Ong HX, Traini D, Byrom M, Williamson J, Young PM. The utility of 3D-printed airway stents to improve treatment strategies for central airway obstructions. Drug Dev Ind Pharm. 2019;45(1):1-10. doi: 10.1080/03639045.2018.1522325
- Guibert N, Moreno B, Plat G, Didier A, Mazieres J, Hermant C. Stenting of complex malignant central-airway obstruction guided by a three-dimensional printed model of the airways. Ann Thorac Surg. 2017;103(4):e357-e359. doi: 10.1016/j.athoracsur.2016.09.082
- Shai S-E, Lai Y-L, Li H-N, Hung S-C. 3-D printing model used to streamline surgical procedures for an intricate condition of airway compression caused by devastating mediastinal chondrosarcoma: a case report. J Med Case Rep. 2020;14(1):14. doi: 10.1186/s13256-019-2312-4
- Jin Z, Fu Y, Zhang Y, Guo S. Lesion-adaptative bionic tracheal stent with local paclitaxel release for enhanced therapy of tracheal tumor and stenosis. ACS Biomater Sci Eng. 2024;10(10):6677-6689. doi: 10.1021/acsbiomaterials.4c01523
- Gildea TR, Young BP, Machuzak MS. Application of 3D printing for patient-specific silicone stents: 1-year follow-up on 2 patients. Respiration. 2018;96(5):488-494. doi: 10.1159/000489669
- Fiorelli A, Scaramuzzi R, Minerva I, et al. Three-dimensional (3D) printed model to plan the endoscopic treatment of upper airway stenosis. J Bronchol Intervent Pulmonol. 2018;25(4):349-354. doi: 10.1097/LBR.0000000000000504
- Schleich S, Kronen P, Krivitsky A, et al. Effects of shape and structure of a new 3D-printed personalized bioresorbable tracheal stent on fit and biocompatibility in a rabbit model. PLoS One. 2024;19(6):e0300847. doi: 10.1371/journal.pone.0300847
- Natale G, Reginelli A, Testa D, et al. The use of 3D printing model as tool for planning endoscopic treatment of benign airway stenosis. Transl Cancer Res. 2020;9(3): 2117-2122. doi: 10.21037/tcr.2020.01.22
- Tan B, Gan S, Wang X, Liu W, Li X. Applications of 3D bioprinting in tissue engineering: advantages, deficiencies, improvements, and future perspectives. J Mater Chem B. 2021;9(27):5385-5413. doi: 10.1039/d1tb00172h
- Shiwarski DJ, Hudson AR, Tashman JW, et al. 3D bioprinting of collagen-based high-resolution internally perfusable scaffolds for engineering fully biologic tissue systems. Sci Adv. 2025;11(17):eadu5905. doi: 10.1126/sciadv.adu5905
- Erben A, Hörning M, Hartmann B, et al. Precision 3D-printed cell scaffolds mimicking native tissue composition and mechanics. Adv Healthc Mater. 2020;9(24):e2000918. doi: 10.1002/adhm.202000918
- Huo Y, Xu Y, Wu X, et al. Functional trachea reconstruction using 3D-bioprinted native-like tissue architecture based on designable tissue-specific bioinks. Adv Sci (Weinh). 2022;9(29):e2202181. doi: 10.1002/advs.202202181
- Zhang Y, Liu Y, Shu C, et al. 3D bioprinting of the airways and lungs for applications in tissue engineering and in vitro models. J Tissue Eng. 2024;15:20417314241309183. doi: 10.1177/20417314241309183
- Dabaghi M, Carpio MB, Moran-Mirabal JM, Hirota JA. 3D (bio)printing of lungs: past, present, and future. Eur Respir J. 2023;61(1):2200417. doi: 10.1183/13993003.00417-2022
- De Santis MM, Alsafadi HN, Tas S, et al. Extracellular-matrix-reinforced bioinks for 3d bioprinting human tissue. Adv Mater. 2021;33(3):e2005476. doi: 10.1002/adma.202005476
- Echave MC, Saenz del Burgo L, Pedraz JL, Orive G. Gelatin as biomaterial for tissue engineering. Curr Pharm Des. 2017;23(24):3567-3584. doi: 10.2174/0929867324666170511123101
- Izgordu MS, Uzgur EI, Ulag S, et al. Investigation of 3D-printed polycaprolactone-/polyvinylpyrrolidone-based constructs. Cartilage. 2021;13(2_suppl):626S-635S. doi: 10.1177/1947603519897302
- Ren P, Wei D, Liang M, Xu L, Zhang T, Zhang Q. Alginate/ gelatin-based hybrid hydrogels with function of injecting and encapsulating cells in situ. Int J Biol Macromol. 2022;212:67-84. doi: 10.1016/j.ijbiomac.2022.05.058
- Wang N, Yu K-K, Li K, Yu X-Q. A biocompatible polyethylene glycol/alginate composite hydrogel with significant reactive oxygen species consumption for promoting wound healing. J Mater Chem B. 2023;11(29):6934-6942. doi: 10.1039/d3tb00771e
- Ng WL, Ayi TC, Liu Y-C, Sing SL, Yeong WY, Tan B-H. Fabrication and characterization of 3d bioprinted triple-layered human alveolar lung models. Int J Bioprint. 2021;7(2):332. doi: 10.18063/ijb.v7i2.332
- da Rosa NN, Appel JM, Irioda AC, et al. Three-dimensional bioprinting of an in vitro lung model. Int J Mol Sci. 2023;24(6):5852. doi: 10.3390/ijms24065852
- Frankowski J, Kurzątkowska M, Sobczak M, Piotrowska U. Utilization of 3D bioprinting technology in creating human tissue and organoid models for preclinical drug research - state-of-the-art. Int J Pharm. 2023;644:123313. doi: 10.1016/j.ijpharm.2023.123313
- Liu C, Shi C, Wang S, et al. Bridging the gap: how patient-derived lung cancer organoids are transforming personalized medicine. Front Cell Dev Biol. 2025;13:1554268. doi: 10.3389/fcell.2025.1554268
- Yang D, Miao Y, Li L, et al. From virtual to reality: application of a novel 3D printing hollow model for early-stage lung cancer in the clinical teaching of thoracoscopic sublobar resection. Front Oncol. 2025;15:1526592. doi: 10.3389/fonc.2025.1526592
- Meershoek AJA, Loonen TGJ, Maal TJJ, Hekma EJ, Hugen N. Three dimensional printing as a tool for anatomical training in lung surgery. Med Sci Educ. 2023; 33(4):873-878. doi: 10.1007/s40670-023-01807-x
- Tanaka T, Shimada Y, Furumoto H, et al. Comparative analysis of the results of video-assisted thoracic surgery lobectomy simulation using the three-dimensional-printed biotexture wet-lung model and surgeons’ experience. Interact Cardiovasc Thorac Surg. 2021;32(2):284-290. doi: 10.1093/icvts/ivaa240
- Morikawa T, Yamashita M, Odaka M, et al. A step-by-step development of real-size chest model for simulation of thoracoscopic surgery. Interact Cardiovasc Thorac Surg. 2017;25(2):173-176. doi: 10.1093/icvts/ivx110
- PSTRN PSTRNPS. Development of a 3D-printed neonatal congenital diaphragmatic hernia model and standardisation of intra-operative measurement. Pediatr Surg Int. 2023;40(1):28. doi: 10.1007/s00383-023-05600-0
- Choi C, Wells J, Luenenschloss N, et al. The role of motion tracking in assessing technical skill acquisition using a neonatal 3D-printed thoracoscopic esophageal atresia/ tracheo-esophageal fistula simulator. J Pediatr Surg. 2022;57(6):1087-1091. doi: 10.1016/j.jpedsurg.2022.01.029
- Youn JK, Ko D, Yang H-B, Kim H-Y. A 3D printed esophageal atresia-tracheoesophageal fistula thorascopy simulator for young surgeons. Sci Rep. 2024;14(1):11489. doi: 10.1038/s41598-024-62154-4
- Hong D, Kim H, Kim T, Kim Y-H, Kim N. Development of patient specific, realistic, and reusable video assisted thoracoscopic surgery simulator using 3D printing and pediatric computed tomography images. Sci Rep. 2021;11(1):6191. doi: 10.1038/s41598-021-85738-w
- Weatherall AD, Rogerson MD, Quayle MR, Cooper MG, McMenamin PG, Adams JW. A novel 3-dimensional printing fabrication approach for the production of pediatric airway models. Anesth Analg. 2021;133(5): 1251-1259. doi: 10.1213/ANE.0000000000005260
- Liu W-L, Lee IH, Lee L-N, Yang S-H, Chao K-Y. A 3D-printed high-fidelity bronchial tree for bronchoscopy. Respir Care. 2023;68(4):527-530. doi: 10.4187/respcare.10671
- Ho BHK, Chen CJ, Tan GJS, et al. Multi-material three dimensional printed models for simulation of bronchoscopy. BMC Med Educ. 2019;19(1):236. doi: 10.1186/s12909-019-1677-9
- Maier P, Silvestro E, Goldfarb SB, Piccione J, Phinizy PA, Andronikou S. Three-dimensional printed realistic pediatric static and dynamic airway models for bronchoscopy and foreign body removal training. Pediatr Pulmonol. 2021;56(8):2654-2659. doi: 10.1002/ppul.25516
- Parotto M, Jiansen JQ, AboTaiban A, et al. Evaluation of a low-cost, 3D-printed model for bronchoscopy training. Anaesthesiol Intensive Ther. 2017;49(3):189-197. doi: 10.5603/AIT.a2017.0035
- Ghazy A, Chaban R, Vahl C-F, Dorweiler B. Development and evaluation of 3-dimensional printed models of the human tracheobronchial system for training in flexible bronchoscopy. Interact Cardiovasc Thorac Surg. 2019;28(1):137-143. doi: 10.1093/icvts/ivy215
- Shaylor R, Golden E, Goren O, Verenkin V, Cohen B. Development and validation of a hybrid bronchoscopy trainer using three-dimensional printing. Simul Healthc. 2024;19(1):52-55. doi: 10.1097/SIH.0000000000000687
- Ekman T, Barakat A, Heiberg E. Generalizable deep learning framework for 3D medical image segmentation using limited training data. 3D Print Med. 2025;11(1):9. doi: 10.1186/s41205-025-00254-1
- Zhang Z, Wang Y, Wang W. Machine learning in gel-based additive manufacturing: from material design to process optimization. Gels. 2025;11(8):582. doi: 10.3390/gels11080582
- Im JY, Halliburton SS, Mei K, et al. Patient-derived PixelPrint phantoms for evaluating clinical imaging performance of a deep learning CT reconstruction algorithm. Phys Med Biol. 2024;69(11):115009. doi: 10.1088/1361-6560/ad3dba
- Rahmani Dabbagh S, Ozcan O, Tasoglu S. Machine learning-enabled optimization of extrusion-based 3D printing. Methods. 2022;206:27-40. doi: 10.1016/j.ymeth.2022.08.002
- Yilmaz B, Kara BY. Mathematical surface function-based design and 3D printing of airway stents. 3D Print Med. 2022;8(1):24. doi: 10.1186/s41205-022-00154-8
- Ayechu-Abendaño A, Pérez-Jiménez A, Sánchez-Matás C, et al. Computational analysis of polymeric biodegradable and customizable airway stent designs. Polymers. 2024;16(12):1691. doi: 10.3390/polym16121691
- Rezapour Sarabi M, Alseed MM, Karagoz AA, Tasoglu S. Machine learning-enabled prediction of 3D-printed microneedle features. Biosensors (Basel). 2022;12(7):491. doi: 10.3390/bios12070491
- Rojek I, Dostatni E, Kopowski J, Macko M, Mikołajewski D. AI-based support system for monitoring the quality of a product within industry 4.0 paradigm. Sensors (Basel). 2022;22(21):8107. doi: 10.3390/s22218107
- Pradhan A, Pattnaik G, Das S, Acharya B, Patra CN. Advancements in lung cancer: molecular insights, innovative therapies, and future prospects. Med Oncol. 2025; 42(9):383. doi: 10.1007/s12032-025-02725-1
- Hrubovčák J, Tulinský L, Pieš M, et al. The utilization of 3D printing in surgery as an innovative approach to preoperative planning. Rozhl Chir. 2024;103(8):305-312. doi: 10.48095/ccrvch2024305
- Wang T, Zhang J, Wang J, Pei YH, Qiu XJ, Wang YL. Paclitaxel drug-eluting tracheal stent could reduce granulation tissue formation in a canine model. Chin Med J. 2016;129(22):2708-2713. doi: 10.4103/0366-6999.193461
- Liang Y, Wei S, Zhang A. Bioengineered tracheal graft with enhanced vascularization and mechanical stability for functional airway reconstruction. Regen Ther. 2025;29:364-380. doi: 10.1016/j.reth.2025.03.016
- Pelizzo G, Costanzo S, Roveri M, et al. Developing virtual reality head mounted display (HMD) set-up for thoracoscopic surgery of complex congenital lung malformations in children. Children (Basel). 2022;9(1):50. doi: 10.3390/children9010050
- Cen J, Liufu R, Wen S, et al. Three-dimensional printing, virtual reality and mixed reality for pulmonary atresia: early surgical outcomes evaluation. Heart Lung Circ. 2021;30(2):296-302. doi: 10.1016/j.hlc.2020.03.017
- Pun S, Haney LC, Barrile R. Modelling human physiology on-chip: historical perspectives and future directions. Micromachines. 2021;12(10):1250. doi: 10.3390/mi12101250
- Hua W, Zhang C, Raymond L, et al. Embedded 3D printing of engineered lung cancer model for assisting fine-needle aspiration biopsy. Biofabrication. 2024. doi: 10.1088/1758-5090/ad9fe0
- Kwok JKS, Lau RWH, Zhao Z-R, et al. Multi-dimensional printing in thoracic surgery: current and future applications. J Thorac Dis. 2018;10(Suppl 6):S756-S763. doi: 10.21037/jtd.2018.02.91
- Harun A, Bendele N, Khalil MI, et al. 3D tumor-mimicking phantom models for assessing NIR I/II nanoparticles in fluorescence-guided surgical interventions. ACS Nano. 2025;19(21):19757-19776. doi: 10.1021/acsnano.5c01919
